Controlled generalized fusion frame in the tensor product of Hilbert spaces

Authors

  • Prasenjit Ghosh Calcutta University
  • Tapas Kumar Samanta Uluberia College

DOI:

https://doi.org/10.52737/18291163-2021.13.13-1-18

Abstract

We present controlled by operators generalized fusion frame in the tensor product of Hilbert spaces and discuss some of its properties. We also describe the frame operator for a pair of controlled $g$-fusion Bessel sequences in the tensor product of Hilbert spaces.

References

P. Casazza, and G. Kutyniok, Frames of subspaces, Contemporary Math, AMS 345 (2004), pp. 87-114.

O. Christensen, An introduction to frames and Riesz bases, Birkhauser, 2008.

I. Daubechies, A. Grossmann, and Y. Mayer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), no. 5, pp. 1271-1283. https://doi.org/10.1063/1.527388

R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366. https://doi.org/10.1090/s0002-9947-1952-0047179-6

G.B. Folland, A Course in abstract harmonic analysis, CRC Press BOCA Raton, Florida, 1995.

P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl., 333 (2007), pp. 871-879.

P. Ghosh and T.K. Samanta, Stability of dual $g$-fusion frame in Hilbert spaces, Methods Funct. Anal. Topol., 26 (2020), no. 3, pp. 227-240. https://doi.org/10.31392/mfat-npu26_3.2020.04

P. Ghosh and T.K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, Mathematica Bohemica (2021), 21 pages. https://doi.org/10.21136/mb.2021.0130-20

P. Ghosh and T.K. Samanta, Fusion frame and its alternative dual in tensor product of Hilbert spaces, 2021 Preprint, arXiv: 2105.03094, 15 pages.

P. Ghosh and T.K. Samanta, Generalized fusion frame in tensor product of Hilbert spaces, J. Indian Math. Soc. (accepted).

R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, Vol. I, Academic Press, New York, 1983.

A. Khosravi and M.S. Asgari, Frames and bases in the tensor product of Hilbert spaces, Intern. Math. Journal, 4 (2003), no. 6, pp. 527-537.

A. Khosravi and M. Mirzaee Azandaryani, Fusion frames and $g$-frames in tensor product and direct sum of Hilbert spaces, Appl. Anal. Discrete Math., 6 (2012), no. 2, pp. 287-303. https://doi.org/10.2298/aadm120619014k

H. Liu, Y. Huang and F. Zhu, Controlled $g$-fusion frame in Hilbert space, Int. J. Wavelets, Multiresolution Info. Proc., 19 (2021), no. 5, article number 2150009. https://doi.org/10.1142/S0219691321500090

G. Rahimlou, V. Sadri, and R. Ahmadi, Construction of controlled $K$-$g$-fusion frame in Hilbert spaces, U. P. B. Sci. Bull., Series A, 82 (2020), pp. 111-120.

S. Robinson, Hilbert space and tensor products, Lecture notes, 1997.

V. Sadri, Gh. Rahimlou, R. Ahmadi, and R. Zarghami Farfar, Generalized fusion frames in Hilbert spaces, Infin. Dimens. Anal. Quantum Probab., 23 (2020), no. 2, article number 2050015. https://doi.org/10.1142/S0219025720500150

W. Sun, G-frames and G-Riesz bases, J. Math. Anal. and Appl., 322 (2006), no. 1, pp. 437-452.

G. Upender Reddy, N. Gopal Reddy, and B. Krishna Reddy, Frame operator and Hilbert-Schmidt operator in tensor product of Hilbert spaces, J. Dyn. Syst. and Geom. Theor., 7 (2009), no. 1, pp. 61-70. https://doi.org/10.1080/1726037x.2009.10698563

Downloads

Published

2021-12-28

How to Cite

[1]
P. Ghosh and T. K. Samanta, “Controlled generalized fusion frame in the tensor product of Hilbert spaces”, Armen.J.Math., vol. 13, no. 13, pp. 1–18, Dec. 2021, doi: 10.52737/18291163-2021.13.13-1-18.