On the Minimal Annulus of Triangles and Parallelograms

Authors

  • Salvatore Vassallo Catholic University of Milan

DOI:

https://doi.org/10.52737/18291163-2023.15.1-1-15

Keywords:

Isoperimetric Inequality, Minimal Annulus, Bonnesen Inequality, Favard Inequality

Abstract

Sharp upper and lower bounds for the isoperimetric deficit of triangles or parallelograms with the minimal annulus of radii $R$ and $r$ are given.

References

A. Alvino, V. Ferone, and C. Nitsch, A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc., 13 (2011), pp. 185-206. https://doi.org/10.4171/jems/248

I. Bárány, On the minimal ring containing the boundary of a convex body. Acta Sci. Math. (Szeged), 52 (1988), pp. 93-100.

J. Bokowski and E. Heil, Integral representations of quermassintegrals and Bonnesen-style inequalities. Annales scientifiques de l'École Normale Supérieure, Série 3, 47 (1986), pp. 79-89. https://doi.org/10.1007/bf01202503

T. Bonnesen, Les problemes des isopérimetres et des isépiphanes, Gauthier-Villars, Paris, 1929.

T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, 1987.

O. Bottema, Eine obere grenze für das isoperimetrische defizit ebener kurven. Ned. Akad. Wet. Proc., 66 (1933), pp. 442-446.

A.R. Chouikha, Bonnesen-type inequalities and applications. In A. Eberhard, N. Hadjisavvas and D.T. Luc (eds.) Generalized convexity, generalized monotonicity and applications, 77, Springer, New York, 2005, pp. 173-181. https://doi.org/10.1007/0-387-23639-2_10

J. Cufí and A. Reventós, A lower bound for the isoperimetric deficit. Elem. Math., 71 (2016), pp. 156-167. https://doi.org/10.4171/em/312

J. Favard, Problèmes d'extremums relatifs aux courbes convexes (premier mémoire). Annales scientifiques de l'École Normale Supérieure, Série 3, 46 (1929), pp. 345-369. https://doi.org/10.24033/asens.797

J. Favard, Sur le déficit isopérimétrique maximum dans une couronne circulaire. Mat. Tidsskr. B (1929), pp. 62-68.

B. Fuglede, Bonnesen's inequality for the isoperimetric deficiency of closed curves in the plane. Geom. Dedicata, 38 (1991), pp. 283-300. https://doi.org/10.1007/bf00181191

R.J. Gardner and S. Vassallo, Inequalities for dual isoperimetric deficits. Mathematika, 45 (1998), pp. 269-285. https://doi.org/10.1112/s0025579300014200

R.J. Gardner and S. Vassallo, Stability of inequalities in the dual Brunn-Minkowski theory. J. Math. Anal. Appl., 231 (1999), no. 2, pp. 568-587. https://doi.org/10.1006/jmaa.1998.6254

G. He and W.X. Xu, Notes on Bonnesen-style inequality in the Euclidean plane. J. Math. (Wuhan), 32 (2012), pp. 1115-1120.

M.A. Hernández Cifre and P.J. Herrero Piñeiro, Some optimization problems for the minimal annulus of a convex set. Math. Inequal. Appl., 9 (2006), pp. 359-374. https://doi.org/10.7153/mia-09-36

M.A. Hernández Cifre and P.J. Herrero Piñeiro, Optimizing geometric measures for fixed minimal annulus and inradius. Rev. Mat. Iberoam., 23 (2007), no. 3, pp. 953-971. https://doi.org/10.4171/rmi/520

M.A. Hernández Cifre and P.J. Herrero Piñeiro, Relating the minimal annulus with the circumradius of a convex set. J. Math. Inequal., 4 (2010), pp. 133-149. https://doi.org/10.7153/jmi-04-14

E. Indrei, A sharp lower bound on the polygonal isoperimetric deficit. Proc. Amer. Math. Soc., 144 (2016), pp. 3115-3122. https://doi.org/10.1090/proc/12947

N.D. Kazarinoff, Geometric inequalities. New Math Library, Mathematical Association of America, 1961.

H.T. Ku, M.C. Ku, and X.M. Zhang, Analytic and geometric isoperimetric inequalities. J. Geom., 53 (1995), pp. 100-121. https://doi.org/10.1007/bf01224044

Z.Q. Li, L.B. Hou, and W.X. Xu, A Bonnesen-style inequality in the Euclidean space $R^n$. Math. Pract. Theory, 45 (2015), no. 21, pp. 210-214.

D.S. Macnab, Cyclic polygons and related questions. Math. Gaz., 65 (1981), no. 431, pp. 22-28. https://doi.org/10.2307/3617929

H. Martini and Z. Mustafaev, Extensions of a Bonnesen-style inequality to Minkowski spaces. Math. Inequal. Appl., 11 (2008), pp. 739-748. https://doi.org/10.7153/mia-11-63

G.v.S. Nagy, Über konvexe kurven und einschließende kreisringe. Acta Sci. Math. Szeged, 10 (1941), pp. 174-184.

R. Osserman, The isoperimetric inequality. Bull. Am. Math. Soc., 84 (1978), pp. 1182-1239.

R. Osserman, Bonnesen-style isoperimetric inequalities. Am. Math. Mon., 86 (1979), no. 1, pp. 1-29. https://doi.org/10.1080/00029890.1979.11994723

C. Peri, On the minimal convex shell of a convex body. Can. Math. Bull., 36 (1993), no. 4, pp. 466-472. https://doi.org/10.4153/cmb-1993-062-x

C. Peri and S. Vassallo, Minimal properties for convex annuli of plane convex curves. Arch. Math. (Basel), 64 (1995), pp. 254-263. https://doi.org/10.1007/bf01188576

C. Peri, J.M. Wills, and A. Zucco, On Blaschke's extension of Bonnesen's inequality. Geom. Dedicata, 48 (1993), pp. 349-357. https://doi.org/10.1007/bf01264078

C. Peri and A. Zucco, On the minimal convex annulus of a planar convex body. Monatsh. Math., 114 (1992), pp. 125-133. https://doi.org/10.1007/bf01535579

S. Rabinowitz, Some Bonnesen-style triangle inequalities. Missouri J. Math. Sci., 14 (2002), no. 2, pp. 75-87. https://doi.org/10.35834/2002/1402075

J.R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry. Trans. Amer. Math. Soc., 307 (1988), pp. 373-382. https://doi.org/10.1090/s0002-9947-1988-0936821-5

C.Zeng, On Bonnesen-style Aleksandrov-Fenchel inequalities in $R^n$. Bull. Korean Math. Soc., 54 (2017), no. 3, pp. 799-816. https://doi.org/10.4134/bkms.b160317

X.-M. Zhang, Bonnesen-style inequalities and pseudo-perimeters for polygons. J. Geom., 60 (1997), pp. 188-201. https://doi.org/10.1007/bf01252226

J. Zhou, L. Ma, and W. Xu, On the isoperimetric deficit upper limit. Bull. Korean Math. Soc., 50 (2013), no. 1, pp. 175-184.

J. Zhou, Y. Xia, and C. Zeng, Some new Bonnesen-style inequalities. J. Korean Math. Soc., 48 (2011), no. 2, pp. 421-430. https://doi.org/10.4134/jkms.2011.48.2.421

Downloads

Published

2023-01-26

How to Cite

On the Minimal Annulus of Triangles and Parallelograms. (2023). Armenian Journal of Mathematics, 15(1), 1-15. https://doi.org/10.52737/18291163-2023.15.1-1-15