Exponential decay for a strain gradient porous thermoelasticity with second sound
DOI:
https://doi.org/10.52737/18291163-2022.14.3-1-23Keywords:
strain gradient, thermoelasticity, second sound, exponential decayAbstract
In this paper, we consider a strain gradient porous elastic bar subjected to a thermal disturbance modelled by Cattaneo's law for heat conduction. We use the semigroup approach to prove the existence of a unique weak solution. Although the thermal dissipation induced by the second sound thermoelasticity is weaker than that caused by the classical heat conduction, we prove that the solution decays exponentially.
References
M. Aouidi, On uniform decay of a nonsimple thermoelasticbar with memory, J. Math. Anal. App., 402 (2013), pp. 745-757.
T. Apalara, Exponential decay in one dimensional porous dissipation elasticity, Quart. J. Mech. Appl. Math., 70 (2017), no. 4, pp. 363-372. https://doi.org/10.1093/qjmam/hbx012
T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), no. 2, pp. 457-471. https://doi.org/10.1016/j.jmaa.2017.08.007
P.S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous-thermo-elasticity, Mech. Res. Commun., 32 (2005), no. 6, pp. 652-658. https://doi.org/10.1016/j.mechrescom.2005.02.015
P.S. Casas and R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures, Int. J. Eng. Sci., 43 (2005), no. 1-2, pp. 33-47. https://doi.org/10.1016/j.ijengsci.2004.09.004
S.C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity, 15 (2005), pp. 185-191. https://doi.org/10.1007/bf00041992
S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), pp. 125-147. https://doi.org/10.1002/zamm.202000058
B. Feng, L. Yan and D.S. Almeida Júnior, Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature, Z. Angew. Math. Mech., 101 (2020), pp. 1-14. https://doi.org/10.1002/zamm.202000058
B. Feng and M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, Math. Mech. Solids, 24 (2019), no. 8, pp. 2361-2373. https://doi.org/10.1177/1081286518757299
B. Feng, Uniform decay of energy for a porous thermoelasticity system with past history, Applicable Analysis, 97 (2018), no. 2, pp. 210-229. https://doi.org/10.1080/00036811.2016.1258116
B. Feng, On the decay rates for a one-dimensional porous elasticity system with past history, Comm. Pur. Appl. Anal., 18 (2019), no. 6, pp. 2905-2921. https://doi.org/10.3934/cpaa.2019130
J.R. Fernández, A. Magaña, M. Masid, and R. Quintanilla, Analysis for the strain gradient theory of porous thermoelasticity, J. Comp. Appl. Math., 345 (2019), pp. 247-268. https://doi.org/10.1016/j.cam.2018.06.045
H.D. Fernández Sare, J.E. Muñoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), no. 11, pp. 1233-1241.
H.D. Fernández Sare and J.E. Muñoz Rivera, Optimal rates of decay in 2-d thermoelasticity with second sound, J. Math. Phys., 53 (2012), pp. 1-13. https://doi.org/10.1063/1.4734239
H.D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), no. 1, pp. 221-251. https://doi.org/10.1007/s00205-009-0220-2
L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc., 236 (1978), pp. 385-394. https://doi.org/10.1090/s0002-9947-1978-0461206-1
A.E. Green and R.S. Rivlin, Simple forces and stress multipoles, Arch. Ration. Mech. Anal., 16 (1964), pp. 325-353. https://doi.org/10.1007/bf00281725
N.E. Kochemane, General stability result for a porous thermoelastic system with infinite history and microtemperatures effects, Math. Meth. Appl. Sci., 45 (2021). no. 3, pp. 1538-1557. https://doi.org/10.1002/mma.7872
Z. Liu, A. Magaña and R. Quintanilla, On the time decay of solutions for non-simple elasticity with voids, Z. Angew. Math. Mech., 96 (2016), no. 7, pp. 857-873. https://doi.org/10.1002/zamm.201400290
Z. Lui and S. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/LCD, USA, 4-5 (1999).
H.W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Mech. Res. Comm., 32 (2005), pp. 652-658.
A. Magaña and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Int. J. Solids Struct., 43 (2006), no. 11-12, pp. 3414-3427. https://doi.org/10.1016/j.ijsolstr.2005.06.077
S.A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of equal speeds, Nonlinear Anal. M.T.A., 74 (2011), no. 18, pp. 6895-6906. https://doi.org/10.1016/j.na.2011.07.012
S.A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of nonequal speeds, Acta Math. Sci. Ser. B, 33 (2013), no.1, pp. 23-40. https://doi.org/10.1016/s0252-9602(12)60192-1
R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16 (1964), pp. 51-78. https://doi.org/10.1007/bf00248490
R.D. Mindlin and N.N. Eshel, On first strain-gradient theories in linear elasticity, Internat. J. Solids Structures, 4 (1968), no. 1, pp. 109-124. https://doi.org/10.1016/0020-7683(68)90036-x
J.E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), no. 2, pp. 1296-1309. https://doi.org/10.1016/j.jmaa.2007.06.005
J.E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability. J. Math. Anal. Appl., 276 (2002), no. 1, pp. 248-278. https://doi.org/10.1016/s0022-247x(02)00436-5
J.E. Muñoz Rivera and J.C. Vega, Large time behavior for non-simple thermoelasticity with second sound, Elec. J. Diff. Equa., 259 (2017), pp. 1-7.
J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), pp. 175-201. https://doi.org/10.1007/bf00249363
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1_7
R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16 (2003), no. 4, pp. 487-491. https://doi.org/10.1016/s0893-9659(03)00025-9
R. Quintanilla and R. Racke, Qualitative aspects of solutions in resonators, Arch. Mech., 60 (2008), no. 4, pp. 345-360.
R. Racke, Thermoelasticity with second sound, exponential stability in linear and non linear 1-d, Math. Meth. Appl. Sci., 25 (2002), no. 5, pp. 409-441. https://doi.org/10.1002/mma.298
M.L. Santos and D. Almeida Júnior, On porous-elastic system with localized damping, Z. Angew. Math. Phys., 67 (2016), pp. 1-18.
A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87 (2008), no. 4, pp. 451-464. https://doi.org/10.1080/00036810802035634
A. Soufyane, M. Afilal and M. Chacha, Boundary stabilization of memory type for the porous-thermo-elasticity system, Abstr. Appl. Anal. 2009 (2009), Art. ID 280-790, 17 pp. https://doi.org/10.1155/2009/280790
A. Soufyane, M. Afilal, M. Aouam, and M. Chacha, General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type, Nonlin. Anal., 72 (2010), no. 11, pp. 3903-3910. https://doi.org/10.1016/j.na.2010.01.004
R.A. Toupin, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11 (1962), pp. 385-414. https://doi.org/10.1007/bf00253945
R.A. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17 (1964), pp. 85-112. https://doi.org/10.1007/bf00253050
I.I. Vrabie, $C_{0}$-semigroups and applications, Elsevier Science B.V., Amsterdam, 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Armenian Journal of Mathematics
This work is licensed under a Creative Commons Attribution 4.0 International License.