Conformable Fourier Transform on Time Scales

Authors

  • Svetlin G. Georgiev Sorbonne University
  • Tukaram G. Thange Yogeshwari Mahavidyalaya
  • Sneha M. Chhatraband Dr. Babasaheb Ambedkar Marathwada University; School of Humanities and Engineering Sciences

DOI:

https://doi.org/10.52737/18291163-2025.17.9-1-15

Keywords:

Time Scale, Conformable Laplace Transform, Conformable Bilateral Laplace Transform, Conformable Fourier Transform, Generalized Exponential Function

Abstract

In this paper, we formulate the conformable Fourier transform on time scales, drawing motivation from the structure of the conformable bilateral Laplace transform. Some of the elementary properties are proved, including shifting, transform of derivative, conjugation, transform of Hilger delta function, and transform of integral.

References

D R. Anderson and S G. Georgiev, Conformable dynamic equations on time scales, Chapman and Hall/CRC, 2020. DOI: https://doi.org/10.1201/9781003057406

N. Benkhettau, S. Hassani and D.F.M. Torres, A conformable fractional calculus on arbitrary time scales. J. King. Saud Uni., 28 (2016), no. 1, pp. 93-98. DOI: https://doi.org/10.1016/j.jksus.2015.05.003

B. Bendouma and A. Hammoudi, A nabla conformable fractional calculus on time scales. Electrn J. Math. Anal. Appl., 7 (2019), no. 1, pp. 202-216. DOI: https://doi.org/10.21608/ejmaa.2019.312753

M. Bohner and A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, Mass USA, 2001. DOI: https://doi.org/10.1007/978-1-4612-0201-1

M. Bohner, G.Sh. Guseinov and B. Karpuz, Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct., 22 (2011), no. 11, pp. 785-800. DOI: https://doi.org/10.1080/10652469.2010.548335

T. Cuchta and S. Georgiev, Analysis of the Bilateral Laplace transform on time scales with applications. Int. J. Dyn. Syst. Differ. Equ., 11 (2021), no. 3-4, pp. 255-274. DOI: https://doi.org/10.1504/IJDSDE.2021.10040324

J.M. Davis, I.A. Gravagne and R.J. Marks II, Time scale discrete Fourier transforms. Proceedings of the Southeastern Symposium on System Theory, 42 (2010), pp. 102-110. DOI: https://doi.org/10.1109/SSST.2010.5442859

J.M. Davis, I.A. Gravagne, B.J. Jackson, R.J. Marks II and A.A. Ramos, The Laplace transform on time scales revisited. J. Math. Anal. Appl., 332 (2007), no. 2, pp. 1291-1307. DOI: https://doi.org/10.1016/j.jmaa.2006.10.089

J.M. Davis, I.A. Gravagne and R.J. Marks II, Bilateral Laplace transform on time scales: convergence, convolution, and the characterization of stationery stochastic time series. Circuits. Syst. Signal Process., 29 (2010), pp. 1141-1165. DOI: https://doi.org/10.1007/s00034-010-9196-2

S.G. Georgiev and K. Zennir, Advances in fractional dynamic inequalities on time scales, World Scientific Publishing, 2003.

S. Georgiev, The Laplace transform on time scales with applications, LAP LAMBERT Academic Publisher, 2022. DOI: https://doi.org/10.1007/978-3-031-38196-6_1

S.G. Georgiev and V. Darvish, The generalized Fourier convolution on time scales. Integral Transform Spec. Funct., 34 (2023), no. 3, pp. 211-227. DOI: https://doi.org/10.1080/10652469.2022.2105323

S.G. Georgiev, S.M. Chhatraband and T.G. Thange, Conformable bilateral Laplace transform on time scales (submitted).

S. Hilger, Ein Maßtkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universtät Wüurzburg, Germany, 1988.

S. Hilger, Special functions, Laplace and Fourier transform on measure chains. Dyn. Syst. Appl., 8 (1999), pp. 471-488.

S. Hilger, An application of calculus on measure chains to Fourier theory and Heisenberg's uncertainty principle. The J. Diff. Equations Appl., 8 (2002), no. 10, pp. 897-936. DOI: https://doi.org/10.1080/1023619021000000960

R.J. Marks II, I.A. Gravagne and J.M. Davis, A generalized Fourier transform and convolution on time scales. J. Math. Anal. Appl., 340 (2008), no. 2, pp. 901-919. DOI: https://doi.org/10.1016/j.jmaa.2007.08.056

M.D. Ortigueria, D.F.M. Torres and J.I. Trujilla, Exponentials and Laplace transforms on nonlinear time scales. Commun. Nonlinear Sci. Numer. Simul., 39 (2016), pp. 252-270. DOI: https://doi.org/10.1016/j.cnsns.2016.03.010

T.G. Thange and S.M. Chhatraband, Laplace-Sumudu integral transform on time scales. South East Asian J. Math. Math. Sci., 19 (2023), no. 1, pp. 91-102. DOI: https://doi.org/10.56827/SEAJMMS.2023.1901.9

T.G. Thange and S.M. Chhatraband, A new α-Laplace transform on time scales. Jñānābha, 53 (2024), no. 2, pp. 151-160. DOI: https://doi.org/10.58250/jnanabha.2023.53218

T.G. Thange and S.M. Chhatraband, On Nabla Shahe transform and its applications. Journal of Fractional Calculus and Applications, 15 (2024), no. 1, pp. 1-13.

T.G. Thange and S.M. Chhatraband, New general integral transform on time scales. J. Mathe. Model., 12 (2024), no. 4, pp. 655-669.

T.G. Thange and S.M. Chhatraband, Double Shehu transform for time scales with applications. J. Classical Anal., 25 (2025), no. 1, pp. 75-94. DOI: https://doi.org/10.7153/jca-2025-25-05

T.G. Thange and S.M. Chhatraband, On $n$-dimensional integral transform for time scales. Palest. J. Math., 14 (2025), no. 2, pp. 777-798.

T.G. Thange, S.M. Chhatraband and S.G. Georgiev, Conformable Laplace transform on time scales (submitted).

A. Younus, K. Bukhsh, M.A. Alqudah and T. Abdeljawad, Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 7 (2012), no. 7, pp. 12050-12076. DOI: https://doi.org/10.3934/math.2022670

Downloads

Published

2025-09-09

How to Cite

[1]
S. Georgiev, T. Thange, and S. Chhatraband, “Conformable Fourier Transform on Time Scales”, Armen.J.Math., vol. 17, no. 9, pp. 1–15, Sep. 2025, doi: 10.52737/18291163-2025.17.9-1-15.