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Abstract

A two-dimentional Krilov-Eckhoff type method for smooth functions is pre-

sented. A corresponding compression scheme for DCT is derived. Numerical

results are presented and discussed. Some possible applications to Image Pro-
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1 Introduction

1.1

It is well known that the reconstruction of f ∈ C[−1, 1] by its finite number Fourier coeffi-

cients {fn}Nn=−N

fn =
1

2

∫ 1

−1
f(x)e−iπnxdx (1)

or discrete Fourier coefficients {f̂n}Nn=−N

f̂n =
1

2N + 1

N∑
k=−N

f(xk)e
−iπnxk , xk =

2k

2N + 1
(2)
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by truncated Fourier series

SN(f, x) =
N∑

n=−N

fne
iπnx (3)

or by trigonometric interpolation

IN(f, x) =
N∑

n=−N

f̂ne
iπnx (4)

is highly effective ([1]) for 2-periodic f ∈ C∞(R). When the approximated function has a

point of discontinuity the above mentioned approximations lead to the Gibbs phenomena

with poor pointwise and L2 convergences.

1.2

An efficient approach of convergence acceleration of SN and IN by subtracting a polynomial

representation of discontinuities (jumps) of the function and its derivatives was suggested by

Krylov in 1906, [2]. Lanczos in 1966, [3], independently developed the same but more formal

approach. He has introduced a basic system of polynomials B(k;x) playing a central role in

the method and pointed out a close relation between the B(k;x) and Bernoulli polynomials.

Jones and Hardy in 1970, [4], and Lyness in 1974, [5], considered convergence acceleration of

trigonometric interpolation by polynomial subtraction. Since then, this approach is widely

considered in the context of Fourier series and trigonometric interpolation ([6]-[12]).

The key problem in the Krylov-Lanczos method is the approximation of exact jump val-

ues. Ordinarily, such values are unknown and, in general, only Fourier coefficients or discrete

Fourier coefficients of a given function may be specified. Even if arbitrary pointwise values

of the function can be calculated, the approximation of jump values via finite differences

is not recommended for this purpose ([5]). Similarly, in the case of a uniform grid, finite

difference approximations are notoriously unreliable. Moreover, in many applications the

Fourier coefficients can be calculated but pointwise values and derivatives are not explicitly

available.

As noted in [13], the previously mentioned lack of robust methods for the approximation

of jump values was the main reason why the polynomial subtraction technique has not been

utilized more extensively. The first attempt towards more robust approach was initiated

by Gottlieb and all, [14], by utilizing step functions in the reconstruction of discontinuous

functions. The general approach was established by Eckhoff in [13]. It was based on the

observation that the Fourier coefficients themselves contain sufficient information to recon-

struct the jump values. Hence, such values could be approximated with sufficient accuracy

using only the coefficients. The fundamental aspect of Eckhoff’s method is the approxima-

tion of jumps by solving a linear system of equations. Further investigation of the Eckhoff

approximation and interpolation were organized in a series of papers [6], [17]-[19].
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More specifically, let f be a piecewise smooth function on [−1, 1] with jump points {ak},
−1 = a0 < a1 < · · · < al−1 < 1, 2 ≤ l <∞. Suppose that f ∈ Cq+1, q ≥ 0 on each segment

[ak, ak+1], k = 1, · · · , l − 2, and also on the segments [−1, a1], [al−1, 1].

Denote by

Ask = f (k)(as + 0)− f (k)(as − 0), k = 0, · · · , q; s = 1, · · · , l − 1,

A0k = f (k)(−1)− f (k)(1), k = 0, · · · , q

the jumps of f and its derivatives at the points {as}.
By means of integration by parts we get for n 6= 0

fn =
l−1∑
s=0

e−iπnas
q∑

k=0

Ask
2(iπn)k+1

+
1

2(iπn)q+1

∫ 1

−1
f (q+1)(t)e−iπntdt. (5)

Consider now Bernoulli polynomials {Bk}, k = 1, 2, · · · with Fourier coefficients {Bk,n}

Bk,n =


0, n = 0

(−1)n+1

2(iπn)k+1
, n = ±1,±2, . . .

On the real line Bernoulli polynomials are considered as 2-periodic piecewise smooth func-

tions with ”jump points” ak = 2k + 1, k = 0,±1,±2, · · · .
Expansion (5) leads to the representation

f(x) =
∞∑

n=−∞

fne
i π n x = U(x) + V (x) (6)

where

U(x) = −
l−1∑
s=0

q−1∑
k=0

Ask

∞∑
n=−∞

ei π n (x−as+1)Bk,n

is a piecewise polynomial function consisting of ”shifted” Bernoulli polynomials and V ∈
Cq(R). Hence, the sequence

SN(f, x) = U(x) + SN(V, x) (7)

converges to f with the rate o(N−q), N →∞ as the coefficients {Vn} of V tend to zero with

the rate o(n−q−1), n→∞.

If the position of singularities as are known then approximate values of jumps can be

extracted from the following system of linear equations

fn = Un, n = n1, . . . , n`q. (8)
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1.3

Polynomial subtraction method for bivariate truncated Fourier series

SN(f, x, y) =
N∑

n,m=−N

fnme
iπ(nx+my), fnm =

1

4

∫ 1

−1

∫ 1

−1
f(x, y)e−iπ(nx+my)dxdy (9)

and trigonometric interpolation

IN(f, x, y) =
N∑

n,m=−N

f̂nme
iπ(nx+my), (10)

f̂nm =
1

(2N + 1)2

N∑
k,s=−N

f(xk, xs)e
−iπ(nxk+mxs) (11)

was investigated in [6], [21], [22].

If f is smooth on [−1, 1] × [−1, 1] then the application of the polynomial correction

method can be performed sequentially for each variable x and y.

Denote

f (k,s)(x, y) =
∂k+sf(x, y)

∂kx∂sy
,

a(k, y) = f (k,0)(1, y)− f (k,0)(−1, y), b(s, x) = f (0,s)(x, 1)− f (0,s)(x,−1),

am(k) =
1

2

∫ 1

−1
a(k; y)e−iπmydy, bn(s) =

1

2

∫ 1

−1
b(s;x)e−iπnxdx,

a(s)(k, y) = f (k,s)(1, y)− f (k,s)(−1, y), b(k)(s, x) = f (k,s)(x, 1)− f (k,s)(x,−1),

a(s)m (k) =
1

2

∫ 1

−1
a(s)(k; y)e−iπmydy, b(k)n (s) =

1

2

∫ 1

−1
b(k)(s;x)e−iπnxdx,

c(k, s) = f (k,s)(1, 1)− f (k,s)(1,−1)− f (k,s)(−1, 1) + f (k,s)(−1,−1).

The following lemma from [21] is crucial for bivariate approximations.

Lemma 1 Let f (k,s) ∈ C(D), k, s = 0, . . . , q−1 and f (q−1,q−1) ∈ AC(D). Then the following

relations hold:

fn,0 =

q−1∑
k=0

Bn(k)a0(k) +
1

4(iπn)q

∫ 1

−1

∫ 1

−1
f (q,0)(x, y)e−iπnxdxdy, n 6= 0,

f0,m =

q−1∑
s=0

Bm(s)b0(s) +
1

4(iπm)q

∫ 1

−1

∫ 1

−1
f (0,q)(x, y)e−iπmydxdy, m 6= 0,

fn,m =

q−1∑
k=0

Bn(k)am(k) +

q−1∑
s=0

Bm(s)bn(s)−
q−1∑
k,s=0

Bn(k)Bm(s)c(k, s)

+
1

4(iπn)q(iπm)q

∫ 1

−1

∫ 1

−1
f (q,q)(x, y)e−iπ(nx+my)dxdy, n,m 6= 0.
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In view of Lemma 1, and taking into account

f(x, y) =
∞∑

n=−∞

′
∞∑

m=−∞

′

fn,me
iπ(nx+my) +

∞∑
n=−∞

′

fn,0e
iπnx +

∞∑
m=−∞

′

f0,me
iπmy + f0,0,

where primes indicate that zero terms are omitted, we get the main representation

f(x, y) = G(x, y) + F (x, y), (12)

where

G(x, y) =

q−1∑
k=0

B(k, x)a(k, y) +

q−1∑
s=0

B(s, y)b(s, x)−
q−1∑
k,s=0

B(k, x)B(s, y)c(k, s), (13)

and F is a relatively smooth function F (k,s) ∈ C(R2), k, s = 0, . . . , q − 1. Future details of

the acceleration convergence and the compression see in [21].

Below we present an algorithm which is more convenient for the compression in the case

of two-dimensional Fourier Cosine series and corresponding interpolations.

2 Fourier Cosine Transformations

2.1 One-dimensional case

Consider a Fourier series and an interpolation based on the complete orthonormal system in

L2[0, 1]

{φn(x)} = {1}
⋃
{2 cosπnx}, (14)

n = 1, 2, . . . , x ∈ [0, 1], φ0(x) ≡ 1.

This basis is chosen mainly due to its possible practical applications in Image Processing.

Note that this system corresponds to the boundary problem y′′(x) = λy(x), y′(0) = y′(1) = 0.

2.1.1 Furier Cosine Series

The truncated Fourier series for the function f(x) ∈ C 2[0, 1], corresponding to the system

(14), has the following form

SN(f ;x) =
N∑
n=1

fn φn(x), fn =

∫ 1

0

f(x)φn(x)dx (15)

The cosine-coefficients {fn} have the following asymptotic representation when n→∞

fn =

∫ 1

0

f(x)φn(x) dx =
2 ((−1)nf ′(1)− f ′(0))

π2n2
+ rn,

rn = −
2
∫ 1

0
f ′′(x)φn(x) dx

π2n2
= o(1/n2) (16)

5
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For f ∈ C2m[0, 1], m ≥ 2, extending the integration by parts for rn, we obtain an

estimation for the asymptotic series fn by powers of (1/π2n2) with accuracy of the order

o(1/n2m) .

We introduce the following polynomials

P (x) =
1

4
(x− 1)2, Q(x) = P (1− x) =

1

4
x2 (17)

It is clear that the corresponding coefficients with respect to the system (14) have the

form

p0 =

∫ 1

0

P (x) dx =
1

3
, pn =

∫ 1

0

P (x)φn(x) dx =
1

π2n2
,

q0 =

∫ 1

0

Q(x) dx =
1

3
, qn(x) =

∫ 1

0

Q(x)φn(x) dx =
(−1)n

π2n2
(18)

Remark 1. It is not difficult to see that this coefficients correspond to the main term in

(16), and thus, the polynomials P and Q can play the role of Bernoulli polynomials (see the

Introduction) in KE- method for Fourier Cosine Transformation (FCT, i.e. cosine-series ).

2.1.2 Discrete Cosine Transforms and Interpolations

Discrete analogue of Fourier cosine-series has four versions (see, for instance [23]). We are

interested in the following transformation DCTII and its conversion into DCTIII.

DCTII : ûs = 1√
N

∑N
r=1 ur cos

(
π
N

(r − 1/2)(s− 1)
)
, s = 1, 2, . . . , N, (19)

DCTIII : ur = 1√
N

(
û1 + 2

∑N
s=2 ûs cos

(
π
N

(s− 1/2)(r − 1)
))
, r = 1, 2, . . . , N (20)

Let the vector ur = f((r − 1/2)/N) of values of the function f over the set {(r −
1/2)/N}, r = 1, 2, . . . , N be given. We call the discrete (DCT)-transformation of those

values the vector û with components (19) and denote it by f̂s = ûs, s = 1, 2, . . . , N .

Note that according to (19) the corresponding DCT- interpolation IN(f ;x) of a function

f is given by the formula

IN(f ;x) =
N∑
s=1

f̂s φs(x), x ∈ [0, 1], N ≥ 1 (21)

It is easy to see (for instance, using Wolfram Mathematica [23]) that DCT- transforma-

tions of values of polynomials P (x) and Q(x) have the following explicit forms:

p̂0 =
−1− 8N2

48N3/2
, p̂n =

1

8N3/2
cot

(
π(n− 1)

2N

)
csc

(
π(n− 1)

2N

)
, q̂n = (−1)n p̂n, n > 1. (22)
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An Economical Method for Compression of Fourier Cosine Transformations 7

2.2 Two-dimensional case

We set

SN(f ;x, y) =
N∑

n,m=1

fnm φn(x)φm(y), fnm =

∫ 1

0

∫ 1

0

f(x, y)φn(x)φm(y)dxdy (23)

as a partial sum of the expansion of a function f(x, y) ∈ C2([0, 1] × [0, 1]) into the Fourier

cosine-series.

An analogue of asymptotic formula (16) for this case can be obtained using the integrating

by parts. We will need the analogue of the formula (19) (for two-dimensional DCTII ), which

has here the following form (s, p = 1, 2, . . . , N)

f̂sp =
1

N

N∑
r,q=1

urq cos
( π
N

(r − 1/2)(s− 1)
)

cos
( π
N

(q − 1/2)(p− 1)
)

(24)

where {urq}, r, q = 1, 2, . . . , N , stands for the values of f on the given cosine set:

urq = f((r − 1/2), (s− 1/2)), r, q = 1, 2, . . . , N (25)

The interpolation IN(f ;x, y) for a function f(x, y) is the following

IN(f ;x, y) =
N∑

s,p=1

f̂sp φs(x)φp(y), x, y ∈ [0, 1], N ≥ 1 (26)

An analogue of the formula (19) (well known two-dimensional inverse DCTII) for {urq}, r, q =

1, 2, . . . , N , corresponds to the values of IN(f ;x, y) on the considering discrete set (in the

case of (25) they are the exact values of f on the cosine grid).

Remark 2. It is noteworthy, that the main versions of the KE-method for Fourier

series and interpolations (see Introduction and [24] ) are equivalent to the replacement of

most oscillating terms in the Fourier system by polynomials or other functions, which are not

restricted with boundary conditions. In our case, some terms in the system {φn(x)φm(y)}
can be replaced by smooth functions of two variables.

3 More compression without convergence acceleration

3.1 About compression

The notion ”compression” is related to the reduction of the memory to keep certain arrays

of data with an acceptable level of accuracy. Let us explain this in our case.

In one-dimensional case from the practical point of view (see Introduction and the item

2.1.1 above) we can omit in the truncated series (15) some coefficients fn, ‖fn‖ < ε, where ε

7
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is a given number. We will call it (here and in two-dimensional case) ε-level compression.

It is clear, that the number of remained coefficients will be so less as rapidly fn tends to

zero.

The application of the one-dimensional KE-method led to the acceleration of convergence

of appropriate series and interpolations for smooth functions by switching to the expansions

with coefficients tending to zero faster. We say that the compression increases if one

applies compression of the same acceptable (in some sense) level ε, but the complexity of

the corresponding algorithms grows insignificantly.

The same phenomenon is observed in known multi - dimensional versions of KE - method,

because they are based on one-dimensional versions with respect to each spatial coordinate

(see for instance [6, 21,22] ). However, in this case the complexity of appropriate algorithms

is essentially growing, and it is natural to find alternative approaches to certain applications.

Below we present one of them.

3.2 Our concept

The easiest way to explain the idea of the present work is to refer to the Fourier cosine-series.

For this purpose let us compare the formulas (15) and (23). They can be rewritten in terms

of corresponding errors RSN :

RSN(f, x) = f(x)− SN(f, x) =
∞∑

n=N+1

fn φn(x), (27)

RSN(f ;x, y) = f(x, y)− SN(f ;x, y) =
∑

n,m>N

fnm φn(x)φm(y) (28)

Taking into account the asymptotic of coefficients fn , when n → ∞, we conclude that

RSN(f, x) = O(N−2), N → ∞ in general case, moreover the main contribution is made

by the first terms of the series (27). Therefore, (see Introduction and Remark 2 ) the

application of the KE - method accelerates the convergence and increases the compression

simultaneously.

The situation is different in the case of (28). Here, for instance (compare with Lemma 1

in Introduction), when m = const, N → ∞, fnm = O(N−2), but when N,M → ∞, fNM =

O((NM)−2.

Our approach is based on (see Remark 2 ) the replacement of four members of the

system {φn(x)φm(y)} by the linear combination of the following functions (see (17))

{P (x)P (y), P (x)P (1− y), P (1− x)P (y), P (1− y)P (1− y)}.

In this work we change the following functions:

{φN(x)φN(y), φN(x)φN−1(y), φN−1(x)φN(y) and φN−1(x)φN−1(y)}.

8
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Such a choice is conditioned by the fact, that the main term of the asymptotic expansion

of coefficients is more explicit distinguished. For example, when f ∈ C4

fNN = const ·N−4 +O(N−8), N →∞ (29)

In this way we expect the increasing of compression and at the same time we don’t expect

the acceleration of convergence.

3.3 Realization of the algorithm

Note that the previous arguments hold also for interpolation (26) (hence, also for two-

dimensional DCTII).

Focusing on the discrete case now, note (see (24)) that especially the matrix {f̂sp} is used

as a subject of compression in JPEG algorithm for Image Processing. By this analogy,

sometimes we call pixels the elements of considered numerical matrices.

Let us adduce the basic steps of the algorithm for realization of the mentioned concept.

Step 1. Let us consider the linear combination

A(x, y) = a1 P (x)P (y) + a2 P (1− x)P (y) + a3 P (x)P (1− y) + a4 P (1− y)P (1− y), (30)

where coefficients should be determined later. Using the formulae in item 2.1.1, we get

the following representation for the function A(x, y) (see (22)).

Ârq = (a1 + (−1)r a2 + (−1)q a3 + (−1)r+q a4) p̂r p̂q, 2 ≤ r, q ≤ N, (31)

where

p̂n =
1

8N3/2
cot

(
π(n− 1)

2N

)
csc

(
π(n− 1)

2N

)
, q̂n = (−1)n p̂n, n ≥ 2. (32)

Step 2. Let the DCTII-transform U = {f̂rq} is given (see (24)). It is easy to see that

the system of four equations

Ârq = f̂rq, r = N,N − 1, q = N,N − 1 (33)

with respect to the vector a = (a1, a2, a3, a4)
tr is uniquely solvable in explicit form

a = DM u, where

u = (ûNN , ûN(N−1), û(N−1)N , û(N−1)(N−1))
tr and

D =


(2p̂N)−2 0 0 0

0 (4p̂N−1p̂N)−1 0 0

0 0 (4p̂N−1p̂N)−1 0

0 0 0 (2p̂N−1)
−2

 ,

9
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M =


1 1 1 1

(−1)−N (−1)−N −(−1)−N −(−1)−N

(−1)−N −(−1)−N (−1)−N −(−1)−N

1 −1 −1 1

 ,

Step 3. After the determination of the vector a we completement (N − 1) × (N − 1)-

dimentional matrix to the N × N -dimensional, using the values p̂1 from (22). We call the

resulting matrix the correction matrix C. Let us construct the remainder matrix R by

the formula

R = U − C = {rnm}, 1 ≤ n,m ≤ N, (34)

Step 4. Make a chosen ε- level compression of the remainder matrix R and denote it by

Rε = {rεnm}.
Step 5. Using DCTIII (see (20)) to {rεnm} we get a matrix V ε = {vεnm}. At the desired

output of the algorithm we obtain the final compressed matrix F ε = V ε + C.

Final output interpolation has the form

ĨN(f ;x, y) =
N∑

n,m=1

rεnmφn(x)φm(y) + A(x, y) (35)

Remark 3. The corresponding algorithm for a truncated Fourier series differs from the

interpolation only by the fact that in Step 2. {fnm} coefficients are used (see (23)) instead

{Ârq}, and in the matrix C instead of {p̂j} the values of {pj} from (18) are used.

Remark 4. To find the vector a, only four multiplication operations were required. For

the remainder matrix R it was necessary N2 summations. After the ε- level compression of

the remainder matrix R, nonzero pixels of the matrix Rε and four coordinates of the vector

a should be stored in the memory. In comparison with the DCTII algorithm (where ε- level

compression is directly applied to the matrix U) additional cost is rather cheap.

4 Numerical Results

4.1 Test Functions

Our test functions are

f1(x, y) = 6.66 J1.33

(
1− sin ((x− 1/3) y)

2 + x y

)
f2(x, y) = .25 J2.12

(
3− sin(x+ 4 y) + cos(6 x− 2 y)

1.7− x (y − 1/3)

)
10



An Economical Method for Compression of Fourier Cosine Transformations 11

where Jν is the Bessel function of the first kind. These functions are positive and their

maximal values are equal about 1. We see that f1(x, y) is very smooth but f2(x, y) is

sharply variable in the directions of both axes.

Figure 1: Graphs of test functions f1 (left) and f2 (right)

Figure 2: Graphs of |∇f1| (left) and |∇f2| (right)

Remark 5. It follows from the two-dimensional analogue of (16) that the asymptotic

properties of the coefficients f̂sp and fsp (compare with Lemma 1 in the Introduction) depend

on the behavior of the gradient of the function f(x, y) on the boundary.

Let us present some results of our numerical experiments. Calculations were performed

using Wolfram Mathematica 9 for N = 8, 12, 16. Below only the algorithm for discrete case

was applied for comparison with the DCT-compression algorithm.

The the figures and tables below present the data on comparative compression of DCT

and our algorithm called by KE+DCT.

11
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4.2 Compression possibilities

Figures below correspond to (see the item 3.1 above) three compression levels l = (ε1, ε2, ε3).

If f = f1, l = (2.6 × 10−7, 2.2 × 10−6, 5 × 10−3) and if f = f2, l = (1.9 × 10−7, 3.1 ×
10−6, 5.1× 10−3) (compare with Tables 1-4 below),

DCTII KE+DCT

Figure 3: The table of {f̂sp}, (ee (24)), for f = f1 (left) and (see Step 3 above) for the

corresponding remainder matrix R (right), N=12. Colored pixels correspond: white for

|ûsp| ≤ 2.6× 10−7, light grey for 2.6× 10−7| < |ûsp| ≤ 2.2× 10−6, dark grey for 2.2× 10−6 <

|ûsp| ≤ 5× 10−3.

DCTII KE+DCT

Figure 4: The table of {f̂sp}, (ee (24)), for f = f2 (left) and (see Step 3 above) for the

corresponding remainder matrix R (right), N=12. Colored pixels correspond: white for

|ûsp| ≤ 1.9× 10−7, light grey for 1.9× 10−7| < |ûsp| ≤ 3.1× 10−6, dark grey for 3.1× 10−6 <

|ûsp| ≤ 5.1× 10−3.

The first data of three compression levels equals to the minimum of the values {|uNN |, |uN(N−1)|, |u(N−1)N |, |u(N−1)(N−1)|}
(see white pixels at the left pictures in Figures 3 and 4 )

Main characteristics for f1(h, y) and f2(x, y) are given in the tables 1,2. In the columns

”Nonzero pixels” the data for DCT compression algorithm are given in the first row of the

12



An Economical Method for Compression of Fourier Cosine Transformations 13

2 × 3 matrices. In the column ”Saved percents” the negative percents mean the nonzero

pixels excess.

N Compression levels Nonzero pixels Saved percents

8
(

3.3 e−6 3.2 e−5 1.3 e−2
) (

54 52 6

30 29 3

) (
44.4 44.2 50

)
12

(
2.6 e−7 4 e−6 5.6 e−3

) (
128 121 13

62 56 5

) (
51.6 53.7 61.5

)
16

(
4.5 e−8 9.5 e−7 3 e−3

) (
231 217 16

102 91 7

) (
55.8 58.1 56.3

)
Table 1. Compression information for f1

N Compression levels Reminder pixels Saved percents

8
(

4 e−7 5.7 e−6 6.5 e−3
) (

64 62 15

60 59 16

) (
6.3 4.8 −6.7

)
12

(
1.9 e−7 3.1 e−6 5.1 e−3

) (
143 129 16

133 111 17

) (
7 14 −6.3

)
16

(
2.7 e−8 6.2 e−7 2.6 e−3

) (
255 233 24

224 189 23

) (
12.2 18.9 4.2

)
Table2. Compression information for f2

4.3 Compression errors

Some final errors after restoration of values of f1(x, y) and of f2(x, y) on the two-dimensional cosine

grid are presented in the tables 3,4.

Error norms→ L∞ -errors by compression levels L2 -errors by compression levels

DCT 8.2 e-6 2.1 e-4 7 e-2 4.5 e-6 8.1 e-5 2.8 e-2

KE+DCT 1.4 e-5 1.1 e-4 7.3 e-2 6.7 e-6 4.5 e-5 2.1 e-2

Table 3. Errors of the algorithms for function f1 on the cosine grid, when N = 8.

Error norms→ L∞ -errors by compression levels L2 -errors by compression levels

DCT 1 e-8 1.1 e-6 5.4 e–3 5.3 e-9 3.1 e-7 1.4 e-3

KE+DCT 4.4 e-8 1.7 e-6 7.7 e-3 1.1 e-8 3.8 e-7 1.5 e-3

Table 4. Errors of the algorithms for function f2 on the cosine grid, when N = 16.

Let us call conventionally the lossless algorithm the case, when the L∞- error is less than

0.05 percents of Max|f |.
Remark 6. According to our experiments, the KE+DCT algorithm is best for a lossless com-

pression (see first two compression levels in Tables 3,4 above). It allows to save on average about

20-30 percents of the memory when 8 ≤ N ≤ 32.

13
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5 Conclusions

From the presented and some other our numerical experiments, the following conclusions related

to compression problems can be done:

1. For f ∈ C2, the proposed algorithm is effective when applied to a lossless compression.

2. The smaller the maximum value of the gradient norm |∇f | is, the more efficient is the

proposed algorithm.

3. The bigger N is, the more efficient is the proposed algorithm. In the above experiment,

the values N = 8, 12, 16 are chosen so as to make small changes comparing with the classical

JPEG-choice, N = 8.

4. For f /∈ C2 the proposed algorithm makes the compression worse comparing to the DCT

algorithm, however the compression errors are practically unchanged.

5. It would be natural to investigate the possibilities of the implementation our KE+DCT

lossless algorithm to the compression part of JPEG- algorithm (see Remark 6 ).

6. It seems interesting to apply the proposed conception to three- and multidimensional Cosine-

Fourier series, Cosine-Fourier interpolations and DCTII.
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