Weak Type Estimate of Singular Integral Operators on Variable Weak Herz-Type Hardy Spaces

Authors

  • Hamza Brahim Boulares Department of Mathematics, M'sila University
  • Douadi Drihem Department of Mathematics, M'sila University https://orcid.org/0000-0003-0473-5752
  • Wafa Hebbache Department of Mathematics, M'sila University

DOI:

https://doi.org/10.52737/18291163-2023.15.3-1-33

Keywords:

Herz-Type Hardy Space, Weak Herz Spaces, Weak Herz-Type Hardy Spaces, Atom, Variable Exponent, Singular Intergral Operators

Abstract

This paper is concerned with the boundedness properties of singular integral operators on variable weak Herz spaces and variable weak Herz-type Hardy spaces. Allowing our parameters to vary from point to point will raise extra difficulties, which, in general, are overcome by imposing regularity assumptions on these exponents, either at the origin or at infinity. Our results cover the classical results on weak Herz-type Hardy spaces with fixed exponents.

References

A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), no. 5, pp. 1628-1655. https://doi.org/10.1016/j.jfa.2009.09.012

A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), no. 2, pp. 781-795. https://doi.org/10.1016/j.jmaa.2012.04.043

A. Baernstein and E.T. Sawyer, Embedding and multiplier theorems for Hp(Rn), Mem. Amer. Math. Soc. 53, no. 318, 1985.

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), no. 4, pp. 1383-1406. https://doi.org/10.1137/050624522

L. Diening, Maximal function on generalized Lesbesgue space Lp(.)(Rn), Math. Inequal. Appl., 7 (2004), pp. 245-253.

L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Variable exponent Lebesgue spaces. In: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer-Verlag, Berlin, 2011, pp. 66-97. https://doi.org/10.1007/978-3-642-18363-8_3

D. Drihem and F. Seghiri, Notes on the Herz-type Hardy spaces of variable smoothness and integrability, Math. Ineq and Appl., 19 (2016), no. 1, pp. 145-165. https://doi.org/10.7153/mia-19-11

H.G. Feichtinger and F. Weisz, Herz spaces and summability of Fourier transforms, Math. Nachr., 281 (2008), no. 3, pp. 309-324. https://doi.org/10.1002/mana.200510604

C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), no. 4, pp. 283-324. https://doi.org/10.1512/iumj.1969.18.18024

M. Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East. J. Approx., 15 (2009), pp. 87-109.

M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), pp. 33-50. https://doi.org/10.1007/s10476-010-0102-8

M. Izuki and T. Noi, Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents, preprint, 2011. Preprint is available at https://www.sci.osaka-cu.ac.jp/math/OCAMI/preprint/2011/11_15.pdf.

H. Kempka and J. Vybíral, A note on the spaces of variable integrability and summability of Almeida and Hästö, Proc. Amer. Math. Soc., 141 (2013), no. 9, pp. 3207-3212. https://doi.org/10.1090/s0002-9939-2013-11605-9

X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 40 (1996), no. 3, pp. 484-501. https://doi.org/10.1215/ijm/1255986021

S. Lu and D. Yang, The decomposition of weighted Herz space on Rn and its applications, Sci. China (Ser. A)., 38 (1995), pp. 147-158.

S. Lu, D. Yang and G. Hu, Herz type spaces and their applications, Science Press, Beijing, China, 2008.

A. Meskhi, H. Rafeiro and M.A. Zaighum, Central Calderón-Zygmund operators on Herz-type Hardy spaces of variable smoothness and integrability, Ann. Funct. Anal., 9 (2018), no. 3, pp. 310-321. https://doi.org/10.1215/20088752-2017-0030

A. Meskhi, H. Rafeiro and M.A. Zaighum, On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces, Georgian Math. J., 26 (2019), no. 1, pp. 105-116. https://doi.org/10.1515/gmj-2017-0050

H. Rafeiro and S. Samko, Riesz potential operator in continual variable exponents Herz spaces, Math. Nachr., 288 (2015), no. 4, pp. 465-475. https://doi.org/10.1002/mana.201300270

H. Rafeiro and S. Samko, On embeddings of Morrey type spaces between weighted Lebesgue or Stummel spaces with application to Herz spaces, Banach J. Math. Anal., 15 (2021), paper no. 48. https://doi.org/10.1007/s43037-021-00128-8

H. Rafeiro and S. Samko, Coincidence of variable exponent Herz spaces with variable exponent Morrey type spaces and boundedness of sublinear operators in these spaces, Potential Anal., 56 (2022), pp. 437-457. https://doi.org/10.1007/s11118-020-09891-z

V.A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal., 71 (2009), pp. 1-6.

M. Růžička, Modeling of electrorheological fluids. In: Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000, pp. 1-37. https://doi.org/10.1007/bfb0104030

S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), no. 4, pp. 2007-2025. https://doi.org/10.1007/s00009-013-0285-x

F. Soria and G. Weiss, A remark on singular integrals and power weights, Indiana Univ. Math. J., 43 (1994), pp. 187-204.

H. Wang and Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, Taiwanese. J. Math., 16 (2012), no. 4, pp. 1363-1389. https://doi.org/10.11650/twjm/1500406739

H. Wang and Z. Liu, Boundedness of singular integral operators on weak Herz type spaces with variable exponent, Ann. Funct. Anal., 11 (2020), pp. 1108-1125. https://doi.org/10.1007/s43034-020-00075-9

Downloads

Published

2023-03-10

How to Cite

[1]
H. B. Boulares, D. Drihem, and W. Hebbache, “Weak Type Estimate of Singular Integral Operators on Variable Weak Herz-Type Hardy Spaces”, Armen.J.Math., vol. 15, no. 3, pp. 1–33, Mar. 2023, doi: 10.52737/18291163-2023.15.3-1-33.