Numerical Blow-Up Analysis of Explicit L1 Scheme for Time-Fractional Partial Differential Equations
DOI:
https://doi.org/10.52737/18291163-2025.17.11-1-17Keywords:
Time-Fractional Partial Differential Equations, Explicit L1 Scheme, Blow-UpAbstract
In this paper, we consider the blow-up of explicit L1 scheme for time-fractional partial differential equations. Firstly, we discretize the mentioned equation by the explicit L1 scheme and obtain the corresponding matrix form. Secondly, we introduce the concept of discrete energy. Based on Nakagawa's criteria, a suitable adaptive time-stepping strategy is given by the discrete energy. Thirdly, with the help of lower discrete energy, the finite blow-up behaviors of numerical solution are studied. Finally, some numerical examples for verifying the theoretical results are provided.
References
A. Alsaedi, M. Kirane and B.T. Torebek, Blow-up of smooth solutions of the time-fractional Burgers equation. Quaest. Math., 43 (2020), no. 2, pp. 185-192. DOI: https://doi.org/10.2989/16073606.2018.1544596
A. Alsaedi, B. Ahmad, M. Kirane and B. Rebiai, Local and blowing-up solutions for a space-time fractional evolution system with nonlinearities of exponential growth. Math. Meth. Appl. Sci., 42 (2019), no. 12, pp. 4378-4393. DOI: https://doi.org/10.1002/mma.5657
K.I.A. Ahmed, Analytical multiple soliton solutions for a class of coupled fractional order under time-dependent variable coefficient Korteweg-de Vries. Math. Meth. Appl. Sci., 48 (2025), no. 2, pp. 11652-11659. DOI: https://doi.org/10.1002/mma.10958
X. An, F. Liu, M. Zheng, V.V. Anh and I.W. Turner, A space-time spectral method for time-fractional Black-Scholes equation. Appl. Numer. Math., 165 (2021), pp. 152-166. DOI: https://doi.org/10.1016/j.apnum.2021.02.009
L.M. Abia, J.C. López-Marcos and J. Martínez, The Euler method in the numerical integration of reaction-diffusion problems with blow-up. Appl. Numer. Math., 38 (2001), no. 3, pp. 287-313. DOI: https://doi.org/10.1016/S0168-9274(01)00035-6
A. Bhardwaj and A. Kumar, A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. Appl. Numer. Math., 160 (2021), pp. 146-165. DOI: https://doi.org/10.1016/j.apnum.2020.09.019
C.H. Cho, On the computation of the numerical blow-up time. Japan. J. Ind. Appl. Math., 30 (2013), pp. 331-349. DOI: https://doi.org/10.1007/s13160-013-0101-9
C.H. Cho, On the computation for blow-up solutions of the nonlinear wave equation. Numer. Math., 138 (2018), pp. 537-556. DOI: https://doi.org/10.1007/s00211-017-0919-1
C. Deng, W. Liu and E. Nane, Pathwise blowup of space-time fractional stochastic partial differential equations. J. Theor. Probab., 38 (2025), Article number 55. DOI: https://doi.org/10.1007/s10959-025-01424-x
F.H. Damag and A. Saif, On solving modified time Caputo fractional Kawahara equations in the framework of Hilbert algebras using the Laplace residual power series method. Fractal Fract., 9 (2025), no.5, Article number 301. DOI: https://doi.org/10.3390/fractalfract9050301
H. Dorsaf, K. Ferdaous and L. Rafika, Blowing-up solutions and global solutions to a fractional differential equation. Fractional Differ. Calc., 4 (2014), no. 1, pp. 45-53. DOI: https://doi.org/10.7153/fdc-04-03
H. Guo, X. Liang and Y. Yang, Provable convergence of blow-up time of numerical approximations for a class of convection-diffusion equations. J. Comput. Phy., 466 (2022), Article number 111421. DOI: https://doi.org/10.1016/j.jcp.2022.111421
M. Hussain, S. Haq and A. Ghafoor, Meshless spectral method for solution of time-fractional coupled KdV equations. Appl. Math. Comput., 341 (2019), pp. 321-334. DOI: https://doi.org/10.1016/j.amc.2018.09.001
Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math., 235 (2011), no. 11, pp. 3285-3290. DOI: https://doi.org/10.1016/j.cam.2011.01.011
C. Li and Z. Li, On blow-up for a time-space fractional partial differential equation with exponential kernel in temporal derivative. J. Math. Sci., 266 (2022), pp. 381-394. DOI: https://doi.org/10.1007/s10958-022-05894-w
M. Liao, Q. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations. Adv. Nonlinear Anal., 9 (2020), no. 1, pp. 1569-1591. DOI: https://doi.org/10.1515/anona-2020-0066
P. Lyu and S. Vong, A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett., 78 (2018), pp. 16-23. DOI: https://doi.org/10.1016/j.aml.2017.10.011
Y. Liu, Y.W. Du, H. Li, J. Li and S. He. A two-grid mixed finite element method for a nonlinear fourth-order reaction diffusion problem with time-fractional derivative. Comput. Math. Appl., 70 (2015), no. 10, pp. 2474-2492. DOI: https://doi.org/10.1016/j.camwa.2015.09.012
T. Nakagawa, Blowing up of a finite difference solution to $u_t = u_{xx} +u^2$. Appl. Math. Optim., 2 (1975), pp. 337-350. DOI: https://doi.org/10.1007/BF01448176
K.C. N'dri, K.A.Toure and G. Yoro, Numerical quenching versus blow-up for a nonlinear parabolic equation with nonlinear boundary outflux. Adv. Math., 9 (2020), no. 1, pp. 151-171. DOI: https://doi.org/10.37418/amsj.9.1.14
M.K. Rawani and A.K. Verma, A computationally efficient numerical scheme for the solution of fourth-order time fractional partial integro-differential equation. Fract. Calc. Appl. Anal., 28 (2025), pp. 2056-2082. DOI: https://doi.org/10.1007/s13540-025-00423-3
Y. Shan and G. Lv, New criteria for blow up of fractional differential equations. Filomat, 38 (2024), no. 4, pp. 1305-1315. DOI: https://doi.org/10.2298/FIL2404305S
Z. Shao, S. Kosari and M.H. Derakhshan, An optimal fractional-order Gegenbauer wavelet method for solving the distributed-order time-fractional telegraph model with error analysis. Z. Angew. Math. Phys., 76 (2025), Article number 109. DOI: https://doi.org/10.1007/s00033-025-02489-8
A.M. Stuart and M.S. Floater, On the computation of blow-up. European J. Appl. Math., 1 (1990), no. 1, pp. 47-71. DOI: https://doi.org/10.1017/S095679250000005X
B.T. Torebek, Global unsolvability of the Burgers equation with fractional time derivative. Differential Equations, 55 (2019), pp. 867-870. DOI: https://doi.org/10.1134/S0012266119060156
J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag, Berlin, 1995. DOI: https://doi.org/10.1007/978-1-4899-7278-1
J. Villa-Morales, Upper bounds for the blow-up time of a system of fractional differential equations with Caputo derivatives. Results Appl. Math., 20 (2023), Article number 100408. DOI: https://doi.org/10.1016/j.rinam.2023.100408
X. Xie and F. Gao, The delayed effect of multiplicative noise on the blow-up for a class of fractional stochastic differential equation. Fractal Fract., 8 (2024), no. 3, Article number 127. DOI: https://doi.org/10.3390/fractalfract8030127
Z. Yang, T. Tang and J. Zhang, Blowup of Volterra integro-differential equations and applications to semi-linear Volterra diffusion equations. Numer. Math. Theor. Meth. Appl., 10 (2017), no. 4, pp. 737-759. DOI: https://doi.org/10.4208/nmtma.2016.0001
M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput., 36 (2014), no. 1, pp. 40-62. DOI: https://doi.org/10.1137/130933216
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Armenian Journal of Mathematics

This work is licensed under a Creative Commons Attribution 4.0 International License.