An Elementary Proof of the Transformation Formula for the Dedekind Eta Function
DOI:
https://doi.org/10.52737/18291163-2024.16.4-1-22Keywords:
Dedekind Eta Function, Transformation Formula, Modular Group, Functional EquationAbstract
In this work, we give an elementary proof of the transformation formula for the Dedekind eta function under the action of the modular group $\text{PSL}\,(2,\mathbb{Z})$. We start by giving a proof of the transformation formula $\eta(\tau)$ under the transformation $\tau\to -1/\tau$, using the Jacobi triple product identity and the Poisson summation formula. After we establish some identities for the Dedekind sum, the transformation formula for $\eta(\tau)$ under the transformation induced by a general element of the modular group $\text{PSL}\,(2,\mathbb{Z})$ is derived by induction.
References
T.M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. https://doi.org/10.1007/978-1-4757-5579-4
T.M. Apostol, Modular functions and Dirichlet series in number theory. Graduate Texts in Mathematics 41, Springer-Verlag, New York, 2nd ed., 1990. https://doi.org/10.1007/978-1-4612-0999-7
D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, Cambridge, 1997.
S. Iseki, The transformation formula for the Dedekind modular function and related functional equations. Duke Math. J., 24 (1957), pp. 653-662. https://doi.org/10.1215/s0012-7094-57-02473-0
N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics 97, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-0909-6_3
H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.
C.L. Siegel, A simple proof of η(–1/τ)=η(τ)√τ/i. Mathematika, 1 (1954), no. 1, p. 4. https://doi.org/10.1112/S0025579300000462
E.M. Stein and R. Shakarchi, Complex analysis. Princeton Lectures in Analysis 2, Princeton University Press, Princeton, NJ, 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Armenian Journal of Mathematics
This work is licensed under a Creative Commons Attribution 4.0 International License.