A Constructive Approach to Bivariate Hyperbolic Box Spline Functions

Authors

  • Hrushikesh Jena Siksha 'O' Anusandhan Deemed to be University

DOI:

https://doi.org/10.52737/18291163-2025.17.1-1-18

Keywords:

Hyperbolic B-Spline, Box Spline, Directional Convolution, Direction Matrix

Abstract

This article is based on the construction procedure of bivariate hyperbolic box spline functions. Generally, box splines are considered as the multivariate generalizations of univariate B-splines. Both B-splines and box splines are refinable functions. Two different kinds of box splines like the polynomial box splines and the trigonometric box splines along with their usefulness are well studied in literature. However, another variant of box splines named as the class of hyperbolic box spline functions, has not gained much attention. This article focuses on the construction of bivariate hyperbolic box spline functions from univariate hyperbolic B-spline functions through directional convolution method. Also, the importance and usefulness of such functions are discussed.

References

R. Campagna and C. Conti, Penalized hyperbolic-polynomial splines. Appl. Math. Lett., 118 (2021), 107159. DOI: https://doi.org/10.1016/j.aml.2021.107159

R. Campagna and C. Conti, Reproduction capabilities of penalized hyperbolic-polynomial splines. Appl. Math. Lett., 132 (2022), 108133. DOI: https://doi.org/10.1016/j.aml.2022.108133

R. Campagna, C. Conti and S. Cuomo, A linear algebra approach to HP-splines frequency parameter selection. Appl. Math. Comput., 458 (2023), 128241. DOI: https://doi.org/10.1016/j.amc.2023.128241

R. Campagna, C. Conti and S. Cuomo, Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Res. Notes Approx., 12 (2019), no. 1, pp. 86-100.

E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des., 10 (1978), no. 6, pp. 350-355. DOI: https://doi.org/10.1016/0010-4485(78)90110-0

J. Chen, S. Grundel and T.P.Y. Yu, A flexible С2 subdivision scheme on the sphere: with application to biomembrane modelling. SIAM J. Appl. Algebra Geom., 1 (2017), no. 1, pp. 459-483. DOI: https://doi.org/10.1137/16M1076794

C. Chui, and J. De Villiers, Wavelet subdivision methods: GEMS for rendering curves and surfaces, CRC Press, Boca Raton, 2010. DOI: https://doi.org/10.1201/b13589

C. Chui, J. Stöckler and J.D. Ward, Compactly supported box-spline wavelets. Approx. Theory and its Appl., 8 (1992), no. 3, pp. 77-100. DOI: https://doi.org/10.1007/BF02836340

C. Conti, M. Cotronei and L. Romani, Beyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials. Dolomites Res. Notes Approx., 10 (2017), pp. 31-42.

C. Conti, C. Deng and K. Hormann, Symmetric four-directional bivariate pseudo-spline symbols. Comput. Aided Geom. Des., 60 (2018), pp. 10-17. DOI: https://doi.org/10.1016/j.cagd.2018.01.001

C. Conti, L. Gori and F. Pitolli, Some recent results on a new class of bivariate refinable functions. Rendiconti di Matematica, Serie VII 61, (2003), pp. 301-312.

C. Conti and K. Jetter, A note on convolving refinable function vectors. In: Curve and Surface Fitting: Saint-Malo 1999 (eds. A. Cohen, C. Rabut and L.L. Schumaker), Vanderbilt University Press, Nashville, 18, no. 5, pp. 397-427.

C. Conti, S. López-Ureña and L. Romani, Annihilation operators for exponential spaces in subdivision. Appl. Math. Comput., 418 (2022), p. 126796. DOI: https://doi.org/10.1016/j.amc.2021.126796

C. Conti and F. Pitolli, A new class of bivariate refinable functions suitable for cardinal interpolation. Rendiconti di Matematica, Serie VII 27, (2007), pp. 61-71.

M. Daehlen and T. Lyche, Box splines and applications. In: Geometric Modeling, Springer, Berlin, Heidelberg, 1991, pp. 35-93. DOI: https://doi.org/10.1007/978-3-642-76404-2_3

D. Doo and M. Sabin, Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des., 10 (1978), no. 6, pp. 356-380. DOI: https://doi.org/10.1016/0010-4485(78)90111-2

G. Farin, Curves and surfaces for CAGD: A practical guide, Morgan Kaufmann, 2002.

H. Jena and M.K. Jena, An introduction to a hybrid trigonometric box spline surface producing subdivision scheme. Numer. Algorithms, 95 (2024), pp. 73-116. DOI: https://doi.org/10.1007/s11075-023-01565-2

H. Jena and M.K. Jena, Construction of trigonometric box splines and the associated non-stationary subdivision schemes. Int. J. Appl. Comput. Math., 7 (2021), no. 4, article number 129. DOI: https://doi.org/10.1007/s40819-021-01069-4

M.K. Jena, P. Shunmugaraj and P.C. Das, A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes. Comput. Aided Geom. Des., 20 (2003), no. 3, pp. 61-77. DOI: https://doi.org/10.1016/S0167-8396(03)00008-6

C. Loop, Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, Department of Mathematics, Utah, USA, 1987.

Y. Lu, G. Wang and X. Yang, Uniform hyperbolic polynomial B-spline Curves. Comput. Aided Geom. Des., 19 (2002), no. 6, pp. 379-393. DOI: https://doi.org/10.1016/S0167-8396(02)00092-4

Y. Lu, G. Wang and X. Yang, Uniform trigonometric polynomial B-spline curves (in Chinese). Science in China (Series E), 32 (2002), no. 2, pp. 281-288.

G. Morin, J. Warren and H. Weimer, A subdivision scheme for surfaces of revolution. Comput. Aided Geom. Des., 18 (2001), no. 5, pp. 483-502. DOI: https://doi.org/10.1016/S0167-8396(01)00043-7

I.J. Schoenberg, Cardinal interpolation and spline functions. J. Approx. Theory, 2 (1969), no. 2, pp. 167-206. DOI: https://doi.org/10.1016/0021-9045(69)90040-9

I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae. Q. Appl. Math., 4 (1946), no. 2, pp. 112-141. DOI: https://doi.org/10.1090/qam/16705

I.J. Schoenberg, On trigonometric spline interpolation. Journal of Mathematics and Mechanics, 13 (1964), no. 5, pp. 795-825. DOI: https://doi.org/10.1512/iumj.1964.13.13047

L.L. Schumaker, Spline Functions: Basic Theory, Cambridge University Press, 2007. DOI: https://doi.org/10.1017/CBO9780511618994

J.W. Zhang, C-curves: An extension of cubic curves. Comput. Aided Geom. Des., 13 (1996), no. 3, pp. 199-217. DOI: https://doi.org/10.1016/0167-8396(95)00022-4

J.W. Zhang, Two different forms of C-B-Splines. Comput. Aided Geom. Des., 14 (1997), no. 1, pp. 31-41. DOI: https://doi.org/10.1016/S0167-8396(96)00019-2

B. Zhang, H. Zheng and W. Song, A non-stationary Catmull-Clark subdivision scheme with shape control. Graph. Models, 106 (2019), 101046. DOI: https://doi.org/10.1016/j.gmod.2019.101046

Downloads

Published

2025-02-25

How to Cite

[1]
H. Jena, “A Constructive Approach to Bivariate Hyperbolic Box Spline Functions”, Armen.J.Math., vol. 17, no. 1, pp. 1–18, Feb. 2025, doi: 10.52737/18291163-2025.17.1-1-18.