New Tauberian theorems for statistical Cesàro summability of a function of three variables over a locally convex space

Authors

  • Carlos Granados University of Antioquia
  • Ajoy Kanti Das Bir Bikram Memorial College

DOI:

https://doi.org/10.52737/18291163-2022.14.5-1-15

Keywords:

Locally convex, triple Cesàro summability, triple improper integral, Tauberian theorems, $(C,1,1,1)$-summability, $C(k,r,t)$-summability

Abstract

In this paper, we prove two new Tauberian theorems via statistical Cesàro summability mean of a continuous function of three variables by using oscillating behavior and De la Vallée Poussin means of a triple integral over a locally convex space. Moreover, some remarks and corollaries are provided here to support our results.

References

I. Çanak and Ü. Totur, Some classical Tauberian theorems for $(C,1,1,1)$-summable triple sequences. Georgian Math. J., 23 (2016), no. 1, pp. 33-42. https://doi.org/10.1515/gmj-2015-0007

I. Çanak, Z. Önder and Ü. Totur, Statistical extensions of some classical Tauberian theorems for Cesàro summability of triple sequences. Results in Mathematics, 70 (2016), pp. 457-473. https://doi.org/10.1007/s00025-016-0582-3

I. Çanak and Ü. Totur, A Tauberian theorem for Cesàro summability of integrals. Appl. Math. Lett., 24 (2011), no. 3, pp. 391-395. https://doi.org/10.1016/j.aml.2010.10.036

I. Çanak and Ü. Totur, Some Tauberian conditions for Cesàro summability method. Math. Slovaca, 62 (2012), no. 2, pp. 271-280. https://doi.org/10.2478/s12175-012-0008-y

H. Fast, Sur la convergence statistique. Colloq. Math., 2 (1951), no. 3-4, pp. 241-244.

J. Fridy, On statistical convergence. Analysis 5 (1985), pp. 301-313. https://doi.org/10.1524/anly.1985.5.4.301

C. Granados, A.K. Das and S. Das, New Tauberian theorems for Cesàro summable triple sequences of fuzzy numbers. Kragujev. J. Math., 48 (2024), no. 5, pp. 787-802.

G.H. Hardy, Divergent series, Clarendon Press, 1949.

G.H. Hardy and J.E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc., 13 (1914), no 1, pp. 174-191. https://doi.org/10.1112/plms/s2-13.1.174

B.B. Jena, S.K. Paikray and U.K. Misra, A proof of Tauberian theorem for Cesàro summability method. Asian Journal of Mathematics and Computer Research, 8 (2016), pp. 272-276.

B.B Jena, S.K. Paikray and U.K. Misra, Statistical deferred Cesaro summability and its applications to approximation theorems. Filomat, 32 (2018), no. 6, pp. 2307-2319. https://doi.org/10.2298/fil1806307j

B.B. Jena, S.K. Paikray and U.K. Misra, A Tauberian theorem for double Cesàro summability method. Int. J. Math. Math. Sci., 2016 (2016), Article ID 2431010, pp. 1-4. https://doi.org/10.1155/2016/2431010

B.B. Jena, S.K. Paikray, P. Parida and H. Dutta, Results on Tauberian theorem for Cesàro summable double sequences of fuzzy numbers, Kragujev. J. Math., 44 (2020), no. 4, pp. 495-508. https://doi.org/10.46793/kgjmat2004.495j

B.B. Jena, S.K. Paikray and U.K. Misra, Inclusion theorems on general convergence and statistical convergence of $(L,1,1)$-summability using generalized Tauberian conditions. Tamsui Oxf. J. Inf. Math. Sci., 31 (2017), pp. 101-115.

K. Knopp, Limitierungs-umkehrsätze für doppelfolgen. Math. Z. 45 (1939), pp. 573-589. https://doi.org/10.1007/bf01580302

E. Landau, Über einen satz des herrn Littlewood. Rendiconti del Circolo Mat. di Palermo, 35 (1913), pp. 265-276. https://doi.org/10.1007/bf03015606

E. Landau, Über die bedeutung einiger neuerer grenzwertsätze der herren Hardy and Axer. Prace Mathematics FIZ, 21 (1910), pp. 97-177.

F. Moricz, Tauberian theorems for Cesàro summable double sequences. Studia Math., 110 (1994), pp. 83-96. https://doi.org/10.4064/sm-110-1-83-96

P. Parida, S.K. Paikray and B.B. Jena, Tauberian theorems for satistical Cesàro summability of function of two variables over a locally convex space. Studies in Computational Intelligence: Recent Advances in Intelligent Information Systems, 863 (2020), pp. 779-790. https://doi.org/10.1007/978-3-030-34152-7_60

P. Parida, S.K. Paikray and B.B Jena, Statistical Tauberian theorems for Cesàro integrability mean based on post quantum calculus. Arab. J. Math., 9 (2020), pp. 653-663. https://doi.org/10.1007/s40065-020-00284-z

R. Schmidt, Über divergente folgen und lineare mittelbildungen. Math. Z., 22 (1925), pp. 89-152. https://doi.org/10.1007/bf01479600

H.M. Srivastava, B.B. Jena, S.K. Paikray and U.K Misra, Deferred weighted A-statistical convergence based upon the $(p,q)$-Lagrange polynomials and its applications to approximation theorems. J. Appl. Anal., 24 (2018), pp. 1-16.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 2 (1951), pp. 73-74.

A. Tauber, Ein satz der theorie der unendlichen reihen. Monatshefte für Mathematik, 8 (1897), pp. 273-277. https://doi.org/10.1007/bf01696278

Ü. Totur and I. Çanak, Some Tauberian conditions under which convergence follows from $(C,1,1,1)$ summability. J. Anal., 28 (2020), pp. 683-694. https://doi.org/10.1007/s41478-019-00179-z

Downloads

Published

2022-04-01

How to Cite

[1]
C. Granados and A. K. Das, “New Tauberian theorems for statistical Cesàro summability of a function of three variables over a locally convex space”, Armen.J.Math., vol. 14, no. 5, pp. 1–15, Apr. 2022, doi: 10.52737/18291163-2022.14.5-1-15.