On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs

Authors

  • T. Haritha National Institute of Technology Calicut
  • A.V. Chithra National Institute of Technology Calicut

DOI:

https://doi.org/10.52737/18291163-2023.15.10-1-16

Keywords:

Distance Matrix, Distance Eigenvalues, Distance Equienergetic Graphs, Topological Indices

Abstract

In this paper, we introduce a new graph operation based on a central graph called central vertex-edge join (denoted by $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$) and then determine the distance spectrum of $G_{n_1}^C \triangleright (G_{n_2}^V\cup G_{n_3}^E)$ in terms of the adjacency spectra of regular graphs $G_1$, $G_2$ and $G_3$ when $G_1$ is triangle-free. As a consequence of this result, we construct new families of non-D-cospectral D-equienergetic graphs. Moreover, we determine bounds for the distance spectral radius and distance energy of the central vertex-edge join of three regular graphs. In addition, we provide its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, Wiener index. Using these results, we calculate the topological indices of the organic compounds Methylcyclobutane $(C_5H_{10})$ and Spirohexane $(C_6H_{10})$.

References

G. Aalipour, A. Abiad, Z. Berikkyzy, J. Cummings, D.S. Jessica, W. Gao, K. Heysse, L. Hogben, F.H.J. Kenter, M. Tait, and J.C.H. Lin, On the distance spectra of graphs. Linear Algebra Appl., 497 (2016), pp. 66-87. https://doi.org/10.1016/j.laa.2016.02.018

M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey. Linear Algebra Appl., 458 (2014), pp. 301-386. https://doi.org/10.1016/j.laa.2014.06.010

A.E. Brouwer and W.H. Haemers, Spectra of graphs, Springer: New York, USA, 2012.

F. Buckley and F. Harary, Distance in graphs, 2, Addison-Wesley Redwood City, CA, 1990.

D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and applications, 3rd edition, Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995. https://doi.org/10.1017/s0013091500022902

K.C. Das and I. Gutman, Upper bounds on distance energy. MATCH Commun. Math. Comput. Chem., 86 (2021), pp.611-620.

M.R. Farahani, Eccentricity version of atom-bond connectivity index of benzenoid family ABC5(Hk). World Appl. Sci. J. Chem., 21 (2013), no. 9, pp. 1260-1265.

M. Ghorbani, Connective eccentric index of fullerenes. J. Math. Nanosci., 1 (2011), pp. 43-50.

M. Ghorbani and M.A. Hosseinzadeh, A new version of Zagreb indices. Filomat, 26 (2012), no. 1, pp. 93-100. https://doi.org/10.2298/fil1201093g

M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index. Optoelectron. Adv. Mat., 4 (2010), no. 12, pp. 2212-2215.

S. Gupta, M. Singh and A.K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity. J. Mol. Graph. Model., 18 (2000), no. 1, pp. 18-25. https://doi.org/10.1016/s1093-3263(00)00027-9

T. Haritha, and A.V. Chithra, On the distance spectra of central vertex join and central edge join of two regular graphs. Ricerche di Matematica, 2022, 19 pp. https://doi.org/10.1007/s11587-022-00721-5

A. Ilić, Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl., 433 (2010), no. 5, pp. 1005-1014. https://doi.org/10.1016/j.laa.2010.04.034

G. Indulal, C.S. Deena and X. Liuc, The distance spectrum of the subdivision vertex join and subdivision edge join of two regular graphs. Discrete Math. Lett., 1 (2019), pp. 36-41.

G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs. MATCH Commun. Math. Comput. Chem., 60 (2008), no. 2, pp. 461-472.

T.K. Jahfar and A.V. Chithra, Central vertex join and central edge join of two graphs. AIMS Mathematics, 5 (2020), no. 6, pp. 7214-7233. https://doi.org/10.3934/math.2020461

H.S. Ramane, I. Gutman and D.S. Revankar, Distance equienergetic graphs. MATCH Commun. Math. Comput. Chem., 60 (2008), pp. 473-484.

V. Sharma, R. Goswami and A.K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci., 37 (1997), no. 2, pp. 273-282. https://doi.org/10.1021/ci960049h

V.A. Skorobogatov and A.A. Dobrynin, Metric analysis of graphs. MATCH Commun. Math. Comput. Chem., 23 (1988), no. 1, pp. 105-151.

J.V. Vivin, M.M. Akbar Ali and K. Thilagavathi, On harmonious coloring of central graphs. Advances and Applications in Discrete Mathematics, 2 (2008), no. 1, pp. 17-33.

H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69 (1947), no. 1, pp. 17-20. https://doi.org/10.1021/ja01193a005

B. Zhou and N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett., 447 (2007), no. 4-6, pp. 384-387. https://doi.org/10.1016/j.cplett.2007.09.048

Downloads

Published

2023-10-10

How to Cite

[1]
T. Haritha and A. Chithra, “On the Distance Spectrum and Distance-Based Topological Indices of Central Vertex-Edge Join of Three Graphs”, Armen.J.Math., vol. 15, no. 10, pp. 1–16, Oct. 2023, doi: 10.52737/18291163-2023.15.10-1-16.