Annular region containing all the zeros of lacunary-type polynomials

Authors

  • Ashish Kumar University of Kashmir
  • Zahid Manzoor Central University of Kashmir
  • Bashir Ahmad Zargar University of Kashmir

DOI:

https://doi.org/10.52737/18291163-2022.14.4-1-9

Keywords:

Lacunary-type polynomial, Eneström-Kakeya theorem

Abstract

In this paper, we find the annular region containing all the zeros of lacunary-type polynomials, whose coefficients are subjected to certain restrictions.

References

A. Aziz and B.A. Zargar, On the zeros of polynomials, Proc. Indian Acad. (Math. Sci.), 106 (1996), pp. 127-132. https://doi.org/10.1007/bf02837165

A.L. Cauchy, Exercices de mathématique, in Oeuvres (2), 9 (1829), 122.

T. Chan and M. Malik, On the Erdös-Lax theorm, Proc. Indian Acad. Sci., 92 (1983), pp. 191-193. https://doi.org/10.1007/bf02876763

K.K. Dewan, Extremal properties and coefficient estimates for polynomials with restricted zeros and on location of zeros of polynomials, Ph.D Thesis, Indian Institute of Technology, Delhi, 1980.

K.K. Dewan and M. Bidkham, On Eneström-Kakeya theorem, J. Math. Anal. Appl., 180 (1993), no. 1, pp. 29-36. https://doi.org/10.1006/jmaa.1993.1379

R.B. Gardner and N.K. Govil, On the location of the zeros of a polynomial, J. Approx. Theory, 78 (1994), no. 2, pp. 286-292. https://doi.org/10.1006/jath.1994.1078

R.B. Gardner and B. Shields, The number of zeros of a polynomial in a disk, J. Class. Anal., 3 (2013), pp. 167-176.

N.K. Govil, Q.I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math., 23 (1979), no. 2, pp. 319-329. https://doi.org/10.1215/ijm/1256048243

N.K. Govil and Q.I. Rahman, On Eneström-Kakeya theorem, Töhoku Math., 20 (1968), no. 2, pp. 126-136. https://doi.org/10.2748/tmj/1178243172

A. Joyal, G. Labelle and Q.I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull., 10 (1967), pp. 53-63. https://doi.org/10.4153/cmb-1967-006-3

E. Landau, Über den Picardschen satz, Vierteljahrsschrift Naturforsch, Gesellschaft Zürcher & Furrer., 51 (1906), pp. 252-318.

E. Landau, Sur quelques generalisations du theoreme de M. Picard, Ann. Ecole Norm. (3), 24 (1907), pp. 179-201. https://doi.org/10.24033/asens.578

M. Marden, Geometry of Polynomials, Math. Surveys, No.3, Amer. Math. Soc., Providence, R.I., 1966.

A. Mir, A. Ahmad and A.H. Malik., Number of zeros of a polynomial in a specific region with restricted coefficients, J. Math. Appl., 42 (2019), pp. 135-146. https://doi.org/10.7862/rf.2019.9

Q.G. Mohammad, On the zeros of the polynomials, Amer. Math. Monthly, 72 (1965), pp. 631-633.

M.S. Pukhta, On the zeros of a Polynomial, Appl. Math., 2 (2011), pp. 1356-1358.

I. Qasim, T. Rasool and A. Liman, Number of zeros of a polynomial (lacunary-type) in a disk, J. Math. Appl., 41 (2018), pp. 181-194. https://doi.org/10.7862/rf.2018.13

Q.I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, 2002.

Downloads

Published

2022-03-04

How to Cite

[1]
A. Kumar, Z. Manzoor, and B. A. Zargar, “Annular region containing all the zeros of lacunary-type polynomials”, Armen.J.Math., vol. 14, no. 4, pp. 1–9, Mar. 2022, doi: 10.52737/18291163-2022.14.4-1-9.