On a family of weighted $\overline\partial$-integral representations in the unit disc

Authors

  • Feliks Hayrapetyan Institute of Mathematics, National Academy of Sciences of the Republic of Armenia

DOI:

https://doi.org/10.52737/18291163-2020.12.11-1-16

Keywords:

Smooth Functions in the Unit Disc, Weighted Function Spaces, Weighted $\overline{\partial}$-Integral Representations

Abstract

For weighted $L^p$-classess of $C^1$-functions in the unit disc with weight function of the type $|w|^{2\gamma}\cdot(1-|w|^{2\rho})^{\alpha}$, we obtain a family of weighted $\overline{\partial}$-integral representations of the type $f = P(f) - T(\overline{\partial} f)$.

References

D. Pompeiju, Sur les singularities des fonctions analytiques uniformes, C.R. Acad. Sci. Paris, 139(1904), pp. 914-915.

W. Wirtinger, Über eine Minimumaufgabe im Gebiet der analytischen Functionen, Monatshefte fur Math. und Phys., 39(1932), pp. 377-384. https://doi.org/10.1007/bf01699078

S. Bergman, Über unendliche Hermitische Formen, die zu einem Bereiche geh oren, nebst Anwendungenauf Fragen der Abbildung durch Funktionen von zwei komplexen Ver anderlichen, Math. Zeit., 29(1929), pp. 641-677. https://doi.org/10.1007/bf01180554

M. M. Djrbashian, On the representability of certain classes of functions meromorphic in the unit disc, Dokl. Akad. Nauk ArmSSR, 3(1945), no. 1, pp. 3-9 (in Russian).

M. M. Djrbashian, On the problem of representability of analytic functions, Soobshch. Inst. Matem. Mekh. Akad. Nauk ArmSSR, 2(1948), pp. 3-40 (in Russian).

Ph. Charpentier, Formules explicites pur les solutions minimales de l'équation $∂ˉ u=f$ dans la boule et dans le polydisque de ${C}^{n}$, Ann. Inst. Fourier, 30(1980), no. 4, pp. 121-154. https://doi.org/10.5802/aif.811

F. A. Shamoyan, Applications of Djrbashian integral representations to some problems of analysis, Dokl. Akad. Nauk SSSR, 261(1981), no. 3, pp. 557-561 (in Russian).

A. I. Petrosyan, The weighted integral representations of functions in the polydisc and in the space $C^n$, J. Contemp. Math. Analysis, 31(1996), no. 1, pp. 38-50.

A. H. Karapetyan, Weighted $∂ˉ $-integral representations in matrix domains, Complex Variables and Elliptic Equations, 53(2008), no. 12, pp. 1131-1168. https://doi.org/10.1080/17476930802509247

A. H. Karapetyan, Weighted $∂ˉ $-integral representations for weighted $L^p$-classes of $C^1$-functions in the matrix disc, Abstracts of the International conference dedicated to the 100th anniversary of academician Mkhitar Djrbashian, Yerevan, Armenia, 2018, pp. 39-40. https://doi.org/10.4064/ap-55-1-87-94

M. M. Djrbashian, Weighted integral representations of smooth or holomorphic functions in the unit disc and in the complex plane, J. Contemp. Math. Analysis, 28(1993), pp. 1-27.

F. V. Hayrapetyan, Weighted integral representations of holomorphic functions in the unit disc by means of Mittag-Leffler type kernels, Proc. NAS RA Math., 55(2020), no. 4, pp. 15-30.

Downloads

Published

2020-12-25 — Updated on 2022-09-02

Versions

How to Cite

[1]
F. Hayrapetyan, “On a family of weighted $\overline\partial$-integral representations in the unit disc”, Armen.J.Math., vol. 12, no. 11, pp. 1–16, Sep. 2022, doi: 10.52737/18291163-2020.12.11-1-16.