Implicit Elliptic Problems with p-Laplacian

Authors

  • Eugenio Cabanillas Lapa National University of San Marcos
  • Mg. Jesus V. Luque Rivera National University of San Marcos

DOI:

https://doi.org/10.52737/18291163-2024.16.12-1-10

Keywords:

Implicit Elliptic Problems, Krasnoselskii Theorem, $p$-Laplacian

Abstract

In this research, we will study the existence of weak solutions for a class of implicit elliptic equations involving the $p$-Laplace operator. Using a Krasnoselskii--Schaefer type theorem we establish our result, extending and complementing those obtained by R. Precup, 2020,  and Marino and Paratore, 2021.

Author Biography

  • Mg. Jesus V. Luque Rivera, National University of San Marcos

    Departamento de Matemática, Facultad de Ciencias Matemáticas, UNMSM

    Associate Professor.

References

G. Bonanno and S. Marano, Elliptic problems in Rn with discontinuous nonlinearities. Proc. Edinbungh Math. Soc., 43 (2000), no. 3, pp. 545-558. DOI: https://doi.org/10.1017/S0013091500021180

S. Carl and S. Heikkila, Discontinuous implicit elliptic boundary value problems. Differential Integral Equations, 11 (1998), no. 6, pp. 823-834. DOI: https://doi.org/10.57262/die/1367329478

P. Cubiotti, Existence results for highly discontinuous implicit equations elliptic. Atti Accad. Peloritana Per. Cl. Sci. Fis. Mat. Natur., 100 (2022), no. 1, A5.

B. Dacorogna and P. Marcellini, Implicit partial differential equations. Progress in Nonlinear Differential Equations and their Applications, 37, Birkhauser Boston Inc., Boston, MA, 1999. DOI: https://doi.org/10.1007/978-1-4612-1562-2

B. Dacorogna and Ch. Chiara Tanteri, Implicit partial differential equations and the constraints of nonlinear elasticity. J. Math. Pures Appl., 81 (2002), no. 4, pp. 311-341. DOI: https://doi.org/10.1016/S0021-7824(01)01235-1

H. Gao, Y. Li and B. Zhang, A fixed point theorem of Krasnoselskii-Schaefer type and its applications in control and periodicity of integral equations. Fixed Point Theory, 12 (2011), pp. 91-112.

S. A. Marano, Implicit elliptic differential equations. Set-Valued Anal., 2 (1994), pp. 545-558. DOI: https://doi.org/10.1007/BF01033071

G. Marino and A. Paratore, Implicit equations involving the p-Laplace operator. Mediterr. J. Math., 18 (2021), no. 74. DOI: https://doi.org/10.1007/s00009-021-01713-9

I. Peral, Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, Italy, 1997.

R. Precup, Implicit elliptic equations via Krasnoselskii-Schaefer type theorems. Electron. J. Qual. Theory Differ. Equ., 87 (2020), pp. 1-9. DOI: https://doi.org/10.14232/ejqtde.2020.1.87

Downloads

Published

2024-11-29

How to Cite

[1]
E. Cabanillas Lapa and J. V. Luque Rivera, “Implicit Elliptic Problems with p-Laplacian”, Armen.J.Math., vol. 16, no. 12, pp. 1–10, Nov. 2024, doi: 10.52737/18291163-2024.16.12-1-10.