The Generating Function of a Bi-Periodic Leonardo Sequence

Authors

  • Carlos M. da Fonseca Kuwait College of Science and Tecnhology

DOI:

https://doi.org/10.52737/18291163-2024.16.07-1-8

Keywords:

Leonardo Numbers, Generating Functions, Hessenberg Matrices, Recurrence Relations, Determinant

Abstract

In ``"A note on bi-periodic Leonardo sequence", the generating function for a certain bi-periodic Leonardo sequence is claimed.  In this note, we show that the result is not correct. Based on the literature, we establish the correct identity. Possible periodic extensions for the Leonardo sequence are discussed, opening new avenues for results in the area.

References

M. Anđelić, Z. Du, C.M. da Fonseca and E. Kılıç, A matrix approach to some second-order difference equations with sign-alternating coefficients. J. Difference Equ. Appl., 26 (2020), no. 2, pp. 149-162. https://doi.org/10.1080/10236198.2019.1709180 DOI: https://doi.org/10.1080/10236198.2019.1709180

M. Anđelić and C.M. da Fonseca, Determinantal representations for the number of subsequences without isolated odd terms. Notes Number Theory Discrete Math., 27 (2021), no. 4, pp. 116-121. https://doi.org/10.7546/nntdm.2021.27.4.116-121 DOI: https://doi.org/10.7546/nntdm.2021.27.4.116-121

M. Anđelić and C.M. da Fonseca, On the constant coefficients of a certain recurrence relation: A simple proof. Heliyon, 7 (2021), no. 8, E07764. https://doi.org/10.1016/j.heliyon.2021.e07764 DOI: https://doi.org/10.1016/j.heliyon.2021.e07764

M. Anđelić, C.M. da Fonseca and R. Mamede, On the number of P-vertices of some graphs. Linear Algebra Appl., 434 (2011), no. 2, pp. 514-525. https://doi.org/10.1016/j.laa.2010.09.017 DOI: https://doi.org/10.1016/j.laa.2010.09.017

M. Anđelić, C.M. da Fonseca and F. Yılmaz, The bi-periodic Horadam sequence and some perturbed tridiagonal 2-Toeplitz matrices: A unified approach. Heliyon, 8 (2022), no. 2, E08863. https://doi.org/10.1016/j.heliyon.2022.e08863 DOI: https://doi.org/10.1016/j.heliyon.2022.e08863

P.M.M. Catarino and E.V.P. Spreafico, A note on bi-periodic Leonardo sequence. Armen. J. Math., 16 (2024), no. 5, pp. 1-17. https://doi.org/10.52737/18291163-2024.16.5-1-17 DOI: https://doi.org/10.52737/18291163-2024.16.5-1-17

J.F. Elliott, The characteristic roots of certain real symmetric matrices. Master's thesis, University of Tennessee, 1953.

C.M. da Fonseca, An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Math. J., 61 (2011), no. 4, pp. 917-921. https://doi.org/10.1007/s10587-011-0059-1 DOI: https://doi.org/10.1007/s10587-011-0059-1

C.M. da Fonseca and J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix. Numer. Math., 100 (2005), no. 3, pp. 457-482. https://doi.org/10.1007/s00211-005-0596-3 DOI: https://doi.org/10.1007/s00211-005-0596-3

C.M. da Fonseca and J. Petronilho, Explicit inverses of some tridiagonal matrices. Linear Algebra Appl., 325 (2001), no. 1-3, pp. 7-21.

S. Getu, Evaluating determinants via generating functions. Math. Mag., 64 (1991), pp. 45-53.

M.J.C. Gover, The eigenproblem of a tridiagonal 2-Toeplitz matrix. Linear Algebra Appl., 197/198 (1994), pp. 63-78. https://doi.org/10.1016/0024-3795(94)90481-2 DOI: https://doi.org/10.1016/0024-3795(94)90481-2

A. Inselberg, On determinants of Toeplitz-Hessenberg matrices arising in power series. J. Math. Anal. Appl., 63 (1978), no. 2, pp. 347-353. https://doi.org/10.1016/0022-247x(78)90080-x DOI: https://doi.org/10.1016/0022-247X(78)90080-X

M. Jancić, Determinants and recurrence sequences. J. Integer Seq., 15 (2012), Article 12.3.5.

U. Leerawat and K. Daowsud, Determinants of some Hessenberg matrices with generating functions. Spec. Matrices, 11 (2023), no. 1, pp. 1-8. https://doi.org/10.1515/spma-2022-0170 DOI: https://doi.org/10.1515/spma-2022-0170

D. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices. Fibonacci Quart., 13 (1975), 150-158.

F. Marcellán and J. Petronilho, Eigenproblems for tridiagonal 2-Toeplitz matrices and quadratic polynomial mappings. Linear Algebra Appl., 260 (1997), pp. 169-208. https://doi.org/10.1016/s0024-3795(97)80009-2 DOI: https://doi.org/10.1016/S0024-3795(97)80009-2

M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix. Spec. Matrices, 1 (2013), pp. 10-16. https://doi.org/10.2478/spma-2013-0003 DOI: https://doi.org/10.2478/spma-2013-0003

P. Rózsa, On periodic continuants. Linear Algebra Appl., 2 (1969), no. 2, pp. 267-274. https://doi.org/10.1016/0024-3795(69)90030-5 DOI: https://doi.org/10.1016/0024-3795(69)90030-5

D.E. Rutherford, Some continuant determinants arising in physics and chemistry. Proc. Roy. Soc. Edinburgh Sect. A, 62 (1947), no. 3, pp. 229-239. https://doi.org/10.1017/s0080454100006634 DOI: https://doi.org/10.1017/S0080454100006634

R. Vein and P. Dale, Determinants and their Applications in Mathematical Physics. Applied Mathematical Sciences, 134, New York, Springer, 1999.

L. Verde-Star, Polynomial sequences generated by infinite Hessenberg matrices. Spec. Matrices, 5 (2017), no. 1, pp. 64-72. https://doi.org/10.1515/spma-2017-0002 DOI: https://doi.org/10.1515/spma-2017-0002

Downloads

Published

2024-06-17

How to Cite

[1]
C. M. da Fonseca, “The Generating Function of a Bi-Periodic Leonardo Sequence”, Armen.J.Math., vol. 16, no. 7, pp. 1–8, Jun. 2024, doi: 10.52737/18291163-2024.16.07-1-8.