Operator-Valued Fourier Multipliers on Vector-Valued Orlicz Spaces and their Applications

Authors

  • Jingshi Xu Guilin University of Electronic Technology
  • Yang Mei Guilin University of Electronic Technology

DOI:

https://doi.org/10.52737/18291163-2024.16.11-1-19

Keywords:

Fourier Multiplier, Orlicz Space, Operator-Valued, Semigroup

Abstract

In this paper, we extend the operator-valued Fourier multiplier theorem on Lebesgue spaces to vector-valued Orlicz spaces. Then we characterize the growth bound of a $C_0$-semigroup via Fourier multipliers in vector-valued Orlicz spaces and establish the relationship between exponential stability and Fourier multipliers in vector-valued Orlicz spaces.

References

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 186 (1997), no. 1, pp. 5-56.

W. Arendt and S. Bu, Operator-valued multiplier theorems characterizing Hilbert spaces. Aust. Math. Soc., 77 (2004), no. 2, pp. 175-184.

W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z., 240 (2002), no. 2, pp. 311-343.

A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A., 48 (1962), no. 3, pp. 356-365.

K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer, New York, 2000.

P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Springer, Cham, 2019.

M. Hieber, A characterization of the growth bound of a semigroup via Fourier multipliers, In Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., 215, pp. 121-124. Dekker, NewYork, 2001.

T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach spaces. Vol. III, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2023.

M. Krbec and V. Kokilashvili, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, N.J., 1991.

A. Kufner, O. John and S. Fuvčík, Function spaces, Noordhoff International Publishing, Leyden, 1977.

J. Marcinkiewicz, Sur une méthode remarquable de sommation des séries doubles de Fourier. Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche, 8 (1939), no. 2, pp. 149-160.

S. G. Mihlin, On the multipliers of Fourier integrals [in Russian]. Dokl. Akad. Nauk. SSSR (N.S.), 109 (1956), 701-703.

R. Nagel, W. Arendt, A. Grabosch and G. Greiner, One-parameter semigroups of positive operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986.

V. J. Neerven, Characterization of exponential stability of a semigroup of operators in terms of its action by convolution on vector-valued function spaces over R+. J. Diff. Eqns., 124 (1996), pp. 324-342.

M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monogr. Textb. Pure Appl. Math., 146, Marcel Dekker, New York, 1991.

J. Rozendaal and M. Veraar, Stability theory for semigroups using (Lp, Lq) Fourier multipliers. J. Funct. Anal., 275 (2018), no. 10, pp. 2845-2894.

J. Rozendaal, Operator-valued (Lp, Lq) Fourier multipliers and stability theory for evolution equations. Indag Math., 34 (2023), no. 1, pp. 1-36.

E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.

R. Vodák, The problem ∇ •v = f and singular integrals on Orlicz spaces. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), pp. 161-173.

H. M. Wark, Operator-valued Fourier-Haar multipliers on vector-valued L1 spaces II: A characterisation of finite dimensionality. Positivity, 25 (2021), pp. 987-996.

A. Youssfi and Y. Ahmida, Some approximation results in Musielak-Orlicz spaces. Chech. Math. J., 70 (2020), no. 2, pp. 453-471.

Downloads

Published

2024-11-07

How to Cite

[1]
J. Xu and Y. Mei, “Operator-Valued Fourier Multipliers on Vector-Valued Orlicz Spaces and their Applications”, Armen.J.Math., vol. 16, no. 11, pp. 1–19, Nov. 2024, doi: 10.52737/18291163-2024.16.11-1-19.