Dual finite frames for vector spaces over an arbitrary field with applications

Authors

  • Patricia Mariela Morillas Instituto de Matemática Aplicada San Luis (UNSL-CONICET)

DOI:

https://doi.org/10.52737/18291163-2021.13.2-1

Keywords:

Vector Spaces, Fields, Dual Frames, Hilbert Spaces, Metric Vector Spaces, Ultrametric Normed Vector Spaces

Abstract

In the present paper, we study frames for finite-dimensional vector spaces over an arbitrary field. We develop a theory of dual frames in order to obtain and study the different representations of the elements of the vector space provided by a frame. We relate the introduced theory with the classical one of dual frames for Hilbert spaces and apply it to study dual frames for three types of vector spaces: for vector spaces over conjugate closed subfields of the complex numbers (in particular, for cyclotomic fields), for metric vector spaces, and for ultrametric normed vector spaces over complete non-archimedean valued fields. Finally, we consider the matrix representation of operators using dual frames and its application to the solution of operators equations in a Petrov-Galerkin scheme.

References

Z. Ambroziński and K. Rudol, Matrices defined by frames, Opuscula Math. 29 (2009), no. 4, pp. 365-375. http://dx.doi.org/10.7494/OpMath.2009.29.4.365

R. Balan, Equivalence relations and distances between Hilbert frames, Proc. Am. Math. Soc. 127 (1999), no. 8, pp. 2353-2366. https://doi.org/10.1090/S0002-9939-99-04826-1

P. Balazs, Matrix-representation of operators using frames, Sampl. Theory Signal Image Process. 7 (2008), no. 1, pp. 39-54. https://doi.org/10.1007/BF03549484

P. Balazs and K. Gröchenig, A guide to localized frames and applications to Galerkin-like representations of operators, frames and other bases in abstract and function spaces, In: Pesenson, I., Mhaskar, H., Mayeli, A., Le Gia, Q. T., Zhou, D.-X., eds. Applied and Numerical Harmonic Analysis, Vol. 1, 2017, Basel: Birkhäuser, pp. 47-79. https://doi.org/10.1007/978-3-319-55550-8_4

P. Balazs and H. Harbrecht, Frames for the Solution of Operator Equations in Hilbert Spaces with Fixed Dual Pairing, Numer. Funct. Anal. Optim. 40 (2019), no. 1, pp. 65-84. https://doi.org/10.1080/01630563.2018.1495232

P. Balazs and G. Rieckh, Oversampling operators: Frame representation of operators, Analele Universitatii ``"Eftimie Murgu" 2 (2011), pp. 107-114.

B. G. Bodmann, M. Le, L. Reza, M. Tobin and M. Tomforde, Frame theory for binary vector spaces, Involve 2 (2009), pp. 589-602. https://doi.org/10.2140/involve.2009.2.589

B. G. Bodmann, B. Camp and D. Mahoney, Binary frames, graphs and erasures, Involve 7 (2014), pp. 151-169. https://doi.org/10.2140/involve.2014.7.151

P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, pp. 129-202.

P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, pp. 543-557.

P. G. Casazza and G. Kutyniok (eds.), Finite Frames. Theory and Applications, Birkhäuser, Boston, 2012.

D.Y. Chen, L. Li and B.T. Zheng, Perturbations of frames, Acta Math. Sin. Engl. Ser. 30 (2014), no. 7, pp. 1089-1108.

T.-Y. Chien, V. Flynn and S. Waldron, Tight frames for cyclotomic fields and other rational vector spaces, Linear Algebra Appl. 476 (2015), pp. 98-123. https://doi.org/10.1016/j.laa.2015.02.021

O. Christensen, An Introduction to Frames and Riesz Bases, Second ed., Birkhäuser, Boston, 2016.

O. Christensen and Y.C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal. 17 (2004), pp. 48-68. https://doi.org/10.1016/j.acha.2003.12.003

S. Dahlke, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equations, Adv. Comput. Math. 27 (2007), no. 1, pp. 27-63. https://doi.org/10.1007/s10444-005-7501-6

W. Dahmen and R. Schneider, Composite wavelet basis for operator equations, Math. Comp. 68 (1999), no. 228, pp. 1533-1567. https://doi.org/10.1090/S0025-5718-99-01092-3

I. Daubechies, A. Grossman and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1985), pp. 1271-1283.

I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), pp. 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6

Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl. 9 (2003), no. 1, pp. 77-96. https://doi.org/10.1007/s00041-003-0004-2

K. Flornes, A. Grossmann, M. Holschneider and B. Torrésani, Wavelets on discrete fields, Appl. Comput. Harmon. Anal. 1 (1994), pp. 137-146. https://doi.org/10.1006/acha.1994.1001

A. Ghaani Farashahi, Wave packet transform over finite fields, Electron. J. Linear Algebra 30 (2015), pp. 507-529. https://doi.org/10.13001/1081-3810.2903

A. Ghaani Farashahi, Wave packet transforms over finite cyclic groups, Linear Algebra Appl. 489 (2016), pp. 75-92. https://doi.org/10.1016/j.laa.2015.10.001

G. R. W. Greaves, J. W. Iverson, J. Jasper and D. G. Mixon, Frames over finite fields: basic theory and equiangular lines in unitary geometry, arXiv:2012.12977v1 (2020).

G. R. W. Greaves, J. W. Iverson, J. Jasper and D. G. Mixon, Frames over finite fields: equiangular lines in orthogonal geometry, arXiv:2012.13642v1 (2020).

R. Hotovy, D. R. Larson and S. Scholze, Binary frames, Houston J. Math. 41 (2015), no. 3, pp. 875-899.

J. Kovačević and A. Chebira, An Introduction to Frames, Found. Trends Signal Process. 2 (2008), pp. 1-94.

R. P. Mendez, B. G. Bodmann, Z. J. Baker, M. G. Bullok and J. E. McLaney, Binary Parseval frames from group orbits, Linear Algebra Appl. 556 (2018), pp. 265-300. https://doi.org/10.1016/j.laa.2018.07.016

P. M. Morillas, Construction of orthonormal wavelet-like bases, J. Math. Phys. 51 (2010), 083510. https://doi.org/10.1063/1.3462714

K. Okoudjou (ed.), Finite Frame Theory. A Complete Introduction to Overcompletness, Proc. Sympos. Appl. Math., AMS, Vol. 23, 2016.

A. M. Robert, A Course in p-adic Analysis, Springer, New York, 2000.

S. Roman, Advanced Linear Algebra, Third ed., Springer, New York, 2008.

R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal. 41 (2003), no. 3, pp. 1074-1100. https://doi.org/10.1137/S0036142902407988

S. Waldron, An Introduction to Finite Tight Frames, Birkhäuser, Boston, 2018.

S. Waldron, Frames for vector spaces and affine spaces, Linear Algebra Appl. 435 (2011), pp. 77-94. https://doi.org/10.1016/j.laa.2011.01.027

Downloads

Published

2021-05-15

How to Cite

[1]
P. M. Morillas, “Dual finite frames for vector spaces over an arbitrary field with applications”, Armen.J.Math., vol. 13, no. 2, pp. 1–36, May 2021, doi: 10.52737/18291163-2021.13.2-1.