Subnexuses Based on N-structures

Authors

  • Morteza Norouzi University of Bojnord
  • Ameneh Asadi Payame Noor University
  • Young Bae Jun Gyeongsang National University

DOI:

https://doi.org/10.52737/18291163-2018.10.10-1-15

Keywords:

Nexus, subnexus, $\mathcal{N}$-structure, $q$-support, $\in \vee {q}$-support

Abstract

The notion of a subnexus based on ${\mathcal{N}}$-function (briefly, ${\mathcal{N}}$-subnexus) is introduced, and related properties are investigated. Also, the notions of ${\mathcal{N}}$-subnexus of type $(\alpha, \beta)$, where $(\alpha, \beta)$ is $(\in, \in)$, $(\in, q)$, $(\in, \in\! \vee \, {q})$, $(q, \in)$, $(q,q)$, $(q, \in\! \vee \, {q})$, $(\overline{\in}, \overline{\in})$ and $(\overline{\in}, \overline{\in} \vee \overline{q})$, are introduced, and their basic properties are investigated. Conditions for an ${\mathcal{N}}$-structure to be an ${\mathcal{N}}$-subnexus of type $(q, \in\! \vee \, {q})$ are given, and characterizations of ${\mathcal{N}}$-subnexus of type $(\in, \in\! \vee \, {q})$ and $(\overline{\in}, \overline{\in} \vee \overline{q})$ are provided. Homomorphic image and preimage of ${\mathcal{N}}$-subnexus are discussed.

Downloads

Published

2018-12-10 — Updated on 2022-09-19

Versions

How to Cite

[1]
M. Norouzi, A. Asadi, and Y. B. Jun, “Subnexuses Based on N-structures”, Armen.J.Math., vol. 10, no. 10, pp. 1–15, Sep. 2022, doi: 10.52737/18291163-2018.10.10-1-15.