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1 Introduction

The theory of Gibbs random fields is a relatively young domain of the probability theory.

It was originated in late 1960’s due to the works by Dobrushin [26, 27, 28, 29, 30], Ginibre

[46, 44, 45], Lanford and Ruelle [60] , Minlos [69, 70], Minlos and Sinai [72, 73, 74], Ruelle

[106] where a modern approach to the study of notions and problems of statistical mechanics

at the rigorous mathematical level was developed.

There has been a great interest in the theory of Gibbs random fields due to applications

in physics, in image processing, neuron networks and so on.

Starting from 1970’s the Gibbs random fields were studied in the ”Integral and stochastic

geometry” department of the Institute of mathematics of the National Academy of Sciences

of Armenia. Let us mention the works of D. Martirosian on the statistics of configurations

of contour models [75, 76], of B. Nahapetian on the limit theorems for Gibbs random fields

[79, 80, 82, 32] and the works of the author of the thesis on the study of the large volume

behavior of the log-partition function, local limit theorem and the probabilities of large

deviations for the classical systems [5, 6, 7, 8, 9, 83, 84]. An original contribution was

made by R. Ambartsumian [2, 3, 4]: description of new classes of Gibbsian fields based

on combinatorial (inclusion - exclusion principle) approach to the construction of point

processes. (Later on the works on this topic were continued by J. Lebowitz and his group

from Rutgers University [58, 56]).

We note also recent papers of B. Nahapetian in collaboration with S. Dashian where they

solved the well-known problem of R. Dobrushin on description of random fields by means of

one point specifications [21, 22, 23]. This allowed them to develop an alternative approach

to the theory of Gibbs random fields .

In collaboration with V. Arzumanian and B. Nahapetian the author of the thesis studied

the asymptotics of the partition function, the decay of correlations and limit theorems for

classical lattice spin systems [83, 9, 84, 5, 6, 7].

The main technical tool for treating the problems considered in the thesis is the cluster

expansions method, one of the most powerful in study of the Gibbs random fields [65, 26].

The method allows to write local characteristics of the Gibbs random field (the logarithm of

the partition function, the means of local functions et.c) as an absolutely convergent series.

The main term of these expansions corresponds to the non-interacting systems, while the

correction terms depend on the interactions. The method is efficient for weak interactions

where deeper analysis is possible. The amount of publications devoted to cluster expansions

and their applications is enormous, see the surveys by Brydges [16], Pfister [89], Abdesselam

and Rivasseau [1], the books of Malyshev and Minlos [65], Seiler [107], Glimm and Jaffe [47]

and references therein.The cluster expansions method has important applications to classical

systems [88, 71, 17], quantum systems [44, 46, 96], quantum field theory [48, 64, 10, 18], as
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well as to polymer systems, i.e. discrete systems with additional internal structure [49, 25,

14, 77, 110, 42, 53].

In pursue of Dobrushin’s paper [26] ”Sometimes it seems that the specialists in the

probabilistic mathematical physics pronounce the words: ”Now the cluster expansion can

be applied” as some kind of magic incarnation. They mean that now we can be sure that

all plausible facts can be rigorously proved. ”

To apply the method of cluster expansions in a concrete situation usually one has to

specify and modify the general ideas often by repeating the same arguments. There was a

natural tendency to develop a unified approach. An important step forward was the article

of Kotecký and Preiss with its simplified setting and its elegant condition for the convergence

of the cluster expansion [57]. Their result applies to discrete systems only. At the same time

all abstract (i.e. general) approaches involve restrictions that correspond to non-negative

(repulsive) interactions.

The thesis presents a new approach to the abstract cluster expansions method that applies

to classical and quantum systems ( discrete and continuous ) with general stable interactions

[101].

The main result of the thesis is the asymptotic expansion of the log-partition function of

a quantum gas in a bounded domain as this domain dilates to infinity. This result is based

on the cluster expansion method and on a new general method of proving asymptotic expan-

sions for the log-partition functions using estimates of two-point semiinvariants (truncated

correlation functions) only.

The thesis undertakes the following strategy : with the help of the Feynman - Kac formula

the quantum gases are represented as systems of interacting Brownian loops (loop gases).

Then a key notion of the decay of functions of two Brownian loops, given in terms of

integral bounds, is introduced. Using the general approach to the cluster expansions bounds

for two-point semiinvariants are derived to become the basic technical tool for the derivation

of the asymptotic expansion of the log-partition function of the loop gases.

Various models of loop gases have been studied in [11, 33, 66, 108, 112, 12, 103, 43, 94,

95, 96, 98, 99] et. c..

The rest of the thesis is organized in the following way:

Chapter 2 is devoted to the abstract cluster expansions method [101]. It starts with set-

tings and formulation of two general assumptions which provide the main results of Chapter

1: absolute convergence of the abstract cluster expansion and convenient representations of

the first and second abstract semiinvariants. Then we derive a fundamental tree estimate in

Section 2.2 and prove the theorems in Section 2.3.

In Chapter 3 we describe the decay of correlations in terms of various bounds for semi-

invariants. In general setting, where the semiinvariants have a representation via Ursell

functions, we give a useful bound for the abstract two-point semiinvariants, see Section 3.1.
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We use this general result to study the decay of correlations in loop gases.

In Section 3.2 we briefly recall the Feynman - Kac formula [46, 43, 104, 109] which

gives a convenient representation of the grand partition functions of quantum gases. We

consider the cases of Maxwell - Boltzmann (MB), Bose - Einstein (BE) and Fermi - Dirac

(FD) statistics. In the next Section 3.3 we introduce the corresponding models of loop

gases with MB, BE and FD statistics. The case of MB statistics is the simplest and the

corresponding loop gas is a system of interacting Brownian loops in Rd of fixed time interval

β. One can think about the loop gas with MB statistics as a classical gas in Rd where

the point particles are replaced by Brownian loops, the interaction between points by a an

interaction between loops and the Lebesgue integration
∫

du by a Wiener integration of

the type
∫

du
∫

dP u,u
β (dx), where P u,u

β (dx) is the conditional Wiener measure (also called

Brownian Bridge measure) for Brownian loops from u to u in time β.

The loop gases corresponding to quantum gases with BE and FD statistics are the models

of interacting Brownian loops in Rd with random time intervals that are integer multiples of

β, so called winding or composite loops. One can think on these models in analogy with the

loop gas obeying MB statistics with more complicated winding loop interaction and more

sophisticated integration.

In Sections 3.4 we consider loop gases and define the decay property for functions of two

Brownian loops [96, 93]. Combining this with the bound for the abstract two-point semiin-

variants from Section 3.1, we formulate two more assumptions (separately for integrable and

hard core potentials) which provide power decay of the two-point semiinvariants of the loop

models. The next Section 3.5 considers concrete models of loop gases with various statistics

and potentials and finds (by verifying assumptions from the previous section) the conditions

on the activity and potential which provide a power decay of the corresponding two-point

semiinvariants.

In Chapter 4 we consider classical gases and in this relatively simple situation we present

a new approach for the derivation of the large volume asymptotics of the log-partition func-

tion of the corresponding Gibbs distribution. It was mentioned above that this approach, in

contrast to the existing ones (see [92], [19]), uses bounds only for the two-point semiinvari-

ants. As an application of this result we prove the central local limit theorem [7, 9], give a

bound for the convergence rate [84] and prove the local limit theorem for the probabilities

of large deviations of the particle number in a grand canonical ensemble [91, 90]. We note

that similar problems for the loop gases remain open.

Chapter 5 uses a modification of the method from Chapter 4 to derive the asymptotic

expansion of the log-partition function of the Gibbs distribution for interacting loop gases

in a bounded domain. The following expansion is the main result of Chapter 5:

ln Z(ΛR, z) = R2|Λ|βp(φ, z) +R |∂ Λ|b(φ, z) + 2πχ(Λ)c(φ, z) + o(1). (1.1)
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Here β is the inverse temperature, |Λ| is the area, |∂ Λ| the length of the boundary of Λ

and χ(Λ) is the Euler-Poincare characteristic of the domain Λ. The coefficients p(φ, z),

b(φ, z) and c(φ, z) are explicitly expressed as functional integrals and are analytic functions

of the activity z in a neighborhood of the origin; p(φ, z) is the pressure and b(φ, z) can be

interpreted as the surface tension.

This result can be viewed as a natural generalization of the famous problem of finding

the asymptotics of the partition function Tr exp(β∆) =
∑∞

n=1 e
−βλn as β → 0 [94]. Here

λn are eigenvalues of the Laplacian −∆ in a bounded domain . This problem goes back to

1910’s, to H. Lorentz and H. Weyl [54].

That the situation in quantum case is much more complicated illustrates the fact that,

in contrast to the classical case, the log-partition function ln Zid(ΛR, z) of the ideal (non-

interacting) quantum gas has a non-trivial asymptotic expansion similar to (1.1) with con-

stant coefficients [62]. This expansion of ln Zid(ΛR, z), which was the only existing result

in this direction, can be obtained from our expansion (1.1) as a particular case by setting

φ = 0. The paper [62] applies the asymptotic expansion of ln Zid(ΛR, z) for the study of the

finite size effects in the orbital magnetism of a free electron gas.

The expansion (1.1) opens a possibility to derive limit theorems for the models of inter-

acting Brownian loops, to study the orbital magnetism as well as the diamagnetic current for

interacting electron gas, in analogy with the papers [62, 63] . Other applications of (1.1) can

be found in the stochastic and integral geometry [68] and in the statistics of Gibbs random

fields [67].

For interacting quantum gases only the existence of the volume term of the asymptotic

expansion of the log-partition function was proved [46].

We note that the geometrical factors of all the three terms of the expansion (1.1) are

the same as in the well known Hadwiger’s theorem from the integral geometry which states

that any real-valued, additive function ψ on the space of compact convex subsets Λ in

R2 which is convex-continuous (with respect to the Housdorff metric) and invariant with

respect to the Euclidean motions is a linear combination of the area, the length of the

boundary and the Euler-Poincare characteristic of Λ with constant coefficients . But in

contrast to this, the expansion (1.1) is an asymptotic expansion and the connections are

not clear. We note that since lnZ(Λ, z) as a function of convex bodies is not additive:

lnZ(Λ1 ∪ Λ2, z) 6= lnZ(Λ1, z) + lnZ(Λ2, z) − lnZ(Λ1 ∩ Λ2, z), the Hadwiger’s theorem can

not be applied to lnZ(Λ, z).

Finally in Section 5.4 (using different method ) we prove the asymptotic expansion of

the log-partition function of interacting Bose gas in a polygonal domain.
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2 Cluster expansions

2.1 Formulation of results

We consider a set X whose elements may represent widely different objects: positions of a

classical particle, polymers, i.e. a connected sets of Zd, closed Brownian bridges, et. c.. For

the general abstract theory, we assume the structure of a measure space, (X,X , µ), with µ

a complex measure. We denote |µ| the total variation (absolute value) of µ. Let u and q be

complex measurable symmetric functions on X× X, that are related by the equation

q(x, y) = e−u(x,y) − 1. (2.1)

We allow the real part of u to take the value +∞, in which case q(x, y) = −1. In typical ap-

plications u(x, y) represents the interactions between x and y, and the value +∞ corresponds

to a hard-core repulsion. We define the “partition function” by

Z =
∑
n≥0

1

n!

∫
dµ(x1) . . .

∫
dµ(xn) exp

{
−

∑
1≤i<j≤n

u(xi, xj)
}
, (2.2)

or, equivalently,

Z =
∑
n≥0

1

n!

∫
dµ(x1) . . .

∫
dµ(xn)

∏
1≤i<j≤n

(
1 + q(xi, xj)

)
. (2.3)

The term n = 0 of the sums is understood to be 1.

The main goal of cluster expansions is to express the partition function as the exponential

of a convergent series of “cluster terms”. The main difficulty is to prove the convergence.

We first assume that the potential u is stable.

Assumption 1 . There exists a nonnegative function b on X such that, for all n and almost

all x1, . . . , xn ∈ X, ∏
1≤i<j≤n

∣∣1 + q(xi, xj)
∣∣ ≤ n∏

i=1

eb(xi).

In other words, we assume the lower bound

∑
1≤i<j≤n

Reu(xi, xj) ≥ −
n∑
i=1

b(xi). (2.4)

When the function b is constant, this is the usual definition of stability. “Almost all” means

that, for given n, the set of points where the condition fails has measure zero with respect to

the product measure ⊗nµ. If X is countable, the condition must be satisfied for all x1, . . . , xn

such that µ(xi) 6= 0.

The second condition deals with the strength of interactions.
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Assumption 2 . There exists a nonnegative function a on X such that for almost all x ∈ X,∫
d|µ|(y) |q(x, y)|ea(y)+2b(y) ≤ a(x).

In order to guess the correct form of a, one should consider the left side of the equa-

tion above with a(y) ≡ 0. The integral may depend on x; a typical situation is that x is

characterized by a length `(x), which is a positive number, so that the left side is roughly

proportional to `(x). This suggests to try a(x) = c`(x), and one can then optimize on the

value of c.

We also consider an alternate criterion that involves u rather than q.

Assumption 2’ . There exists a nonnegative function a on X such that for almost all

x ∈ X, ∫
d|µ|(y) |u(x, y)|ea(y)+b(y) ≤ a(x).

For positive u we can take b(x) ≡ 0; and since 1−e−u ≤ u, Assumption 2 is always better

than Assumption 2’. We actually conjecture that, together with Assumption 1, a sufficient

condition is ∫
d|µ|(y) min

(
|q(x, y)|, |u(x, y)|

)
ea(y)+b(y) ≤ a(x). (2.5)

That is, it should be possible to combine the best of both assumptions. In this respect

Assumption 2 is optimal in the case of positive potentials, and Assumption 2’ is optimal in

the case of hard core plus negative potentials.

We denote by Gn the set of all unoriented simple (i.e. without loops and with at most

one edge between two different vertices) graphs and by Cn ⊂ Gn the set of all connected

graphs with n vertices. We write V (G) for the set of vertices of a graph G. We introduce

the following combinatorial function on finite sequences (x1, . . . , xn) of elements of X:

ϕ(x1, . . . , xn) =

1 if n = 1,∑
G∈Cn

∏
{i,j}∈G q(xi, xj) if n ≥ 2.

(2.6)

The product is over edges of G.

Theorem 2.1 (Cluster expansions) . Suppose that Assumptions 1 and 2, or 1 and 2’,

hold true. We also suppose that
∫

d|µ|(y)|ea(y)+2b(y) <∞. Then we have

Z = exp
{∑
n≥1

1

n!

∫
dµ(x1) . . . dµ(xn)ϕ(x1, . . . , xn)

}
. (2.7)

The term in the exponential converges absolutely. Furthermore, for almost all x1 ∈ X, we

have the following estimate∑
n≥2

1

(n− 1)!

∫
d|µ|(x2) . . .

∫
d|µ|(xn) |ϕ(x1, . . . , xn)| ≤ (ea(x1) − 1)e2b(x1). (2.8)
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(Under Assumption 2’, Eq. (2.8) holds with eb(x1) instead of e2b(x1).)

Let us turn to correlation functions. We only consider one-point and two-point correlation

functions since these are the most useful and expressions become more transparent. We refer

to [111] for more general functions. First, we define the unnormalized one-point correlation

function by

ς(x1) =
∑
n≥1

1

(n− 1)!

∫
dµ(x2) . . .

∫
dµ(xn)

∏
1≤i<j≤n

(
1 + q(xi, xj)

)
(2.9)

(the term n = 1 is 1 by definition). And we define the unnormalized two-point correlation

function by

ς(x1, x2) =
∑
n≥2

1

(n− 2)!

∫
dµ(x3) . . .

∫
dµ(xn)

∏
1≤i<j≤n

(
1 + q(xi, xj)

)
(2.10)

(the term n = 2 is equal to 1 + q(x1, x2)). The normalized correlation functions are ς(x1)/Z

and ς(x1, x2)/Z. As is shown in Theorem 2.2, they can be expressed using the “cluster

functions”

σ(x1) =
∑
n≥1

1

(n− 1)!

∫
dµ(x2) . . .

∫
dµ(xn)ϕ(x1, . . . , xn), (2.11)

and

σ(x1, x2) =
∑
n≥2

1

(n− 2)!

∫
dµ(x3) . . .

∫
dµ(xn)ϕ(x1, . . . , xn). (2.12)

Theorem 2.2 (Cluster functions) . Under the same assumptions as in Theorem 2.1, the

cluster functions σ(x1) and σ(x1, x2) are correctly defined. Moreover

|σ(x1)| ≤ ea(x1)+2b(x1)

|σ(x1, x2)| ≤ e2[(a(x1)+2b(x1))+a(x2)+2b(x2)].
(2.13)

In statistical mechanics, the relevant expression is the truncated two-point correlation

function
ς(x1, x2)

Z
− ς(x1) ς(x2)

Z2
.

When the cluster expansion converges, it is equal to σ(x1, x2) by the theorem below. This

function usually provides an order parameter for phase transitions and it is useful to estimate

its decay properties (see Section 3.1) .

Theorem 2.3 (Correlation functions) . Under the same assumptions as in Theorem

2.1, we have

ς(x1)

Z
= σ(x1),

ς(x1, x2)

Z
= σ(x1)σ(x2) + σ(x1, x2).

(2.14)

The theorems of this section are proved in Section 2.3.
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2.2 The tree estimate

Let Tn ⊂ Cn denote the set of trees with n vertices. The following tree estimate plays a

fundamental rôle in the proof of convergence of the cluster expansions. Let n be an integer,

b1, . . . , bn be real nonnegative numbers, and qij = qji, 1 ≤ i, j ≤ n, be complex numbers. We

assume that the following bound holds for any subset I ⊂ {1, . . . , n}:∏
i,j∈I,i 6=j

|1 + qij| ≤
∏
i∈I

ebi , (2.15)

Let uij be such that qij = e−uij − 1. We prove two distinct tree estimates, the first one

involving |qij| and the second one involving |uij|. These bounds will allow to prove the

convergence under either Assumption 2 or Assumption 2’

Proposition 2.4 . If the bound (2.15) holds true, we have the two bounds

(a) ∣∣∣∑
G∈Cn

∏
{i,j}∈G

qij

∣∣∣ ≤ ( n∏
i=1

e2bi
) ∑
G∈Tn

∏
{i,j}∈G

|qij|.

(b) ∣∣∣∑
G∈Cn

∏
{i,j}∈G

qij

∣∣∣ ≤ ( n∏
i=1

ebi
) ∑
G∈Tn

∏
{i,j}∈G

|uij|.

We actually conjecture that the following estimate holds under the same hypotheses:∣∣∣∑
G∈Cn

∏
{i,j}∈G

qij

∣∣∣ ≤ ( n∏
i=1

ebi
) ∑
G∈Tn

∏
{i,j}∈G

min(|uij|, |qij|). (2.16)

We prove Proposition 2.4 (a) below using Ruelle’s algebraic approach, see [105] and

references therein. This method is usually combined with a Banach fixed point argument

for correlation functions. However, we use it differently so as to get a tree estimate.

Let A be the set of complex symmetric functions on P({1, . . . , n}) the set of all subsets

of {1, . . . , n}. We introduce the following multiplication operation for f, g ∈ A:

f ∗ g(I) =
∑
J⊂I

f(J)g(I \ J) (2.17)

We use the standard conventions for sums and products, namely, that the empty sum is zero

and empty product is 1. Together with the addition, A is a commutative algebra with unit

1A(I) = δI,∅. We have

f ∗k(I) =
∑

J1,...,Jk⊂I,Ji∩Jj=∅,∪Ji=I

f(J1) . . . f(Jk). (2.18)

Let A0 be the subset of functions f such that f(∅) = 0 (A0 is an ideal of the algebra A).

Notice that f ∗k(I) = 0 for all k > |I|, f ∈ A0. Without confusing the reader, we use |·| for the

9



number of elements of a finite set. We define the exponential mapping expA : A0 → A0 + 1A

by

expA f = 1A + f + 1
2
f ∗2 + · · ·+ 1

n!
f ∗n. (2.19)

Let Φ and Ψ be the functions defined by

Φ(I) =
∑
G∈C(I)

∏
{i,j}∈G

qij,

Ψ(I) =
∏

ij∈I,i<j

(1 + qij) =
∑

G∈G(I)

∏
{i,j}∈G

qij.
(2.20)

Here, G(I) (resp. C(I)) is the set of graphs (resp. connected graphs) on I. All graphs below

are unoriented simple graphs (i.e. without loop and with at most one edge between two

different vertices). By definition Φ ∈ A0 and we have the relation

Ψ = expAΦ. (2.21)

We also introduce an operation that is reminiscent of differentiation:

DJf(I) =

f(I ∪ J) if I ∩ J = ∅,

0 otherwise.
(2.22)

This is a linear operator which satisfies

D{i}(f ∗ g) = D{i}f ∗ g + f ∗D{i}g, (2.23)

therefore also

D{i} expA f = expA f ∗D{i}f. (2.24)

For disjoint I, J ⊂ {1, . . . , n}, we define

gI(J) =
(
Ψ∗(−1) ∗DIΨ

)
(J). (2.25)

Since Ψ ∈ 1A +A0 it has unique inverse Ψ∗(−1) that can be proved easily by recursion.

Let I ⊂ {1, . . . , n}. The assumption of Proposition 2.4 implies that∏
i∈I

∏
j∈I\{i}

|1 + qij| ≤
∏
i∈I

e2bi . (2.26)

Then there exists i ∈ I such that ∏
j∈I\{i}

|1 + qij| ≤ e2bi . (2.27)

Such i is not unique in general. We consider a function ι that assigns the minimal of the

indices i = ι(I) above to each nonempty subset I ⊂ {1, . . . , n}. Notice that ι(I) ∈ I for any

subset I. It is also useful to introduce the notation I ′ = I \ {ι(I)}.
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Lemma 2.5 . The function gI(J) of Eq. (2.25) is solution of the following equation.
g∅(J) = δ∅,J ,

gI(J) =
(∏
i∈I′

(1 + qi,ι(I))
)∑
K⊂J

(∏
i∈K

qj,ι(I)

)
gI′∪K(J \K) if I 6= ∅.

Since the equation gives gI(J) in terms of gK(J) with |K| + |L| = |I| + |J | − 1, it is

well defined inductively and it has a unique solution. Notice that g∅(∅) = 1, and also that

gi(∅) = 1 for any index i.

Proof. Recall the definition (2.20) of Ψ. For disjoint I,K we have

Ψ(I,K) =
( ∏
j∈I′\K

(1 + qj,ι(I))
)

Ψ(I ′ ∪K)

=
(∏
j∈I′

(1 + qj,ι(I))
)(∑

L⊂K

∏
k∈L

qk,ι(I)

)
Ψ(I ′ ∪K).

(2.28)

Then

gI(J) =
∑
K⊂J

Ψ∗(−1)(J \K)Ψ(I ∪K)

=
(∏
j∈I′

(1 + qj,ι(I))
) ∑
L⊂K⊂J

(∏
k∈L

qk,ι(I)

)
Ψ∗(−1)(J \K)Ψ(I ′ ∪K)

=
(∏
j∈I′

(1 + qj,ι(I))
)∑
L⊂J

(∏
k∈L

qk,ι(I)

) ∑
K′⊂J\L

Ψ∗(−1)(J \ L \K ′)Ψ(I ′ ∪ L ∪K ′).

(2.29)

The last sum is equal to gI′∪L(J \ L). One recognizes the equation of Lemma 2.5.

We now estimate the function g using another function h that satisfies an equation that

is similar to that of Lemma 2.5.
h∅(J) = δ∅,J ,

hI(J) = e2bι(I)
∑
K⊂J

(∏
i∈K

|qi,ι(I)|
)
hI′∪KJ \K) if I 6= ∅.

(2.30)

It also has a unique solution. Since
∏

i∈I′ |1 + qi,ι(I)| ≤ ebι(I) , we can check inductively that

|gI(J)| ≤ hI(J) (2.31)

for any sets I, J (with I ∩ J = ∅). Now the function h can be written explicitly [71, 96]. Let

FI(J) be the set of forests on I ∪ J rooted in I. That is, a graph G ∈ FI(J) is a forest such

that each tree contains exactly one element of I, the root of the tree.

Lemma 2.6 . The solution of Eq. (2.30) is

hI(J) =
( ∏
i∈I∪J

e2bi
) ∑
G∈FI(J)

∏
{i,j}

|qij|.
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Proof. Since the solution to Eq. (2.30) is unique, it is enough to check that the Ansatz

of the lemma satisfies the equation. First, let us observe that both sides are multiplied by∏
i∈I∪J e

bi . Thus it is enough to consider the case bi ≡ 0.

To each forest G ∈ FI′∪K(J \K) we associate a forest G̃ ∈ FI(J) by adding a new vertex

ι(I) to the set of vertices of G and edges {{ι(I), j}, j ∈ K} to the set of edges of G. We

denote the set of all such forests G̃ by FI(J
∣∣ K). Notice that FI(J

∣∣ K1)
⋂
FI(J

∣∣ K2) = ∅
if K1 6= K2, and

⋃
K⊂J FI(J

∣∣ K) = FI(J). Therefore the sum over graphs in FI(J) can be

realized by first summing over the set K of indices (necessarily in J) that are connected to

ι(I); then over sets of trees in J \K, and over connections to I ′ ∪K. Explicitly,∑
G∈FI(J)

∏
{i,j}

|qij| =
∑
K⊂J

(∏
i∈K

|qi,ι(I)|
) ∑
G∈FI′∪K(J\K)

∏
{i,j}

|qij|. (2.32)

This equation is precisely (2.30).

Proof of Proposition 2.4, bound (a). When I has a single element, by (2.21) and (2.24)

the function g is equal to

g1(2, . . . , n) = Ψ∗(−1) ∗D1Ψ(2, . . . , n) = Ψ∗(−1) ∗D1 expA

· Φ(2, . . . , n) = Ψ∗(−1) ∗ expAΦ ∗D1Φ(2, . . . , n)

= D1Φ(2, . . . , n) =
∑
G∈Cn

∏
{i,j}

qij. (2.33)

This the left side of Proposition 2.4 (a). We have F{1}({2, . . . , n}) = Tn, the set of trees with

n vertices. Thus h1(2, . . . , n) is equal to the right side of Proposition 2.4 (a), and the proof

follows from Eq. (2.31).

The proof of Proposition 2.4 (b), in the absence of ”hard core”, i.e., when q 6= −1, follows

from a tree identity due to Brydges, Battle and Federbush [17, 10, 16]:

∑
G∈Cn

∏
{i,j}∈γ

(e−ui,j − 1) =
∑
G∈Tn

∏
{i,j}∈G

(−ui,j)
∫
dλG({sij}) exp

(
−
∑
i<j

sijui,j

)

The full definition of the measure λG can be found in Ref.[16]. Here we only mention that

sij = sji, 0 ≤ sij ≤ 1, λG depends on the tree G and is a probability measure supported on

the set si,j, 1 ≤ i < j ≤ n, such that

∑
i<j

sijReui,j ≥ −
n∑
i=1

bi. (A.6)

The extension to case where Reui,j = +∞ can be obtained using a trick due to Procacci

[102]. For the proof see [101].

12



2.3 Proofs of the theorems

In this section we prove the theorems of Section 2.1. We associate to each i ∈ {1, · · · , n} a

variable xi ∈ X and consider only the case where Assumption 2 holds true — the case with

Assumption 2’ is entirely the same, one only needs to replace all |q(x, y)| with |u(x, y)| and

all e2b(·) with eb(·). The proofs are based on the following tree estimate, which is a direct

consequence of Proposition 2.4: for almost all x1, . . . , xn ∈ X,

|ϕ(x1, . . . , xn)| ≤
n∏
i=1

e2b(xi)
∑
G∈Tn

∏
{i,j}∈G

|q(xi, xj)|. (2.34)

Proof of Theorem 2.1. We start by proving the bound (2.8). Let us introduce

KN(x1) =
N∑
n=1

1

(n− 1)!

∫
d|µ|(x2) . . .

∫
d|µ|(xn)

n∏
i=1

e2b(xi)
∑
G∈Tn

∏
{i,j}∈G

|q(xi, xj)|,

K(x) = lim
N→∞

KN(x). (2.35)

(The term n = 1 is equal to e2b(x1) by definition.) We show by induction that

KN(x) ≤ ea(x)+2b(x) (2.36)

for any N . Then K(x) ≤ ea(x)+2b(x) for almost all x, and using (2.34) we get (2.8).

The case N = 1 reduces to 1 ≤ ea(x) and it is clear. To perform an induction in n we

associate to each tree G ∈ Tn a possibly disconnected graph G′ with V (G′) = {2, · · · , n} in

the following way: we delete all edges {1, j} of the tree G with one endpoint on 1. After that

operation we get a forest G′ since each connected component of G′ is a tree. Let G1, · · · , Gm

be the trees of the forest G′. Then setting Vi = V (Gi) we have V1 ∪ · · · ∪ Vm = {2, · · · , n}
and Vi ∩ Vj = ∅ if i 6= j. Thus by this operation to every tree G ∈ Tn is associated a unique

partition. And vice versa taking a partition V1 ∪ · · · ∪ Vm of {2, · · · , n} and any collection

of trees G1, . . . , Gm, Gk ∈ T (Vk) by adding a set of edges {1, jk}, jk ∈ Vk, k = 1, · · · ,m,

we get a tree on {1, · · · , n}. Here, T (V ) denote the set of trees with V as the set of

vertices. Therefore the sum over trees with n vertices can be written as a sum over forests

on {2, . . . , n}, and a sum over edges between 1 and each tree of the forest. In its turn the

sum over forests on {2, . . . , n} can be written as a sum over all partitions {V1, · · · , Vm, m =

1, 2, · · · } of {2, . . . , n} and a sum over trees on each Vi. Explicitly,

KN(x1) =
N∑
n=1

1

(n− 1)!

∑
m≥1

∑
{V1,...,Vm}

partition of {2,...,n}

∫
d|µ|(x2) . . .

∫
d|µ|(xn)

n∏
i=1

e2b(xi)

m∏
k=1

(∑
`∈Vk

|q(x1, x`)|
∑

G∈T (Vk)

∏
{i,j}∈G

|q(xi, xj)|
)
. (2.37)
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If |Vk| = 1 the sum over G ∈ T (Vk) is 1 by definition. The term after the sum over

partitions depends on the cardinalities of the Vk’s, but not on the actual labeling. Also, each

` ∈ Vk gives the same contribution. Therefore, taking into account that there are (n−1)!
n1!···nm!

partitions of the set {2, . . . , n} into subsets {V1, . . . , Vm} with fixed |Vi| = ni, i = 1, · · · ,m,

we get

KN(x1) = e2b(x1)

N∑
n=1

N−1∑
m=1

1

m!

∑
n1,...,nm≥1

n1+···+nm=n−1

m∏
k=1

(
1

(nk − 1)!

·
∫

d|µ|(y1) . . .

∫
d|µ|(ynk) |q(x1, y1)|

nk∏
i=1

e2b(yi)
∑
G∈Tnk

∏
{i,j}∈G

|q(yi, yj)|
)
. (2.38)

We obtain an upper bound by releasing the constraint n1 + · · ·+nm ≤ N − 1 to nk ≤ N − 1,

1 ≤ k ≤ m. We then get

KN(x1) ≤ e2b(x1) exp

{N−1∑
n=1

1

(n− 1)!

∫
d|µ(y1) . . .

∫
d|µ|(yn) |q(x1, y1)|

·
n∏
i=1

e2b(yi)
∑
G∈Tn

∏
{i,j}∈G

|q(yi, yj)|
}

= e2b(x1) exp

{∫
d|µ|(y1) |q(x1, y1)|KN−1(y1)

}
.

(2.39)

We have KN−1(y1) ≤ ea(y1)+2b(y1) by the induction hypothesis. Eq. (2.35) follows from

Assumption 2.

The rest of the proof is standard combinatorics. The partition function can be expanded

so as to recognize the exponential of connected graphs. Namely, we start with

Z = 1 +
∑
n≥1

1

n!

∫
dµ(x1) . . .

∫
dµ(xn)

∑
G∈Gn

∏
{i,j}

q(xi, xj). (2.40)

The graph G ∈ Gn can be decomposed into k connected graphs G1, · · · , Gk (which are the

connected components of G) whose sets of vertices V1, · · · , Vk form a partition of {1, . . . , n}:
As before, the contributions of the graphs G1, · · · , Gk depend only on the cardinalities

of the Vk’s, hence summing first over the number mi of vertices for each set of the partition,

we get

Z = 1 +
∑
n≥1

∑
k≥1

1

k!

∑
m1,...,mk≥1
m1+···+mk=n

1

m1! . . .mk!

k∏
`=1

{∫
dµ(x1) . . .

∫
dµ(xm`)

·
∑
G∈Cm`

∏
{i,j}

q(xi, xj)
}

= 1 +
∑
n≥1

∑
k≥1

1

k!

∑
m1,...,mk≥1
m1+···+mk=n

k∏
`=1

·
{ 1

m`!

∫
dµ(x1) . . .

∫
dµ(xm`)ϕ(x1, . . . , xm`)

}
.

(2.41)
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The triple sum is absolutely convergent thanks to the estimate (2.8) that we have just estab-

lished and the condition
∫

d|µ|(y)|ea(y)+2b(y) <∞ of Theorem 2.1. One can then interchange

the sums by the dominated convergence theorem. This removes the sum over n, and this

completes the proof of Theorem 2.1.

Proof of Theorem 2.2. We first prove that the cluster function σ(x1, x2) given by (2.12)

is correctly defined. With the help of (3.8) - (3.10) we have

Di1,i2Ψ = Di1Di2 expAΦ = Di1 [expAΦ ∗Di2Φ]

= expAΦ ∗ [Di1Φ ∗Di2Φ +Di1,i2Φ] (2.42)

Using Ψ = expAΦ and the definition (3.11) we get

gi1,i2 = Ψ∗(−1) ∗Di1,i2Ψ = Di1Φ ∗Di2Φ +Di1,i2Φ (2.43)

It follows from (4.10) that

gx1,x2(x3, · · · , xn) = Dx1ϕ ∗Dx2ϕ(x3, · · · , xn) +Dx1,x2ϕ(x3, · · · , xn). (2.44)

Hence

|Dx1,x2ϕ(x3, · · · , xn)| ≤ |gx1,x2(x3, · · · , xn)|+ |Dx1ϕ ∗Dx2ϕ(x3, · · · , xn)|. (2.45)

This implies

|σ(x1, x2)| ≤
∞∑
n=2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)|Dx1,x2ϕ(x3, · · · , xn)|

≤
∞∑
n=2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)||gx1,x2(x3, · · · , xn)| (2.46)

+
∞∑
n=2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)||Dx1ϕ ∗Dx2ϕ(x3, · · · , xn)| = S1 + S2

By formula (2.31) |gx1,x2(x3, · · · , xn)| ≤ hx1,x2(x3, · · · , xn). Therefore with the help of

Lemma 3.4, definition of K(x) given by (4.2) and the bound (4.3) we can write

S1 ≤
∞∑
n=1

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)

n∏
i=1

e2b(xi)
∑

G∈F(x1,x2)(x3,··· ,xn)

·
∏
{i,j}∈G

|q(xi, xj)| =
∞∑
n=2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)

n∏
i=1

e2b(xi)

·
∑

G1∈T1(V1)

∏
{i,j}∈G1

|q(xi, xj)|
∑

G2∈T2(V2)

∏
{i,j}∈G2

|q(xi, xj)| =
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=
∞∑
n=2

∑
(n1,n2):n1+n2=n−2

( 1

n1!

n1+1∏
i=1

e2b(xi)
∑

G1∈T (x1,x2,···xn1+1)

∫
d|µ|(x2) . . .

·
∫

d|µ|(xn1+1)
)( 1

n2!

n2+2∏
i=2

e2b(xi)
∑

G2∈T (x2,x3,···xn2+2)

∫
d|µ|(x3)

. . .

∫
d|µ|(xn2+2)

∏
{i,j}∈G1

|q(xi, xj)|
)

= K(x1)K(x2) ≤

ea(x1)+2b(x1)ea(x2)+2b(x2). (2.47)

Now we prove the absolute convergence of the series S2. With the help of (2.8) we have

S2 ≤
∞∑
n=2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)||Dx1ϕ ∗Dx2ϕ(x3, · · · , xn)|

=
∞∑
n=2

1

(n− 2)!

n−2∑
k=0

∑
J⊂{3,··· ,xn};|J |=k

∫ ∏
j∈J

d|µ|(xj)|Dx1ϕ(xj, j ∈ J)|

·
∫ ∏

k∈{3,··· ,n}\J

d|µ|(xk)|Dx2ϕ(xk, k ∈ {3, · · · , n} \ J)| =

=
∞∑
n=2

n−2∑
k=0

1

k!

1

(n− 2− k)!

∑
J⊂{3,··· ,xn};|J |=k

∫ ∏
j∈J

d|µ|(xj)|Dx1ϕ(xj, j ∈ J)| (2.48)

·
∫ ∏

k∈{3,··· ,n}\J

d|µ|(xk)|Dx2ϕ(xk, k ∈ {3, · · · , n} \ J)|

=
∞∑
k=0

1

k!

∫
d|µ|(y1) . . .

∫
d|µ|(yk)||Dx1ϕ(y1, · · · , yk))|

∞∑
l=0

1

l!

∫
d|µ|(y1) . . .

·
∫

d|µ|(yl)||Dx2ϕ(y1, · · · , yl))| ≤ ea(x1)+2b(x1)+a(x2)+2b(x2)

Note that interchanging of the sums
∑∞

n=2

∑n−2
k=0 is justified because the resulting series both

are absolutely convergent

Thus combining (4.13) - (4.15) we complete the proof of Theorem 2.2.

Proof of Theorem 2.3. The correlation function ς(x) can be expanded as a sum over

graphs, that can be decomposed into a connected graph that contains 1, and other connected

graphs. Taking into account the combinatorial factors, the contribution of connected graphs

containing 1 yields σ(x), and the contribution of the others yields the expression (2.7) for

Z. One step involved interchanging unbounded sums, which is justified because everything
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is absolutely convergent, thanks to (2.8). Thus ς(x) = σ(x)Z.

ς(x1) =
∑
n≥1

1

(n− 1)!

∫ n∏
i=2

dµ(xi)
∑
G∈Gn

∏
{i,j}∈G1

q(xi, xj)

=
∑
n≥1

1

(n− 1)!

{
n−2∑
p=0

∑
W⊂{2,··· ,n}
|W |=p

(∫ ∏
x∈W

dµ(x)
∑

G∈C(W∪{x1})

∏
{i,j}∈G

q(xi, xj)
)

n−1−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−1−p

∑
{V1,...,Vk}:|V`|=n`,

partition of {2,...,n}\W

k∏
`=1

∑
G`∈C(V`)

∫ ∏
x∈V`

dµ(x)

·
∏

{i,j}∈G`

q(xi, xj) +

∫ ∏
i=2

dµ(xi)
∑

G∈C({x1,··· ,xn})

∏
{i,j}∈G

q(xi, xj)

}
=

=
∑
n≥1

n−2∑
p=0

1

p!

(∫ p+1∏
i=2

dµ(xi)
∑

G∈C(p+1)

∏
{i,j}∈G

q(xi, xj)
) n−1−p∑

k=1

1

k!

·
∑

n1,··· ,nk
n1+···+nk=n−1−p

1

n1! · · ·nk!

k∏
`=1

∫ n∏̀
j=1

dµ(yj)
∑

G`∈Cn`

∏
{i,j}∈G`

q(xi, xj)

+
∑
n≥1

1

(n− 1)!

∫ n∏
i=2

dµ(xi)ϕ(x1, . . . , xn) =
∞∑
p=0

1

p!

(∫ p∏
i=2

dµ(xi)

· ϕ(x1, . . . , xp+1)
) ∑
n≥p+2

n−1−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−1−p

1

n1! · · ·nk!

·
k∏
`=1

∫ n∏̀
j=1

dµ(yj)ϕ(y1, · · · , ynl) + σ(x1) = σ(x1)
∞∑
k=1

1

k!

k∏
`=1( ∞∑

n`=1

1

n`!

∫ n∏̀
j=1

dµ(yj)ϕ(y1, · · · , yn`)
)

+ σ(x1) = σ(x1)Z

The interchanging of unbounded sums is justified because everything is absolutely con-

vergent, thanks to (2.8).

The first equation of (2.14) is proved. We now pass to the proof of the second equation.

As usual we start by decomposing graphs G ∈ Gn, the terms where 1 and 2 belong to the

same connected graph yield σ(x, y)Z for the same reasons as above. The terms where 1 and

2 belong to different connected graphs yield σ(x)σ(y)Z.

ς(x1, x2) =
∑
n≥2

1

(n− 2)!

∫ n∏
i=3

dµ(xi)
∑
G∈Gn

∏
{i,j}∈G1

q(xi, xj) =
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=
∑
n≥2

1

(n− 2)!

{
n−3∑
p=0

∑
W⊂{3,··· ,n}
|W |=p

(∫ ∏
x∈W

dµ(x)
∑

G∈C(W∪{x1,x2})

∏
{i,j}∈G

· q(xi, xj)
) n−2−p∑

k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

∑
{V1,...,Vk}:|V`|=n`,

partition of {3,...,n}\W

k∏
`=1

∑
G`∈C(V`)

·
∫ ∏

x∈V`

dµ(x)
∏

{i,j}∈G`

q(xi, xj) +

∫ ∏
i=3

dµ(xi)ϕ(x1, · · · , xn)

}

+
∑
n≥2

1

(n− 2)!

{
n−3∑
p1=0

∑
W1⊂{3,··· ,n}
|W1|=p1

∫ ∏
x∈W1

dµ(x)
∑

G∈C(W∪{x1})

∏
{i,j}∈G

· q(xi, xj)
n−3−p1∑
p2=0

∑
W2⊂{3,··· ,n}\W1

|W2|=p2

∫ ∏
x∈W2

dµ(x)
∑

G∈C(W2∪{x2})

∏
{i,j}∈G

· q(xi, xj)

}[
n−(3+p1+p2)∑

k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−(3+p1+p2)

∑
{V1,...,Vk}:|V`|=n`,

partition of {3,...,n}\(W1∪W2)

·
k∏
`=1

∑
G`∈C(V`)

∫ ∏
x∈V`

dµ(x)
∏

{i,j}∈G`

q(xi, xj)

]
= ςA + ςB. (2.49)

Consider first ςA. We have

ςA =
∑
n≥2

n−3∑
p=0

1

p!

∫ p∏
i=1

dµ(yi)ϕ(x1, x2, y1, · · · , yp)

n−2−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

1

n1! · · ·nk!

k∏
`=1

∫ ∏̀
j=1

dµ(yj)ϕ(y1 · · · ynl)+

+
∑
n≥2

1

(n− 2)!

∫ n∏
i=3

dµ(xi)ϕ(x1, · · · , xn) =
∞∑
p=0

1

p!

∫ p∏
i=1

dµ(yi)

· ϕ(x1, x2, y1, · · · , yp)
∑
n≥p+3

n−2−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

1

n1! · · ·nk!

·
k∏
`=1

∫ ∏̀
j=1

dµ(yj)ϕ(y1 · · · yn`) + σ(x1, x2) = σ(x1, x2) ·
∞∑
k=1

1

k!

k∏
`=1

∞∑
n`=1

1

n`!

·
∫ ∏̀

j=1

dµ(yj)ϕ(y1 · · · ynl) + σ(x1, x2) = σ(x1, x2)Z. (2.50)
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Next

ςB =
∑
n≥2

1

(n− 2)!

{
n−3∑
p=0

∑
W⊂{3,··· ,n}
|W |=p

∑
p1,p2≥0
p1+p2=p

∑
W1,W2 partition of W
|W1|=p1,|W2|=p2

(∫ ∏
x∈W1

dµ(x)

·
∑

G∈C(W1∪{x1})

∏
{i,j}∈G

q(xi, xj)
)(∫ ∏

x∈W2

dµ(x)
∑

G∈C(W2∪{x2})

∏
{i,j}∈G

· q(xi, xj)
) n−2−p∑

k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

∑
{V1,...,Vk}:|V`|=n`,

partition of {3,...,n}\W

k∏
`=1

∑
G`∈C(V`)

·

·
∫ ∏

x∈V`

dµ(x)
∏

{i,j}∈G`

q(xi, xj)

}
+
∑
n≥2

1

(n− 2)!

∑
p1,p2≥0

p1+p2=n−2

·
∑

W1,W2 partition of {3,··· ,n}
|W1|=p1,|W2|=p2

(∫ ∏
x∈W1

dµ(x)
∑

G∈C(W1∪{x1})

∏
{i,j}∈G

q(xi, xj)
)

·
(∫ ∏

x∈W2

dµ(x)
∑

G∈C(W2∪{x2})

∏
{i,j}∈G

q(xi, xj)
)

=

=
∑
n≥2

{
n−3∑
p=0

1

p!

∑
p1,p2≥0
p1+p2=p

p!

p1!p2!

(∫ ∏
x∈W1

dµ(x)
∑

G∈C(W1∪{x1})

∏
{i,j}∈G

q(xi, xj)
)

·
(∫ ∏

x∈W2

dµ(x)
∑

G∈C(W2∪{x2})

∏
{i,j}∈G

q(xi, xj)
)

·
n−2−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

1

n1! · · ·nk!

k∏
`=1

∫ ∏̀
j=1

dµ(yj)ϕ(y1 · · · ynl)

+
∑
n≥2

1

(n− 2)!

∑
p1,p2≥0

p1+p2=n−2

(n− 2)!

p1!p2!

∫ p1∏
i=1

dµ(yi)ϕ(x1, y1, · · · , yp1)

·
∫ p2∏

i=1

dµ(yi)ϕ(x2, y1, · · · , yp2) = ςB1 + ςB2 . (2.51)

Let us treat ςB1 . We have

ςB1 =
∑
n≥2

n−3∑
p=0

∑
p1,p2≥0
p1+p2=p

1

p1!p2!

∫ p1∏
i=1

dµ(yi)ϕ(x1, y1 · · · ypl)
∫ p2∏

j=1

dµ(yj)

· ϕ(x2, y1 · · · yp2)

n−2−p∑
k=1

1

k!

∑
n1,··· ,nk

n1+···+nk=n−2−p

1

n1! · · ·nk!

k∏
`=1

∫ ∏̀
j=1

dµ(yj)·
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· ϕ(y1 · · · ynl) = σ(x1)σ(x2)
∑
m≥0

m+1∑
k=1

1

k!

k∏
`=1

1

n`!

∫ ∏̀
j=1

dµ(yj)ϕ(y1 · · · ynl)

= σ(x1)σ(x2)
∑
k≥1

1

k!

[∑
n≥1

1

n!

∫ n∏
j=1

dµ(yj)ϕ(y1 · · · yn)

]k
. (2.52)

Now consider ςB2 . We have

ςB2 =
∑
n≥2

∑
p1,p2≥0

p1+p2=n−2

1

p1!p2!

∫ p1∏
i=1

dµ(yi)ϕ(x1, y1, · · · , yp1)

·
∫ p2∏

i=1

dµ(yi)ϕ(x2, y1, · · · , yp2) = σ(x1)σ(x2). (2.53)

Hence

ςB = σ(x1)σ(x2)
∑
k≥1

1

k!

[∑
n≥1

1

n!

∫ n∏
j=1

dµ(yj)ϕ(y1 · · · yn)

]k
+ σ(x1)σ(x2)

= σ(x1)σ(x2) exp

[∑
n≥1

1

n!

∫ n∏
j=1

dµ(yj)ϕ(y1 · · · yn)

]
= σ(x1)σ(x2)Z. (2.54)

Thus the second equation of (2.14) is proved. Combining (4.17), (4.18) and (4.22) we

complete the proof of Theorem 2.3.
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3 Decay of correlations

In this section we study the decay of correlations in quantum gases. We start with general

results on decay of correlations in the frame of abstract approach. Then we discuss the

Feynman-Kac representation of quantum gases as a model of interacting Brownian loops,

introduce the space of finite configurations of loops with corresponding measure and write

the grand partition function in terms of composite (winding) loops. In the last subsection

we derive useful bounds for two-point truncated correlation functions which are the main

technical tool for the analysis of the asymptotic expansion of the log- partition function of

quantum gases.

3.1 Bound of abstract semiinvariant

In statistical mechanics the two-point truncated correlation function plays a special role.

This function usually provides an order parameter for phase transitions and it is useful to

estimate its decay properties.

Theorem 3.1 (Decay of correlations) . If Assumptions 1 and 2 of Theorem 2.1 hold

true, we have for almost all x, y ∈ X,

|σ(x, y)| ≤ ea(y)+2b(y)
∑
m≥0

∫
d|µ|(x1) . . .

∫
d|µ|(xm)

m∏
i=0

|q(xi, xi+1)|ea(xi)+2b(xi) (3.1)

with x0 ≡ x and xm+1 ≡ y. The term of the series corresponding to m = 0 is |q(x, y)|ea(x)+2b(x)

by definition. If Assumptions 1 and 2’ hold true, we have the same bound but with |u(·, ·)|
instead of |q(·, ·)|, and eb(·) instead of e2b(·).

In typical situations the functions q(x, y) and u(x, y) depend on the difference x−y (this

assumes that X has additional structure, namely that of a group). The estimates for |σ(x, y)|
are given by convolutions.

Notice that Theorem 3.1 does not say anything about the convergence of the series on

the right side of (2,13), it may equal to +∞. In many applications there is a small parameter

(usually it is activity z) which provides the absolute convergence of the right side of (5.1).

One can say that Theorem 3.1 is the first step in obtaining finer estimates for the two-point

truncated correlation functions of concrete systems . Theorems 3.2, 3.7, 3.8 and 3.9 below

illustrate this argument.

Proof of Theorem 3.1. From the tree estimate 2.34, we have

|σ(x1, x2)| ≤
∑
n≥2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)

( n∏
i=1

e2b(xi)
)

·
∑
G∈Tn

∏
{i,j}

|ζ(xi, xj)|. (3.2)
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The expression above involves a sum over trees G ∈ Tn of arbitrary size that connect 1 and 2.

Any such tree decomposes into a path (line) τ(m) = (i0, i1, · · · , im, im+1), i0 ≡ 1, im+1 ≡ 2,

of m + 1 edges that connects 1 and 2, (m + 1 ≥ 1 is called the length of the path) and

m+ 2 trees rooted in the vertices of the connecting line. Let Tn(τ(m)) be the set of all trees

G ∈ Tn which contain a fixed path τ(m) as a subgraph: τ(m) ⊂ G. A graph G1 we call call

a subgraph of a graph G and write G1 ⊂ G if V (G1) ⊂ V (G) and E(G1) ⊂ E(G) where

E(G) is the set of edges of the graph G. It is clear that

Tn =
n−2⋃
m=0

′⋃
Tn(τ(m))

where
⋃′ is taken over all possible paths (i0, i1, · · · , im, im+1) of length m + 1 that connect

1 and 2. We note also that Tn(τ(m1)) ∩ Tn(τ(m2)) = ∅ if m1 6= m2 as well as Tn(τ1(m)) ∩
Tn(τ2(m)) = ∅ for any two different paths τ1(m) and τ2(m) of the same length. Any G ∈
Tn(τ(m)) we decompose into m + 2 trees G0, · · · , Gm+1, rooted respectively in the vertices

i0, i1, · · · , im, im+1, by deleting the m + 1 edges of τ(m). The contribution of the trees

G0, · · · , Gm+1 rooted in the vertices of the path τ(m) does not depend on the actual labeling.

Therefore we have

|σ(x1, x2)| ≤
∑
n≥2

1

(n− 2)!

∫
d|µ|(x3) . . .

∫
d|µ|(xn)

( n∏
i=1

e2b(xi)
) ∑
G∈Tn

∏
{i,j}

· |q(xi, xj)| ≤
∑
n≥2

1

(n− 2)!

n−2∑
m=0

∑
(i0,··· ,im+1)

∑
n0,··· ,nm+1≥0

n0+···+nm+1=n−m−2

(3.3)

· (n−m− 2)!

n0! · · ·nm+1!

m+1∏
`=0

e2b(xi` )

∫
d|µ|(y1) . . .

∫
d|µ|(yn`)

n∏̀
i=1

e2b(yi)

·
∑

G`∈Tn`+1

∏
{i,j}

|q(xi, xj)|
∫

d|µ|(xi1) . . .

∫
d|µ|(xim)

m∏
k=0

|q(xik , xik+1
)|

Since the number of different paths of length m+ 1 is (n−2)!
(n−m−2)!

, using (4.2) we find that

|σ(x1, x2)| ≤
∑
n≥2

n−2∑
m=0

∑
n0,··· ,nm+1≥0

n0+···+nm+1=n−m−2

m+1∏
`=0

e2b(xi` )
1

n`!

∫
d|µ|(y1) . . .

∫
d|µ|(yn`)

·
n∏̀
i=1

e2b(yi)
∑

G`∈Tn`+1

∏
{i,j}

|q(xi, xj)|
∫

d|µ|(xi1) . . .

∫
d|µ|(xim)

m∏
k=0

· |q(xik , xik+1
)| ≤

∞∑
m=0

m+1∏
`=0

K(xi`)

∫
d|µ|(xi1) . . .

∫
d|µ|(xim)

·
m∏
k=0

|q(xik , xik+1
)| (3.4)
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The result follows from the bound (2.36) for K. Theorem 3.1 is proved

To have an absolute convergence of the right hand side of the last inequality we replace

Assumption 2 by the following assumption

Assumption 3. There exists a nonnegative function a on X and a number p, 0 < p < 1

such that for almost all x ∈ X,∫
d|µ|(y) |q(x, y)|ea(y)+2b(y)â(y) ≤ pa(x) (3.5)

where â(y) = max(a(y), 1).

Assumption 3’ is defined as Assumption 3 but with u(x, y) instead of q(x, y) and with

eb(.) instead of e2b(.)

Theorem 3.2 (Integral bound) . If Assumptions 1 and 3, or 1 and 3’ hold true then for

almost all x ∈ X ∫
d|µ|(y) |σ(x, y)| ≤ ea(x)+2b(x)a(x)

p

1− p
. (3.6)

Proof of Theorem 3.2. For m = 0, 1, · · · we set

Am(x) =

∫
X

d|µ|(y)ea(y)+2b(y)

∫
Xm

m∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

m∏
i=0

|q(xi, xi+1)| (3.7)

where x0 = x, xm+1 = y and

A0(x) =

∫
X

d|µ|(y)ea(y)+2b(y)|q(x, y)| (3.8)

By Assumption 3

Am(x) =

∫
Xm

m∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

m−1∏
i=0

|q(xi, xi+1)|
∫
X

d|µ|(y)ea(y)+2b(y)

· |q(xm, y)| ≤ p

∫
Xm−1

m−1∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

m−2∏
i=0

|q(xi, xi+1)|

·
∫
X

d|µ|(xm)ea(xm)+2b(xm)a(xm)|q(xm−1, xm)| ≤

· · · ≤ pm+1a(x) (3.9)

Then by Theorem 3.1, with the help of Monotone Convergence Theorem we get∫
d|µ|(y)|σ(x, y)| ≤ ea(x)+2b(x)

∑
m≥0

Am(x) ≤ ea(x)+2b(x)a(x)
p

1− p
.

This completes the proof of Theorem 3.2.
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3.2 Feynman-Kac representation of the quantum gas

The remarkable Feynman-Kac formula [40, 46, 86] gives a convenient representation of the

statistical operator e−βH where the Hamiltonian H of the system is the sum of the usual

kinetic energy operator and of an interaction generated by a pair potential (see formula (3.17)

below). Thus one can reduce the truly quantum mechanical problem involving unbounded

noncommuting operators to a problem very similar to the classical one, involving only scalar

functions.

Using Feynman-Kac representation Ginibre studied the reduced density matrices of quan-

tum gases in his pioneering work [46].

This work is an excellent mathematical introduction to the Wiener measure, the Feynman-

Kac formula, and its applications . See also [43, 104, 109] .

Consider a gas of N identical spinless particles in a bounded domain Λ ⊂ Rd interact-

ing through a two-body potential φ. We assume that φ is a real even function, piecewise

continuous and stable with stability constant B ≥ 0. We will consider also stable hard core

potentials: φ(u) = +∞ for |u| ≤ c, where c is the radius of a hard core. In this case we

assume that outside of the core φ is piecewise continuous and summable.

We will consider cases where the particles obey Maxwell-Boltzmann (MB), Bose-Einshtein

(BE) and Fermi-Dirac (FD) statistics. Then L2(ΛN), the N -fold tensor product of L2(Λ), is

the Hilbert space which describe the quantum states of N particles obeying MB statistics.

The Hilbert spaces appropriate for the description of N particles obeying FD (Fermi gas

or fermions) and BE (Bose gas or bosons) statistics are the spaces L2
−(ΛN) (resp. L2

+(ΛN)) of

square-integrable complex functions that are antisymmetric (resp. symmetric) with respect

to their arguments. We denote these spaces by L2
ε(Λ

N) with ε = −1 for FD and ε = +1 for

BE statistics respectively. Evidently L2
ε(Λ

N) are subspaces of L2(ΛN).

The Hamiltonian of the system is given by

HN(Λ) = −
N∑
i=1

∆i + U (3.10)

where ∆i the Laplacian for the i-th variable with Dirichlet boundary conditions and U

a multiplication operator, which is taken as a sum of pair potentials U(u1, . . . , un) =∑
1≤i<j≤N φ(ui − uj). We can take the Hamiltonian to be a self-adjoint extension of the

symmetric operator

−
N∑
i=1

∆i +
∑

1≤i<j≤N

φ(ui − uj)

(see for details [46]).

To treat all the cases simultaneously we take the Hilbert space L2(ΛN). Therefore dealing

with operators in L2(ΛN) which are relative to the BE or FD Statistics we have to multiply

them by the corresponding projectors.
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Let Sε = Sε,N denote the projectors onto the subspaces L2
ε(Λ

N) which are defined by

Sεf(u1, · · · , uN) =
1

N !

∑
π∈IN

ε(π)f(uπ(1), · · · , uπ(N)), f ∈ L2(ΛN) (3.11)

where IN is the permutation group of N elements, ε(π) is equal to the signature of the

permutation π for fermions, ε(π) ≡ 1 for bosons.

We consider quantum systems in the grand canonical formalism, where the number of

particles is not fixed. The appropriate Hilbert space is the direct sum of the spaces L2(ΛN)

which is called the Fock space:

F(Λ) = F(L2(Λ)) =
∞⊕
N=0

L2(ΛN) (3.12)

where L2(Λ0) = C, is the space of complex numbers [15, 46, 105].

We briefly describe the notion of the conditional Wiener measure P u,v
β , u, v ∈ Rd, β > 0.

Let Ωβ be the space of all functions from [0, β] into one point compactification R̂d of Rd,

in other words Ωβ =
∏

t∈[0,β] R̂d. Equip Ωβ with the product topology ( the topology of

pointwise convergence) then Ωβ is a compact Hausdorff space. Let

pt(u) = (2πt)−
d
2 e−

u2

2t , u ∈ Rd. (3.13)

Let F (u1, · · · , un), u1, · · · , un ∈ Rd be a bounded continuous function and let 0 < t1 <

· · · < tn < β. Consider functions of the type f(x) = F (x(t1), · · · , x(tn)), x ∈ Ωβ. Such

functions, for all 0 < t1 < · · · < tn < β and F , are called simple functions, they are

continuous, separate points hence by Stone - Weierstrass theorem form a sup-norm dense

subalgebra Cfin(Ωβ) of the algebra C(Ωβ) of continuous functions on Ωβ.

Define P u,v
β as a linear functional on Cfin(Ωβ) by

P u,v
β (f) =

∫ n∏
l=1

dulF (u1, · · · , un)
n∏
i=0

pti+1−ti(ui+1 − ui) (3.14)

where t0 = 0, tn+1 = β, u0 = u, un+1 = v. One can check that P u,v
β is a positive bounded

linear form on Cfin(Ωβ) which can be extended by continuity to a norm continuous positive

linear form on C(Ωβ).

Finally, by the Riesz representation theorem, there exists a regular Borel measure on

C(Ωβ), also denoted by P u,v
β , such that

P u,v
β (f) =

∫
dP u,v

β (x)f(x) (3.15)

for all f ∈ C(Ωβ). This measure is called the conditional Wiener measure on Ωβ. For the

details see [104, 46, 15]. The space Ωβ is too large so that there are Borel sets which are

not Baire. Fortunately the measure P u,v
β is concentrated on the subset C([0, β],Rd) ⊂ Ωβ of
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continuous functions from [0, β] to Rd (see Theorem 1 in Appendix 1, [45]). The elements of

C([0, β],Rd) we will call elementary trajectories and β its length. Moreover P u,v
β is supported

by the subspace of the α-Hölder, α < 1
2
, continuous functions from Ωβ (see Theorem 1.2 in

[46]).

We define interaction between two elementary trajectories x and y by

φ̂(x− y) =

∫ β

0

dt φ(x(t)− y(t)) x, y ∈ C([0, β],Rd). (3.16)

The Feynman-Kac formula states that under our conditions on the pair interaction φ the

statistical operator e−βHN (Λ) is an integral operator on L2(ΛN) with a kernel K given by

K(u1, · · · , uN ; v1, · · · , vN) =

∫ N∏
i=1

dP ui,vi
β (xi)1Λ(xi) exp

{
−

∑
1≤i<j≤N

φ̂(xi − xj)
}

(3.17)

where 1Λ(x) = 1 if x(t) ∈ Λ for all 0 ≤ t ≤ β; it is zero otherwise. This kernel is a continuous

function of u1, · · · , uN and v1, · · · , vN provided ui 6= uj, i 6= j, or |ui − uj| > c in case of a

hard core with radius c. It is bounded by eNβB(2πβ)−N
d
2

∏N
i=1 exp(− (ui−vi)2

2β
) and represents

a bounded self adjoint positive trace class operator in L2(ΛN) with

Tre−βHN (Λ) ≤ |Λ|N(2πβ)−N
d
2 eNβB (3.18)

([46] Section 1.3 , [45], Appendix 1, see also [109, 104], [15], Section 6.3.2).

The state of a quantum system in a grand canonical ensemble, whose parameters are the

activity z and the inverse temperature β, is described by a density matrix, a positive trace

class operator D(Λ) on the Fock space F(Λ) with TrD(Λ) = 1. In the MB case it is given

by

D(Λ) = Z(Λ)−1

∞⊕
n=0

zn

n!
exp(−βHn(Λ)) (3.19)

where the normalizing factor

Z(Λ) =
∞∑
n=0

zn

n!
Tr exp(−βHn(Λ)) (3.20)

is called the grand canonical partition function. The density matrix of a system with BE or

FD statistics is

Dε(Λ) = Zε(Λ)−1

∞⊕
n=0

znSε exp(−βH(Λ)) (3.21)

with the grand canonical partition function

Zε(Λ) =
∞∑
n=0

znTrSε exp(−βH(Λ)). (3.22)

Note that the density matrices D(Λ) and Dε(Λ) define the corresponding finite-volume Gibbs

states.

26



Theorem 3.3 . The operators D(Λ) and Dε(Λ) are positive operators on F(Λ). D(Λ) and

Dε(Λ) are trace class operators respectively for all z and for z ≤ e−βB.

Moreover the Feynman-Kac representations of the grand partition functions for MB re-

spectively BE and FD quantum gases are given by

Z(Λ) =
∞∑
n=0

zn

n!

∫
Λn

n∏
i=1

dui

∫ n∏
i=1

dP ui,ui
β (xi)1Λ(xi) exp

{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}
, (3.23)

respectively by

Zε(Λ) =
∞∑
n=0

zn

n!

∑
π∈In

ε(π)

∫
Λn

n∏
i=1

dui

∫ n∏
i=1

dP
ui,uπ(i)

β (xi)

· exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}
. (3.24)

Proof of Theorem 3.3. Evidently both operators are positive.

Using the Feynman-Kac formula (5.6) and the stability of the potential φ we have

Z(Λ) =
∞∑
n=1

zn

n!
Tr exp(−βHn(Λ)) =

∞∑
n=1

zn

n!

∫
Λn

n∏
i=1

dui

∫ n∏
i=1

dP ui,ui
β (xi)1Λ(xi)

· exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}
≤

∞∑
n=1

(zeβB|Λ|(2πβ)−
d
2 )n

n!

= exp[zeβB|Λ|(2πβ)−
d
2 ] <∞. (3.25)

Next we treat Zε(Λ) invoking again the Feynman-Kac formula. First consider the operator

Sε exp(−βH(Λ)). For any f ∈ L2(Λn),

Sε exp(−βH(Λ))f(u1, · · · , un) =
1

n!

∑
π∈In

ε(π) exp(−βH(Λ))f(uπ(1), · · · , uπ(n))

=
1

n!

∑
π∈In

ε(π)

∫
Λn

n∏
i=1

dviK(uπ(1), · · · , uπ(n); v1, · · · , vn)f(v1, · · · , vn)

=
1

n!

∑
π∈In

ε(π)

∫
Λn

n∏
i=1

dvif(v1, · · · , vn)

∫ n∏
i=1

dP
uπ(i),vi
β (xi)1Λ(xi) ·

· exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}

=
1

n!

∑
π∈In

ε(π)

∫
Λn

n∏
i=1

dvif(v1, · · · , vn)

·
∫ n∏

i=1

dP
ui,vπ(i)

β (xi)1Λ(xi) exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}

=

∫
ΛN

n∏
i=1

dvi
1

n!

∑
π∈In

ε(π)K(u1, · · · , un; vπ(1), · · · , vπ(n))f(v1, · · · , vn).
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Thus Sε exp(−βH(Λ)) is an integral operator with the kernel

Kε(u1, · · · , un; v1, · · · , vn) =
1

n!

∑
π∈In

ε(π)

∫ n∏
i=1

dP
ui,vπ(i)

β (xi)1Λ(xi)

· exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}
. (3.26)

Then

Zε(Λ) =
∞∑
n=0

zn

n!

∑
π∈In

ε(π)

∫
Λn

n∏
i=1

dui

∫ n∏
i=1

dP
ui,uπ(i)

β (xi)1Λ(xi)

· exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}

(3.27)

This is the Feynman-Kac representations of the grand partition function for bosons and

fermions.

To estimate Zε(Λ) we rewrite it in terms of composite (winding) loops by collecting the

elementary trajectories of length β in composite loops.

Every permutation of In can be written as a product of disjoint cycles. This representation

is unique up to the order of the elements in the cycle since the multiplication of disjoint cycles

is commutative and any rotation of a given cycle (the choice of its starting point) specifies

the same cycle .

A cycle decomposition of a permutation can be viewed as a class of a permutation group.

Two permutations of In belong to the same class (are conjugate in In) if and only if

they consist of the same number of disjoint cycles of the same lengths. The number of

permutations in a class with k cycles of length n1, · · · , nk with ni ≥ 1, i = 1, · · · , k and∑k
i=1 ni = n is

n!

k!
∏k

1 ni
.

(see for example [112, 46].

Now note that the integrand in (3.27)

n∏
i=1

1Λ(xi) exp
{
−

∑
1≤i<j≤n

φ̂(xi − xj)
}

is a symmetric function of x1, · · · , xn. The contributions of any two elements from the

same class differ only by the labelling of the integration variables. Given a permutation

from the class defined by n1, · · · , nk with
∑k

i=1 ni = n, we collect n elementary trajec-

tories {x1, · · · , xn} into k composite loops {X1, · · · , Xk} of the respective time intervals
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n1β, · · · , nkβ. Therefore

Zε(Λ) =
∞∑
n=0

zn
n∑
k=1

1

k!

∑
n1,··· ,nk≥1,

∑
ni=n

∫
Λn

k∏
i=1

dui

∫ k∏
i=1

dP ui,ui
niβ

(Xi)
1

ni
1Λ(Xi)e

−U(X1,··· ,Xk)

= 1 +
∞∑
k=1

1

k!

∫
Λk

k∏
i=1

dui

∞∑
n=k

∑
n1,··· ,nk≥1,

∑
ni=n

∫ k∏
i=1

dP ui,ui
niβ

(Xi)
zni

ni
1Λ(Xi)

· e−U(X1,··· ,Xk) = 1 +
∞∑
k=1

1

k!

∫
Λk

k∏
i=1

dui

k∏
i=1

∞∑
ni=1

zni

ni

∫
dP ui,ui

niβ
(Xi)1Λ(Xi)e

−U(X1,··· ,Xk)

(3.28)

where 1Λ(Xi) = 1 if Xi(t) ∈ Λ for any 0 ≤ t ≤ niβ and is zero otherwise,

U(X1, · · · , Xk) =
∑

0≤i<j≤k

∑
xi∈Xi,xj∈Xj

φ̂(xi − xj). (3.29)

Let us show that the series in the last two lines of (3.28) is absolutely convergent. Using the

stability of the potential φ we can write

1 +
∞∑
k=1

1

k!

∫
Λk

k∏
i=1

dui

k∏
i=1

∞∑
ni=1

zni

ni

∫
dP ui,ui

niβ
(Xi)1Λ(Xi)e

−U(X1,··· ,Xk)

≤ 1 +
∞∑
k=1

1

k!

∫
Λk

k∏
i=1

dui

k∏
i=1

(2πβ)−
d
2

∞∑
ni=1

(zeβB)ni

n
1+ d

2
i

≤ exp
[
|Λ|(2πβ)−

d
2 ζ
(

1 +
d

2

)]
(3.30)

provided zeβB ≤ 1. This justifies the interchanging of unbounded sums above and completes

the proof of Theorem 3.3. Here ζ(s) =
∑∞

j=1
1
js

is the Riemann zeta function.

3.3 Loop gases

In this section we will rewrite the grand-canonical partition functions (3.20) and (3.22) in

terms of respectively elementary and composite ( winding ) loops. We consider the space of

composite loops and define the canonical σ-algebra and measure.

Let β > 0 be the inverse temperature and let C([0, β],Rd) be the space of all Brownian

trajectories of length β in Rd. The elements of C([0, β],Rd) we call elementary trajectories.

With the help of elementary trajectories we construct so-called composite Brownian loops

in Rd [46].

For j=1,2,... we denote by Xjβ the space of composite loops of fixed length jβ in Rd:

Xjβ = {X ∈ C([0, jβ],Rd) | X(0) = X(jβ)}.

and we put |X| = j for X ∈ Xjβ. Note that in topology of uniform convergence Xjβ is a

Polish space with Borel σ-algebra B(Xjβ).
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The underlying one particle space X of the loop gas with BE or FD statistics is the space

of composite loops in Rd and is defined as a topological sum of the spaces Xjβ: X =
⋃∞
j=1Xjβ.

We define the Borel σ-algebra in X by B(X ) =
⋃∞
j=1 B(Xjβ). This means that B ∈ B(X ) iff

B ∩ Xjβ ∈ B(Xjβ) for each j = 1, 2 · · · .
We say that an elementary trajectory x is an elementary constituent of a composite loop

X ∈ X and write x ∈ X if there exists i, 0 ≤ i < |X| such that x(t) = X(t+ iβ), t ∈ [0, β].

Notice that the one particle space of the loop gas in MB case is the subspace Xβ ⊂ X .

For any u ∈ Rd let

X u
jβ = {X ∈ Xjβ | X(0) = X(jβ) = u}

and let

X u =
∞⋃
j=1

X u
jβ.

Without confusing the reader, we often write shortly X u
jβ, P

u
jβ for X u,u

jβ and P u,u
jβ respec-

tively. To define the underlying reference measure on X we use the natural bijection τ

between X and X 0 ×Rν given by

τ(X0, u) = X0 + u,X0 ∈ X 0, u ∈ Rd.

Evidently τ is a bijection with

τ−1(X) = (X −X(0), X(0)).

Let P u
jβ be the non-probabilistic (non-normalized) Brownian bridge measure on X u

jβ with

P u
jβ(X u

jβ) = (πjβ)
−d
2 , u ∈ Rd.

We define a measure P u
ε,z on X u, u ∈ Rd, by the formula

P u
ε,z =

∞∑
j=1

εj−1zj

j
P u
jβ (3.31)

where ε = +1 or −1 which corresponds to the case of bosons and fermions respectively. Here

we assume that 0 < z ≤ 1.

The sets

(X u)+ =
∞∑
j=1

X u
(2j−1)β, (X u)− =

∞∑
j=1

X u
2jβ

give the Hahn decomposition of the space X u with respect to the signed measure P u
−,z:

X u = (X u)+ + (X u)−.

Here (X u)+ and (X u)− are disjoint, (X u)+ is positive and (X u)− is negative with respect to

the signed measure P u
−,z (see [59], for example).
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The Jordan decomposition of the measure P u
−,z is given by the formula

P u
−,z = (P u

−,z)
+ − (P u

−,z)
−

where (P u
−,z)

+ and (P u
−,z)

− are positive measures defined by.

(P u
−,z)

+ =
∞∑
j=1

z2j−1

2j − 1
P u

(2j−1)β, (P u
−,z)

− =
∞∑
j=1

z2j

2j
P u

2jβ.

We note that the total variation |P u
−,z| = (P u

−,z)
+ + (P u

−,z)
− of the signed measure P u

−,z

coincides with the measure P u
+,z which is finite measure with

P u
+,z(X ) ≤ P u

+,1(X ) = (πβ)−
d
2

∞∑
j=1

1

j1+ d
2

<∞.

The following lemma shows that ”typical” loops are localized.

Lemma 3.4 . Let

M(R) = {X ∈ X | |X(t)−X(s)| > R for some s, t ∈ [0, |X|β] }, R ≥ 0.

For all z, 0 < z < 1,

P u
+,z(M(R)) ≤ C(d)β−

d
2 exp[−C(β, z)R], u ∈ Rd,

where

C(β, z) =

(
| ln z|
64β

) 1
2

.

In particular, if z ≤ e−
1
2 ,

P u
+,z(M(R)) ≤ C(d)ζ

(
d

2
+ 1

)
β−

d
2 exp

(
− R

8
√

2β

)
(3.32)

where ζ is the Riemann zeta function.

Proof. For any u, v ∈ Rd we set

M(ε, δ) = {x ∈ X uv
β

∣∣ |x(t)− x(s)| > ε for some s, t ∈ [0, β], |s− t| ≤ δ}. (3.33)

Then (see [46], formulae (1.14), (1.31))

P uv
β (M(ε, δ)) ≤ C(d)

4β

δ
(πβ)−

d
2

(
ε

8
√
δ

)d−1

exp

(
− ε2

128δ

)
. (3.34)

We denote all the constants by C indicating, if necessary, the dependence on parameters.

Let M(R, jβ) = Xjβ
⋂
M(R), j = 1, 2, . . .. Then

P u
+,z(M(R)) =

∞∑
j=1

zj

j
· P u

jβM(R, jβ).
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It follows from (3.34) that

P u
jβ(M(R, jβ)) ≤ C(d)(πjβ)−

d
2

( R

8
√
jβ

)d−1

exp
(
− R2

128jβ

)
Obviously

(
R

8
√
jβ

)d−1

exp
(
− R2

256jβ

)
, as a function of ξ = R

8
√
jβ

, is bounded uniformly by a

constant C = C(d). Therefore for any τ > 0 and all z, 0 < z ≤ exp(−64βτ 2),

eτRP u
+,z(M(R)) ≤ eτRC(d)(πβ)−

d
2 ·

∞∑
j=1

zj

j
d
2

+1
exp
(
− R2

256jβ

)
≤ C(d)

·(πβ)−
d
2

∞∑
j=1

zj

j
d
2

+1
e64τ2jβ exp

[
−1

4

(
R

8
√
jβ
− 16τ

√
jβ

)2
]
≤ C(d)(πβ)−

d
2

·
∞∑
j=1

[z exp(64τ 2β)]j

j
d
2

+1
≤ C(d)(πβ)−

d
2 ·

∞∑
j=1

1

j
d
2

+1
= C(d)(πβ)−

d
2 ζ

(
d

2
+ 1

)
. (3.35)

If 0 < z < 1 we choose τ =
(
| ln z|
64β

) 1
2

and get the first bound of Lemma 1.

Let z
√
e ≤ 1 then setting in (3.35) τ = 1

8
√

2β
we get (3.32). Lemma 1 is proved.

Corollary 3.5 . The following bound is useful in applications

P u
+,z(M(R)) ≤ C(d)ζ

(
d

2
+ 1

)
β−

d
2 exp

(
− R

8
√

2β

)
u ∈ Rd, l > 0.

Corollary 3.6 . In the case of MB statistics

P u
β (M(R, β)) ≤ C(d, l)β−

l−d
2 (1 +R)−l , u ∈ Rd, l > 0.

with M(R, β) given by (3.33).

Proof of Corollary 3.5. From (3.32) with the help of the bound R−l ≤ 2l(1 + R)−l, R ≥ 1,

we get

P u
+,z(M(R)) ≤ C(d)ζ

(
d

2
+ 1

)
β−

d
2 exp

(
− R

8
√

2β

)(
R

8
√

2β

)l
(16
√

2β)l

· (1 +R)−l ≤ C(d, l)ζ

(
d

2
+ 1

)
β
l−d
2 (1 +R)−l .

Here we used the following bound τ le−τ ≤ C(l) τ > 0.

Corollary 3.6 can be proved by repeating the same arguments.

We define the intensity measure ρε,z on B(X ) by

ρε,z = (P 0
ε,z × λ) ◦ τ−1 (3.36)

where λ is the Lebesgue measure on Rd. In the case of fermions the variation |ρ−,z| of the

signed measure ρ−,z is equal to ρ+,z.
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The restriction of the σ-finite measure ρε,z to Xjβ coincides with

( ε
j−1zj

j
P 0
jβ × λ) ◦ τ−1

j , where τj is the restriction of τ to X 0
jβ × Rd. For A ∈ B(X ) we denote

by ρε,z,A the restriction of ρε,z to (A,B ∩ A).

The intensity measure for the loop gas with the MB statistics is the measure

zρ = z(P 0
β × λ) ◦ τ−1 = ρε,z,Xβ .

Let M =M(X ) be the set of all finite subsets (finite configurations) of X . Note that a

configuration µ = {x1, · · · , xn} ∈ M can be identified with the finite sum of Dirac measures

of its elements: µ = δx1 + · · · + δxn . Thus the configuration space of our system M can be

identified with the space of all finite simple point measures on X , provided with its canonical

σ-field.

On the space M we define the following σ-finite measure Wρε,z by

Wρε,z(h) =
∞∑
n=0

1

n!

∫
Xn

dρε,z(X1) · · · dρε,z(Xn)h(X1, ..., Xn) (3.37)

where h :M→ R+. Here the first term in the sum is h(∅).
In the case of fermions one can easily check that the total variation |Wρ−,z | of the signed

measure Wρ−,z is equal to Wρ+,z .

Let Λ be a bounded region in Rd. We define

X (Λ) = {X ∈ X |X(t) ∈ Λ, ∀t ∈ [0, β|X|]}.

Similarly we can define the setM(X (Λ)) =M(Λ) of finite configurations of loops ”living”

in Λ:

M(Λ) = {ω ∈M|ω ⊂ X (Λ)}.

Note thatWρε,z,X (Λ)
= Wρε,z,Λ is a finite measure onM(Λ) with total mass exp(ρε,z(X (Λ))).

The corresponding probability measure exp(−ρε,z(X (Λ)))Wρε,z,Λ we call the ideal loop gas in

Λ with activity (intensity) z obeying BE or FD statistics or the Poisson process in X (Λ) with

intensity ρε,z.

The energy U(ω) of a finite configuration ω of composite loops is given by

U(ω) =
∑
X∈ω

U1(X) +
1

2

∑
X,Y ∈ω

U2(X, Y ) (3.38)

where

U1(X) =
1

2

∑
x,y∈X

φ̂(x− y) (3.39)

and

U2(X, Y ) =
∑

x∈X,y∈Y

φ̂(x− y). (3.40)
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We define the Boltzmann factor f :M→ R+ as usual by

f(ω) = exp(−U(ω)), ω ∈M. (3.41)

The Gibbs measure on M(Λ) for a bounded region Λ is given by

Qε(Λ, z) =
exp(−U)

Zε(Λ, z)
Wε,z,Λ (3.42)

where the grand partition function

Zε(Λ, z) = Wε,z,Λ(f). (3.43)

More explicitly

Zε(Λ, z) =
∞∑
n=0

1

n!

∫
XnΛ
ρε,z(dX1)...ρε,z(dXn) exp(−U(X1, ..., Xn)) (3.44)

and

Qε(Λ, z)(ϕ) = Zε(Λ, z)
−1

∫
M

dWε,z,Λ(ω)ϕ(ω)exp(−U(ω)) (3.45)

for any measurable ϕ :M→ R+.

Note that the condition (c) on the interaction φ implies the finiteness of Zε(Λ, z) for all

0 < z ≤ 1. Indeed

|Zε(Λ, z)| ≤ exp

[∫
X (Λ)

dρ+,z(X)

]
≤ exp

[
|Λ|P 0

+,z(X 0)
]
<∞.

We call Qε(Λ, z) the loop gas in Λ with intensity z and interaction φ obeying BE or FD

statistics.

3.4 Decay of correlations in loop gases

In this section we present estimates of the two-point truncated correlation functions σΛ(x, y)

for a model of low density interacting Brownian loops. The first non-trivial problem is how

to define a decay property for the function q(x, y) of two Brownian loops that is consistent

with the decay property of the interaction φ̂(x−y). It is well known [46] that if one integrates

q(x, y) with respect to the measure ρε,z over loops y which visit the exterior of a ball of radius

R + r in Rd, while the loop x stays all the time in a ball of radius R with the same center,

then the integral has a power decay in r. We take this property as a definition of the power

decay of a function of two loops. We show that σΛ(x, y) has the power decay under suitable

conditions on the classical interaction φ [96]. This decay property permits, in particular, the

study of large volume asymptotics of the log-partition function which we carry out in the

next section.

The cases of absolutely integrable interaction potentials and hard core potentials are

treated separately.
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The analysis of the decay of correlations in a loop gas is based on the general Theorem

3.1. To apply this theorem we take

X = X (Λ), dµ(x) = dρε,z(x) e−U1(x), q(x, y) = e−U2(x,y) − 1 (3.46)

where U1 and U2 is given respectively by (3.39) and (3.40).

Assumption 4 . There exists a nonnegative function a on X and a number p, 0 < p < 1,

such that for a given l > 0 and all r > 0,∫
X c(B0(R+r))

dρ+,z(y) |q(x, y)|ea(y)+2b(y)â(y) ≤ p a(x)
(

1 +
r

2

)−l
. (3.47)

for almost all x ∈ X (B0(R)), (â(y) = max(a(y), 1)) .

Assumption 4’ is defined like Assumptions 4 with the u(x, y) instead of q(x, y) and eb(·)

instead of e2b(·).

The following result describes the decay property of the two-point truncated correlation

functions of the system of interacting Brownian loops.

Theorem 3.7 (Main bound. Integrable potential) . If Assumptions 1, 3 and 4 hold

true, then for all positive R and r and for almost all x ∈ X (B0(R)),∫
X c(B0(R+r))

d|µ|(y)|σΛ(x, y)| ≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l. (3.48)

In case where Assumptions 1, 3’ and 4’ hold true the same result is valid with b(x) instead

of 2b(x).

We notice that the bound (3.48) for σΛ(x, y) is uniform in Λ therefore Theorem 3.7 is very

useful in study of the behavior of the log-partition function in thermodynamic limit.

It is an open problem to prove that a modified Assumption 4 with an exponential decay

on the right side (instead of power decay) implies the same type decay for σ.

Proof of Theorem 3.7. For any r > 0 we take Λ so large that B0(R+ r) ⊂ Λ and we take

X = X (Λ). Since Assumption 3 is stronger then Assumption 2, Theorems 2.1, 2.3 and 3.1

as well as Theorem 3.2 hold true.

By Theorem 3.1 and Lebesgue Monotone Convergence Theorem∫
X c(B0(R+r))

d|µ|(y)|σΛ(x, y)| ≤ ea(x)+2b(x)
∑
m≥0

∫
X c(B0(R+r))

d|µ|(y)ea(y)+2b(y)

·
∫
Xm

m∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

m∏
i=0

|q(xi, xi+1)|.

Now using Theorem 3.1 and monotone convergence theorem, we can write∫
X c(B0(R+r))

d|µ|(y)|σΛ(x, y)| ≤ ea(x)+2b(x)

∞∑
m=0

Dm(x,R, r) (3.49)
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where

Dm(x,R, r) =

∫
X c(B0(R+r))

d|µ|(y)ea(y)+2b(y)

∫
Xm

m∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

·
m∏
i=0

|q(xi, xi+1)|, m ≥ 1 (3.50)

and

D0(x,R, r) =

∫
X c(B0(R+r))

d|µ|(y)ea(y)+2b(y)|q(x, y)|. (3.51)

Let us prove by induction that for any x ∈ X (B0(R)) and r > 0,

Dm(x,R, r) ≤ a(x)(m+ 1)pm+1
(

1 +
r

2(m+ 1)

)−l
. (3.52)

Indeed, according to Assumption 4, (3.52) holds true for m = 0. Suppose that (3.52) holds

true for all m ≤ n− 1. Then using Proposition 6.4 we have

Dn(x,R, r) =

∫
X c(B0(R+r))

d|µ|(y)ea(y)+2b(y)

∫
Xm

n∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

n∏
i=0

|q(xi, xi+1)|

=

∫
X (B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)|q(x, x1)|
∫
X c(B0(R+r))

d|µ|(y)

· ea(y)+2b(y)

∫
Xm−1

n∏
i=2

d|µ|(xi)ea(xi)+2b(xi)

n∏
i=1

|q(xi, xi+1)|

+

∫
X c(B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)|q(x, x1)|
∫
X c(B0(R+r))

d|µ|(y)

· ea(y)+2b(y)

∫
Xm−1

n∏
i=2

d|µ|(xi)ea(xi)+2b(xi)

n∏
i=1

|q(xi, xi+1)|

≤
∫
X (B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)|q(x, x1)|

·Dn−1

(
x1, R +

r

n+ 1
,
nr

n+ 1

)
+

∫
X c(B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)

· |q(x, x1)|An−1(x1) ≤
∫
X (B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)|q(x, x1)|a(x1)npn

·
(

1 +
r

2(n+ 1)

)−l
+

∫
X c(B0(R+ r

n+1
))

d|µ|(x1)ea(x1)+2b(x1)|q(x, x1)|a(x1)pn

≤ a(x)(n+ 1)pn+1
(

1 +
r

2(n+ 1)

)−l
. (3.53)

Thus ∫
X c(B0(R+r))

d|µ|(y)|σΛ(x, y)| ≤ ea(x)+2b(x)a(x)
∞∑
m=1

mpm
(

1 +
r

2m

)−l
≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l (3.54)
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where C(l, p) = 2l
∑∞

m=1m
l+1pm <∞. Theorem 3.7 is proved.

The following result shows how to get a simpler bound for σΛ(x, y) by an additional

integration in x.

Theorem 3.8 (Decay of double integral) . Let h : X × X → C be a measurable func-

tion. Assume that there exists a measurable function α(x0), x0 ∈ X 0 such that for all positive

R, r > 0 and for almost all x ∈ X (B0(R)),∫
X c(B0(R+r))

d|µ|(y)|h(x, y)| ≤ α(x0)(1 + r)−l (3.55)

and ∫
X

d|µ|(y)|h(x, y)| ≤ α(x0). (3.56)

If the function α(x0) satisfies the condition∫
M(R)

d|µ|(x0)α(x0) ≤ C(1 +R)−l (3.57)

with C = C(α) > 0 and M(R) given by Lemma 3.4, then∫
X 0

dP 0
+,z(x

0)

∫
X c(B0(R))

d|µ|(y)|h(x, y)| ≤ C(α, l)(1 +R)−l. (3.58)

Proof of Theorem 3.8. Denoting the left side of (3.58) by I(R) we can write

I(R) =

∫
X 0(B0(R

3
))

dP 0
+,z(x

0)

∫
X c(B0(R))

d|µ|(y)|h(x, y)|+
∫(
X 0(B0(R

3
))
)c dP 0

+,z(x
0)

·
∫
X c(B0(R))

d|µ|(y)|h(x, y)| = I1(R) + I2(R). (3.59)

By (3.59)

I1(R) ≤
∫
X 0(B0(R

3
))

dP 0
+,z(x

0)

∫
X c(B0(R))

d|µ|(y)|h(x, y)|

≤ C
(
1 +R

)−l ∫
X 0

dP 0
+,z(x

0)α(x0). (3.60)

Notice that (3.57) implies ∫
X 0

dP 0
+,z(x

0)α(x0) <∞. (3.61)

Hence we find that

I2(R) ≤
∫(
X 0(B0(R

3
))
)c dP 0

+,z(x
0)

∫
X

d|µ|(y)|h(x, y)| ≤ C(α, l)(1 +R)−l (3.62)

Theorem 3.8 is proved.

We need a modification of Assumption 4 which can be applied to the case of hard core

interactions.
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Assumption 5 . There exists a nonnegative function a on X and a number p, 0 < p < 1,

such that for a given l > 0 and all r > 2c, where c is the radius of a hard core,∫
X c(B0(R+r))

dρ+,z(y) |q(x, y)|ea(y)+2b(y)â(y) ≤ p a(x)
(

1 +
r

2

)−l
. (3.63)

for almost all x ∈ X (B0(R)).

Assumption 5’ is defined like Assumptions 5 with the u(x, y) instead of q(x, y) and eb(·)

instead of e2b(·).

Theorem 3.9 (Main bound. Hard core) . If Assumptions 1, 3 and 5 hold true, then

for all positive R, r > 2c and for almost all x ∈ X (B0(R)),∫
X c(B0(R+r))

d|µ|(y)|σΛ(x, y)| ≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l. (3.64)

In case where Assumptions 1, 3’ and 5’ hold true the same result is valid with b(x) instead

of 2b(x).

Proof of Theorem 3.9. In case of hard core interaction, for fixed r > 0 the estimate (3.52)

is valid only for m < r
2c

where c is the radius of the hard core. We modify the proof of

Theorem 3.7 in the following way.

Let r > 4c and let Nr =
[(

r
2c

) 1
2

]
where [·] stands for the integer part. Then∫

X c(B0(R+r))

d|µ|(y)|σ(x, y)| ≤ ea(x)+2b(x)
∑
m≥0

∫
X c(B0(R+r))

d|µ|(y)ea(y)+2b(y)

·
∫
Xm

m∏
i=1

d|µ|(xi)ea(xi)+2b(xi)

m∏
i=0

|q(xi, xi+1)|

≤ ea(x)+2b(x)

Nr−1∑
m=0

Dm(x,R, r) + ea(x)+2b(x)

∞∑
m=Nr

· Am(x) = I1(x,R, r) + I2(x,R, r). (3.65)

Consider I1(x,R, r).

I1(x,R, r) ≤ ea(x)+2b(x)a(x)
Nr∑
m=0

(m+ 1)pm+1
(

1 +
r

2(m+ 1)

)−l
≤ ea(x)+2b(x)

· a(x)
∞∑
m=1

mpm
(

1 +
r

2m

)−l
≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l (3.66)

with C(l, p) = 2l
∑∞

m=1m
l+1pm <∞.

Passing to I2(x,R, r) we note that Dm(x,R, r) ≤ Am(x), m = 0, 1, · · · , then

I2(x,R, r) ≤ ea(x)+2b(x)a(x)
∞∑

m=Nr+1

pm+1 ≤ ea(x)+2b(x)a(x)
p(

r
2c)

1
2

1− p

≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l. (3.67)
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Thus ∫
X c(B0(R+r))

d|µ|(y)|Ẑ(x, y)| ≤ C(l, p)ea(x)+2b(x)a(x)(1 + r)−l. (3.68)

Theorem 3.9 is proved.

3.5 Decay of correlations in loop gases II

We apply the general results of the previous section to the loop gases with different potentials.

According to the Theorems 3.7 and 3.9, to prove the theorems of this section, we need only

to check the Assumptions 1 - 5. We consider the cases:

a. The case of repulsive integrable potential

b. The case of stable integrable potential

c. Stable potentials with hard core.

In all the cases (a) - (c) we choose the abstract space X to be the space X (Λ) of

composite Brownian loops in Λ, the measure dµ(X) = dρε,z(X)e−U1(X) with d|µ|(X) =

dρ+,z(X)e−U1(X).

We assume that the particles interact via two-body potential φ. We consider the following

conditions on φ:

(1) φ is an even function on Rd \ {0},
(2) φ is stable with stability constant B ≥ 0: for any different u1, · · · , un ∈ Rd,

n∑
i<j

φ(ui − uj) ≥ −nB. (3.69)

(3) φ has spherically symmetric hard core of radius c, i.e., φ(u) = +∞ for |u| ≤ c; φ is

continuous outside of hard core,

We consider the following decay properties of φ at infinity. Let

φl(u) = φ(u)(1 + |u|)l, l ≥ 0, φ0 ≡ φ. (3.70)

(4) φ has the following decay at infinity:

||φl||1 =

∫
Rd

du|φl(u)| <∞, l ≥ 0 (3.71)

(4’)

pc,l(φ) =

∫
|u|>c

du|φl(u)| < +∞, l ≥ 0, (3.72)
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3.5.1 Repulsive integrable potentials

We start with the case of repulsive integrable potentials.

Theorem 3.10 (Repulsive integrable potentials) . Let the pair interaction φ ≥ 0 sat-

isfy conditions (1) and (4). Let z < e−3 be from the interval

zC(d, l)||φl||1ζ
(d

2
+ 1
)
β1− d

2

(
1 + β

l
4
−1
)
≤ p < 1. (3.73)

Then for all positive R, r and for almost all x ∈ X (B0(R)),∫
X c(B0(R+r))

dρ+,z(Y )|σΛ(X, Y )| ≤ C(l, p)e|X||X|(1 + r)−l, (3.74)

for any bounded domain Λ ⊂ Rd.

Proof of Theorem 3.10. We use Theorem 3.7 and we need to check Assumptions 1, 3,

and 4 with X = X (Λ), dµ(X) = ρ+,z(X)e−U1(X), q(X,Y ) = e−U2(X,Y ).

Since φ ≥ 0, Assumption 1 is fulfilled obviously with b ≡ 0 .

Next we check Assumptions 3 with a(X) = |X|. Since 1 − eu ≤ u for positive u, using

the fact that e−
x
2x2 ≤ 4 we find that∫

X (Λ)

dρ+,z(Y )e−U1(Y )e|Y ||Y ||q(X, Y )| ≤
∫
X 0

dP 0
+,z(Y

0)e|Y
0||Y 0|

∫
Rd

dvU2(X,

· Y 0 + v) = |X|β||φ||1
∫
X 0

dP 0
+,z(Y

0)e|Y
0|

· |Y 0|2 ≤ 4|X|β||φ||1
∫
X 0

dP 0
+,z(Y

0)e
3
2
|Y 0|

Here and below, to check the validity of the assumptions, we lift the restriction that Y ∈
X (Λ) because we want a condition that does not depend on Λ. Hence Assumptions 3 is valid

for all z satisfying

4ze
3
2 ||φ||1(2π)−

d
2β1− d

2 ζ

(
d

2
+ 1

)
≤ p < 1. (3.75)

To complete this case it remains to check Assumption 4 for a repulsive potential φ.

Let X ∈ X (B0(R)), then we need to show that∫
X c(B0(R+r))

dρ+,z(Y )e−U1(Y )e|Y ||Y ||q(X, Y )| ≤ p |X|
(

1 +
r

2

)−l
. (3.76)

Denoting the left hand side of (3.76) by D0(x,R, r), we split it into two parts

D0(x,R, r) = D′0 +D′′0 (3.77)

where

D′0 =

∫
X c(B0(R+r))X (Bc0(R+ r

2
)

dρ+,z(Y )e−U1(Y ) |q(X, Y )|e|Y ||Y |
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and

D′′0 =

∫
X c(B0(R+r))X c(Bc0(R+ r

2
)

dρ+,z(Y )e−U1(Y ) |q(X, Y )|e|Y ||Y |.

By Fubini’s theorem∫
Rd

dvU2(X, Y 0 + v) =
∑
x∈X

∑
y0∈Y 0

∫
Rd

dv

∫ β

0

dtφ(x(t)− y0(t)− v)

= |X||Y 0|β||φ||1. (3.78)

Therefore

D′0 ≤
∫
X c(B0(R+r))X (Bc0(R+ r

2
)

dρ+,z(Y )e−U1(Y ) U2(X, Y )e|Y ||Y | =
∫
X 0

dP 0
+,z(Y

0)

· e|Y 0||Y 0|
∫
Rd

dv1X c(B0(R+r))X (Bc0(R+ r
2

)(Y
0 + v)U2(X, Y 0 + v)

≤ |X|β
∫
|v|> r

2

dvφ(v)

∫
X 0

dP 0
+,z(Y

0)e|Y
0||Y 0|2

≤ 4|X|β||φl||1(2πβ)−
d
2

∞∑
j=1

(ze
3
2 )j

j
d
2

+1

(
1 +

r

2

)−l
. (3.79)

Here we used the fact that∫
|v|> r

2

|φ(v)| ≤
(

1 +
r

2

)−l ∫
Rd
dv|φ(v)|(1 + |v|)l,

We treat now D′′0 .

D′′0 =

∫
X c(B0(R+r))X c(Bc0(R+ r

2
)

dρ+,z(Y )e−U1(Y ) U2(X, Y )e|Y ||Y | ≤
∫
X 0

dP 0
+,z(Y

0)

· 1diamY 0> r
2
(Y 0)e|Y

0||Y 0|
∫
Rd

dvU2(X, Y 0 + v) ≤ |X|β||φ||1
∫
X 0

dP 0
+,z(Y

0)

· 1diamY 0> r
2
(Y 0)e|Y

0||Y 0|2 ≤ 4|X|β||φ||1
∫
X 0

dP 0
+,z(Y

0)1diamY 0> r
2
(Y 0)e

3
2
|Y 0|. (3.80)

By Schwarz inequality∫
X 0

dP 0
+,z(Y

0)e
3
2
|Y 0|1diamY 0≥ r

2
(Y 0) ≤

(∫
X 0

dP 0
+,z(Y

0)e3|Y 0|
) 1

2

·
(∫
X 0

dP 0
+,z(Y

0)1diamY 0≥ r
2
(Y 0)

) 1
2
.

We observe that ∫
X 0

dP 0
+,z(Y

0)e3|Y 0| = (2πβ)−
d
2

∞∑
j=1

(ze3)j

j
d
2

+1
,

and by Corollary 3.5,∫
X 0

dP 0
+,z(Y

0)1diamY 0≥ r
2
(Y 0) ≤ C(d, l)ζ

(d
2

+ 1
)
β
l−d
2

(
1 +

r

2

)−l
. (3.81)
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Hence

D′′0 ≤
√
z|X|C(d, l)||φ||1ζ

(d
2

+ 1
)
β
l
4
−1
(

1 +
r

2

)−l
. (3.82)

Combining (3.77), (3.79), (3.82) we get

D0 ≤ z|X|C(d, l)||φl||1ζ
(d

2
+ 1
)
β1− d

2

(
1 + β

l
4
−1
)(

1 +
r

2

)−l
. (3.83)

Thus Assumption 4 is fulfilled for all z ≤ e−3 which in addition satisfy

zC(d, l)||φl||1ζ
(d

2
+ 1
)
β1− d

2

(
1 + β

l
4
−1
)
≤ p < 1. (3.84)

This completes the proof of Theorem 3.10.

3.5.2 Stable integrable potentials

Next we consider the case of stable integrable potentials

Theorem 3.11 (Stable integrable potentials) . Let the pair interaction φ satisfy con-

ditions (1), (2) and (4) and let z < e−3(1+βB) be from the interval

zC(d, l)||φl||1ζ
(d

2
+ 1
)
e

3βB
2 β1− d

2

(
1 + β

l
4
−1
)
≤ p < 1. (3.85)

then for all positive R, r and for almost all x ∈ X (B0(R)),∫
X c(B0(R+r))

dρ+,z(Y )|σΛ(X, Y )| ≤ C(l, p)e|X||X|(1 + r)−l, (3.86)

for any bounded domain Λ ⊂ Rd.

Proof of Theorem 3.11. We use again Theorem 3.7 and we want to check Assumptions

1, 3’ and 4’ with X = X (Λ), dµ(X) = ρ+,z(X)e−U1(X), u(X1, X2) = U2(X1, X2). We suppose

that the pair potential φ is stable with stability constant B, i.e. there exists a constant

B ≥ 0 such that for any n and any u1, · · · , un ∈ Rd,
∑

1≤i<j≤n φ(ui − uj) ≥ −Bn. For given

composite loops X1, · · · , Xn stability implies∑
1≤i<j≤n

U2(Xi, Xj) +
n∑
i=1

U1(Xi) = U(X1, · · · , Xn) ≥ −βB
n∑
i=1

|Xi|.

Then Assumption 1 holds with

b(X) = βB|X|+ U1(X). (3.87)

Notice that b(X) ≥ 0, by the stability of φ. We use Assumption 3’ with a(X) = |X|.
Explicitly the assumption is that for any X ∈ X (Λ),∫

X (Λ)

dρ+,z(Y )|U2(X, Y )|e|Y |(1+βB)|Y | ≤ p|X|, 0 < p < 1. (3.88)
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We have ∫
X (Λ)

dρ+,z(Y )|U2(X, Y )|e|Y |(1+βB)|Y | ≤
∫
X 0

dP 0
+,z(Y )e|Y

0|(1+βB)|Y 0|∫
Rd
dv|U2(X, Y 0 + v)|.

Then ∫
Rd
dv|U2(X, Y 0 + v)| ≤ |X||Y 0|β||φ||1.

Repeating the arguments which were used in the proof of Theorem 3.9, we can write∫
X

dρ+,z(Y )|U2(X, Y )|e|Y |(1+βB)|Y | ≤ 4|X|β||φ||1(2πβ)−
d
2

∞∑
j=1

(ze
3
2

(1+βB))j

j
d
2

+1

≤ 4|X|||φ||1(2π)−
d
2β1− d

2 ze
3
2

(1+βB)ζ
(d

2
+ 1
)

provided ze1+βB ≤ 1. Hence Assumption 3’ is fulfilled if ze1+βB ≤ 1 and

4z||φ||1(2π)−
d
2β1− d

2 e
3
2

(1+βB)ζ
(d

2
+ 1
)
≤ p < 1 (3.89)

Let us check Assumption 4’:∫
X c(B0(R+r))

dρ+,z(Y )e|Y |(1+βB)|Y ||U2(X, Y )| ≤ p |X|
(

1 +
r

2

)−l
. (3.90)

We denote the right hand side of (3.90) by D̃0(X,R, r) and treat it similarly to D0(X,R, r)

from the previous subsection. We split D̃0(X,R, r) in two parts D̃′0 and D̃′′0 , where

D̃′0 =

∫
X c(B0(R+r))X (Bc0(R+ r

2
))

dρ+,z(Y )e|Y |(1+βB)|U2(X, Y )||Y |

and

D̃′′0 =

∫
X c(B0(R+r))X c(Bc0(R+ r

2
))

dρ+,z(Y )e|Y |(1+βB)|U2(X, Y )||Y |.

Then for ze3(1+βB),

D̃′0 ≤ 4|X| (2π)−
d
2 ||φl||1β1− d

2

∞∑
j=1

(ze
3
2

(1+βB))j

j
d
2

+1

(
1 +

r

2

)−l
. (3.91)

and

D̃′′0 ≤
√
zC(d, l)|X|||φ||1ζ

(d
2

+ 1
)
e

3
2

(1+βB)β1− d
2

(
1 + β

l
4
−1
)
≤ p < 1. (3.92)

Thus

D̃0(X,R, r) ≤
√
z|X|||φl||1C(d, l)e3(1+βB)β1− d

2

(
1 + β

l
4
−1
)
ζ
(d

2
+ 1
)(

1 +
r

2

)−l
(3.93)

Hence Assumption 4’ is valid if ze3(1+βB) and in addition

√
z||φl||1C(d, l)e3(1+βB)β1− d

2

(
1 + β

l
4
−1
)
ζ
(d

2
+ 1
)
≤ p < 1. (3.94)

Theorem 3.11 is proved.
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3.5.3 Boltzmann gas. Hard core potentials

Stable potentials with hard core. Consider a low density quantum gas with hard core potential

and MB statistics. We assume that potentials φ satisfies conditions (1), (2), (3) and (4’).

The presence of a hard core makes the situation more complicated and involves estimates of

integrals of Wiener sausages.

The Wiener sausage S(x) generated by x ∈ X we define by

S(x) = {u ∈ Rd
∣∣ |x(t)− u| ≤ c for some t ∈ [0, β]}.

and denote by |S(x)| the volume of S(x).

Let

Ej(k) =

∫
X 00

dP 00
β (y0) ek|S(y0)| |S(y0)|j j, k = 0, 1, 2, · · · . (3.95)

It follows from Lemma 5.11 below that Ej(k) <∞. We set also

E = max(Ej(1),
√
Ej(2), j = 0, 1, 2), (3.96)

as well as

ξ = e2βB+1E, η = e2βBβpc,l(φ) (3.97)

where pc,l(φ) is defined by (4’), formula (3,72).

Theorem 3.12 (Hard core stable potentials) . Let the potential φ satisfy the condi-

tions (1), (2), (3) and (4’) and the activity z satisfy the relation

zC(d, l)Ee2βB+1(b−1
c + e2βBβpc,l(φ))

(
1 + β

l−d
4

)
≤ p < 1 (3.98)

where bc is the volume of a ball of radius c in Rd. Then for all R > 0, r > 2c and all

x ∈ X (B0(R)), the two-point truncated correlation functions satisfy the bound

z

∫
X c(B0(R+a))

dρ(y)|σΛ(x, y)| ≤ C(l, p)e1+2βBe|S(x)|(|S(x)|+ 1)(1 + r)−l.

The proof of Theorem 3.12 is based on Theorem 3.9. To apply this theorem we choose

X = Xβ, µ(dx) = zρ(dx), a(x) = |S(x)|+ 1 and b(x) = βB where B is the stability constant.

Assumption 1 is satisfied evidently.

To check Assumption 3 we need the following lemma. Let

hβ,k(u) =

∫
X 0u
β

dP 0u
β ek|S(x)|, k ≥ 0. (3.99)

Lemma 3.13 . For any k ≥ 0 and β > 0,

sup
u∈Rd

hβ,k(u) <∞ and ||hβ,k||1 =

∫
Rd

duhβ,k(u) <∞. (3.100)
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Proof of Lemma 3.13. Let Mp = M(b, β
2p

), p = 1, 2, · · · ; b > 0, where M(ε, δ) is defined

by (3.33). It is clear that if x ∈ M c
p then, by the continuity of the Brownian trajectories, x

is contained in the union of p balls of radius b centered at the points x((2n− 1)β/2p):

{x(t), t ∈ [0, β]} ⊂
p⋃

n=1

Bx((2n−1)β/2p)(b).

Therefore

S(x) ⊂
p⋃

n=1

Bx((2n−1)β/2p)(b+ c). (3.101)

Hence for x ∈M c
p , |S(x)| ≤ pw, where w is the volume of the ball in Rd of radius b+c. Note

that M c
p ⊂ M c

p+1, p = 1, 2, · · · and M c
p ↑ X 0u

β as p → ∞, hence X 0u
β =

∑∞
p=0(M c

p+1 \M c
p)

with M0 ≡ X 0u
β . (By

∑
Ak we denote the union of disjoint sets Ak.)

From (3.101) we find for all u ∈ Rd,∫
X 0u

dP 0u
β (x)ek|S(x)| ≤

∞∑
p=0

e(p+1)kw

∫
Mc
p+1\Mc

p

dP 0u
β (x) =

∞∑
p=0

e(p+1)kw

·[P 0u
β (Mp)− P 0u

β (Mp+1)] =
∞∑
p=0

e(p+1)kwP 0u
β (Mp)

−
∞∑
p=0

e(p+1)kwP 0u
β (Mp+1) = ekwP 0u

β (X ou
β )

+(ekw − 1)
∞∑
p=1

epkwP 0u
β (Mp). (3.102)

Similarly ∫
Rd

duhβ,k(u) ≤ ekw + (ekw − 1)
∞∑
p=1

epkwP 0
β (Mp) (3.103)

where P̂ 0
β (Mp) =

∫
Rd duP 0u

β (Mp). Hence

hβ,k(u) ≤ ekw

(2πβ)
d
2

+
C(d)

(πβ)
d
2

(
b

4
√

2β

)d−1 ∞∑
p=1

p
d+1

2 exp

(
pkw − pb2

64β

)
. (3.104)

The series in (3.104) converges for β < b2/64kw, hence for such β,

sup
u∈Rd

hβ,k(u) < +∞. (3.105)

According to Lemma 4 from Appendix A in [44] P̂ 0
β (Mp) satisfies a bound similar to (3.34),

therefore for the same β < b2/64kw, the series in (3.104) converges and

||hβ,k||1 <∞. (3.106)
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We claim now that (3.105) and (3.106) hold true for any real positive β and k. To prove

this we note that to any two trajectories x1 ∈ Xβ1 , x2 ∈ Xβ2 such that x1(β1) = x2(0) we can

associate a new trajectory x1 ? x2 ∈ Xβ1+β2 defined by

x1 ? x2(t) =

x1(t), 0 ≤ t ≤ β1

x2(t− β1), β1 ≤ t ≤ β1 + β2.
(3.107)

It is easy to see that

|S(x1 ? x2)| = |S(x1)|+ |S(x2)| − wc < |S(x1)|+ |S(x2)| (3.108)

where w0 is the volume of the hard core. Vice versa, any x ∈ X 0,u
β1+β2

can be written as

x = x1 ? x2, x1 ∈ X 0,v
β1
, x1 ∈ X v,u

β2
where v = x(β1) and x1(t) = x(t), 0 ≤ t ≤ β1; x2(t) =

x(t+ β1), 0 ≤ t ≤ β2. Therefore

hβ1+β2,k(u) =

∫
Rd

dv

∫
X 0,v
β1

dP 0,v
β1

(x1)

∫
X v,uβ2

dP v,u
β2

(x2)ek|S(x1?x2)|

≤
∫
Rd

dv

∫
X 0,v
β1

dP 0,v
β1

(x1)

∫
X 0,u−v
β2

dP 0,u−v
β2

(x2)e|S(x1)|+|S(x2)|

=

∫
Rd

dvhβ1,k(v)hβ2,k(u− v) = hβ1,k ∗ hβ2,k(u) (3.109)

where ∗ means convolution in Rd. This implies hβ,k(u) ≤ h∗nβ
n
,k

(u) for all n = 1, 2, · · · , u ∈ Rd

and

hβ1+β2,k(u) ≤ sup
u
hβ1,k(u)||hβ2,k||1 (3.110)

provided max(β1, β2) < b2/64kw. Hence ||hβ,k||1 ≤ ||h β
n
,k||n1 and

sup
u
hβ,k(u) ≤ sup

u
h β
n
,k(u)||h β

n
,k||

n−1
1 .

Therefore taking n sufficiently large so that β
n
< b2/64kw we establish the claim.

Lemma 3.13 is proved.

Now using Lemma 3.13 we can find that interval for z where the Assumption 3 is valid.

For m = 0, 1, · · · and j = 0, 1, 2, · · · we set

A(j)
m (x, z) =

∫
X

d|µ|(y)e|S(y)|+2βB+1

∫
Xm

m∏
i=1

d|µ|(xi)e|S(xi)|+2βB+1

m∏
i=0

|q(xi, xi+1)|

·|S(y)|j, A(0)
m (x, z) ≡ Am(x, z) (3.111)

where x0 = x, xm+1 = y and

A0(x, z) =

∫
X

d|µ|(y)e|S(y)|+2βB+1|q(x, y)| (3.112)
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Consider A
(j)
1 (x, z) for j = 0, 1, 2. By definition

A
(j)
1 (x, z) = z

∫
X 00
β

dP 00
β (y0)e|S(y0)|+2βB+1|S(y0)|j

∫
Rd

du|q(x, y0 + u)|. (3.113)

Using the bound |S(x − y)| ≤ |S(x)||S(y)|b−1
c (see Lemma in Appendix 2 of [44]), and the

well know inequality [46]

|q(x, y)| ≤
∫ β

0

dt|φ(x(t)− y(t))| · exp

∫ β

0

dtφ−(x(t)− y(t)), (3.114)

where φ−(u) = max(−φ(u), 0), we find∫
Rd

du|q(x, y0 + u)| =
∫
S(x−y0)

du|q(x, y0 + u)|+
∫
Rd\S(x−y0)

du|q(x, y0 + u)|

≤|S(x− y0)|+ βe2βBpc(φ)

≤|S(x)||S(y0)|b−1
c + βe2βBpc(φ). (3.115)

Substituting this into (3.113) and using notations (3.97) we get

A
(j)
1 (x, z) = z

∫
X

dρ(y)e|S(y)|+2βB+1|S(y)|j|q(x, y)| ≤ zξ(|S(x)|b−1
c + η)

≤ zξ(b−1
c + η)(|S(x)|+ 1). (3.116)

Hence Assumption 3 holds true for all z from the interval (3.98).

Next we consider Assumption 5 Let

D
(j)
1 (x, z;R, r) =

∫
X c(B0(R+r))

zdρ(y)e|S(y)|+2βB+1|S(y)|j|q(x, y)|, (3.117)

j = 0, 1, · · · , with D
(0)
1 (x, z;R, r) ≡ D1(x, z;R, r).

Then

D
(j)
1 (x, z;R, r) =

∫
X c(B0(R+r))X (Bc0(R+ r

2
))

zdρ(y)e|S(y)|+2βB+1|S(y)|j|q(x, y)|

+

∫
X c(B0(R+r))X c(Bc0(R+ r

2
))

zdρ(y)e|S(y)|+2βB+1|S(y)|j|q(x, y)|

≡D′1 +D′′1 . (3.118)

Consider first D′1.

D′1 =ze2βB+1

∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j

∫
Rd

du1X c(B0(R+r))X (Bc0(R+ r
2

))

·(y0 + u)|q(x, y0 + u)|.

Let r > 2c, then hard core plays no role in the last integral, therefore

D′1 ≤ze2βB+1e2βBβ

∫
|u|> r

2

du|φ(u)|
∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j

≤ze2βB+1e2βBβEj(1)pc,l(φ)
(

1 +
r

2

)−l
. (3.119)

47



Passing to D′′1 and using (3.115) we have

D′′1 ≤ze2βB+1

∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j1M( r

2
,β)(y

0)

∫
Rd

du|q(x, y0 + u)|

≤ze2βB+1|S(x)|b−1
c

∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j+11M( r

2
,β)(y

0)

+ ze2βB+1e2βBβpc(φ)

∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j1M( r

2
,β)(y

0). (3.120)

By Schwarz inequality and Corollary 3.6 we have for j = 0, 1, 2,∫
X 00
β

dP 00
β (y0)e|S(y0)||S(y0)|j1M( r

2
,β)(y

0) ≤ E
(
P 00
β (M(

r

2
, β))

) 1
2

≤ EC(d, l)β
l−d
4

(
1 +

r

2

)−l
. (3.121)

Combining this with (3.118) - (3.120) we get for , j = 0, 1,

D
(j)
1 (x, z;R, r) ≤ zξ

[
η + C(d, l)β

l−d
4 (|S(X)|b−1

c + η)
] (

1 +
r

2

)−l
(3.122)

≤ zξ(b−1
c + η)

(
1 + C(d, l)β

l−d
4

)
(|S(x)|+ 1)

(
1 +

r

2

)−l
where C = C(β, z, d) > 0. This implies that for all z satisfying (3.98) Assumption 5 holds

true.

Then we can apply general Theorem 3.9 to complete the proof of Theorem 3.12.

Combining Theorems 3.12 and 3.8 one can get, with the help of Lemma 3.13, the following

result

Corollary 3.14 . Under the conditions of Theorem 3.12 the following bound

z

∫
X 00
β

dP 00
β (x0)

∫
X c(Bu(R))

dρ(y)|σΛ(x0 + u, y)| ≤ C(Φ, β, z, d, c)(1 +R)−l

holds true for all u ∈ Rd.

3.5.4 Boltzmann gas. Integrable potentials

At the end of this chapter we present a result on the decay of correlations in the Boltzmann

loop gas with integrable potential which is the main object that we consider in Chapter 5.

Let X = Xβ be the space of simple (elementary) loops in Rd of the length β. We recall

that the intensity measure for the Boltzman gas is zρ = ρε,z,Xβ , the restriction of the measure

ρε,z on the space Xβ of simple (elementary) loops of the length β, where ρε,z,Xβ is given by

(3.36). The space of configurations for the Boltzmann gas is

M = {ω ⊂ X
∣∣ |ω| <∞}, (3.123)
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the space of finite collections of simple loops.

On the spaceM we consider the reference measure given by (3.37) which for the case of

the Boltzmann loop gas becomes:

Wzρ(h) =
∞∑
n=0

zn

n!

∫
Xn

dρ(x1) · · · dρ(xn)h(x1, · · · , xn). (3.124)

Also the energy U(ω) of a configuration ω ∈M takes a simpler form

U(ω) =
1

2

∑
x,y∈ω

φ̂(x− y) (3.125)

with φ̂(x− y) from (3.16).

The Gibbs measure on M(Λ) for a bounded region Λ is given by

Q(Λ, z) =
exp(−U)

Z(Λ, z)
Wz,ρΛ

(3.126)

where the grand partition function

Z(Λ, z) =
∞∑
n=0

zn

n!

∫
XnΛ

dρ(X1) · · · dρ(Xn) exp(−U(X1, ..., Xn). (3.127)

We call (M(Λ), Q(Λ, z)) Boltzmann gas in Λ with potential φ and activity z.

Theorem 3.15 (MB statistics) . Let the potential φ satisfy the conditions (1), (2) and

(4) and the fugacity z satisfy the relation

zC(d, l)||φl||1e1+βBβ1− d
2 (1 + β

l
2 ) ≤ p < 1. (3.128)

Then for all R > 0, r > 0 and all x ∈ X (B0(R)), the two-point truncated correlation

functions satisfy the bound

z

∫
X c(B0(R+r))

dρ(y)|σΛ(x, y)| ≤ C(l, p)e1+βB(1 + r)−l.

Proof of Theorem 3.15. The proof is carried out with the help of Theorem 3.7 with

X = Xβ, dµ(x) = zdρ(x), b(x) = βB, a(x) = 1 and u(x, y) = φ̂(x, y) where φ̂ is given by

(3.16). Assumption 1 holds trivially. Assumption 3’ becomes

ze1+βB

∫
Xβ

dρ(y)φ̂(x, y) ≤ p < 1

which is valid for z satisfying

ze1+βBβ(2πβ)−
d
2 ||φ||1 ≤ p.

49



To check Assumption 4’ we note that similarly to (3.118)

ze1+βB

∫
X c(B0(R+r))

|φ̂(x, y)| = ze1+βB

∫
X c(B0(R+r))X (Bc0(R+ r

2
))

dρ(y)|φ̂(x, y)|

+ze1+βB

∫
X c(B0(R+r))X c(Bc0(R+ r

2
))

dρ(y)|φ̂(x, y)| ≡ D′ +D′′.

By repeating the arguments of the proof of Theorem 3.12, see (3.119) and (3.120), with the

help of Corollary 3.6, we have

D′ ≤ ze1+βBβ(2πβ)−
d
2 ||φl||1

(
1 +

r

2

)−l
as well as

D′′ ≤ zC(d, l)||φ||1e1+βBβ
2+l−d

2

(
1 +

r

2

)−l
.

Hence Assumption 4’ is fulfilled for all z satisfying

zC(d, l)||φl||1e1+βBβ1− d
2 (1 + β

l
2 ) ≤ p < 1.

This completes the proof of Theorem 3.15.

Combining Theorem 3.15 with Theorem 3.8 we get

Corollary 3.16 . If the potential φ satisfies the conditions (1), (2) and (4) and z satisfies

the relation

zC(d, l)||φl||1e1+βBβ1− d
2 (1 + β

l
2 ) ≤ p < 1, (3.129)

then for all R > 0 the two-point truncated correlation functions satisfy the bound

z

∫
X 0

dP 00
β (x0)

∫
X c(B0(R))

dρ(y)|σΛ(x0, y)| ≤ C(1 +R)−l

with C = C(Φ, β, z, d).

This corollary will be the main technical tool for obtaining the asymptotic expansion of

the log-partition function of a MB gas in Chapter 5.
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4 Decay of correlations and limit theorems. Classical

gases

In this Chapter we consider continuous and discrete classical systems. We start with a bound

for two point semiinvariant which follows easily from Theorem 3.1. Next we demonstrate the

method which is used in Section 5 to prove the asymptotic expansions for the log-partition

functions of the loop models. The existing methods of proving asymptotic expansions for

the log-partition functions are based on the estimates of all the semiinvariants of the system.

The new approach uses only bounds of the two-point semiinvariants.

To clarify the method and our strategy for the case of interacting Brownian loops, we

start with a brief discussion of the same problem for a much simpler case of classical gas in a

bounded domain Λ. To make the exposition more transparent we consider the planar case.

Passing to classical lattice spin systems with vacuum and general many - body interac-

tion, we present tree graph estimates ( also called strong cluster estimates) for all n-point

semiinvariants, n ≥ 2, [5, 7, 8] and asymptotic expansion of the log-partition function for

such models [6]. As an application of these results we prove central local limit theorem [9, 7],

estimate the rate of convergence [84] and find the probabilities of large deviations (in the

sense of H. Cramer [91, 90]) in the local limit theorem for the number of particles in a finite

volume. All these problems remain open for the systems of interacting Brownian loops .

4.1 Decay of correlations in classical gases

We consider a gas of point particles that interact with a pair potential. We work in the grand-

canonical ensemble where the parameters are the fugacity z and the inverse temperature β

(both are real and positive numbers). The set X is an open bounded subset of Rd and

µ(x) = zdx with dx the Lebesgue measure. We actually write Λ = X so as to have more

traditional notation. The interaction is given by a function φ : Rd → R ∪ {∞} which we

take to be piecewise continuous; u(x, y) = βφ(x− y). We suppose that φ is stable, i.e. that

there exists a constant B ≥ 0 such that for any n and any x1, . . . , xn ∈ Rd:∑
1≤i<j≤n

φ(xi − xj) ≥ −Bn. (4.1)

Our Assumption 1 holds with b(x) ≡ βB. The system is translation invariant so all x ∈ Rd

are equivalent. The function of Assumptions 2 and 2’ can then be taken to be a constant,

a(x) ≡ a. We seek a condition that does not depend on the size of the system. Then integrals

over y are on Rd instead of Λ. By translation invariance we can take x = 0.

Assumption 2 gives the condition

z e2βB

∫
Rd

∣∣ e−βφ(y) − 1
∣∣dy ≤ a e−a . (4.2)
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We obviously choose the constant a that maximizes the right side, which is a = 1. This

condition is the one in [105]. Let us now assume that φ consists of a hard core of radius r

and that it is otherwise integrable. Again with a = 1, Assumption 2’ gives the condition

z eβB
[
|B|rd + β

∫
|y|>r
|φ(y)|dy

]
≤ e−1 . (4.3)

Here, |B| = πd/2/Γ(d
2

+ 1) is the volume of the ball in d dimensions. Without hard core it is

the one in [17]. The domains of parameters where these conditions hold correspond to low

fugacities and high temperatures.

The thermodynamic pressure is defined as the infinite volume limit of

pΛ(β, z) =
1

|Λ|
logZ. (4.4)

Using Theorem 2.1, we have

pΛ(β, z) =
1

|Λ|

∫
Λ

dx1

[∑
n≥1

zn

n!

∫
Λ

dx2 . . .

∫
Λ

dxnϕ(x1, . . . , xn)

]
(4.5)

Consider now any sequence of increasing domains Λ1 ⊂ Λ2 ⊂ . . . such that Λn → Rd.

Thanks to the estimate (2.8), and using translation invariance, we get

p(β, z) ≡ lim
n→∞

pΛn(β, z) =
∑
n≥1

zn

n!

∫
Rd

dx2 . . .

∫
Rd

dxn ϕ(0, x2, . . . , xn). (4.6)

(The term with n = 1 is equal to z.) This expression for the infinite volume pressure p(β, z)

should be viewed as a convergent series of analytic functions of β, z. Then p(β, z) is analytic

in β and z by Vitali theorem and no phase transition takes place in the domain of parameters

where the cluster expansion is convergent.

The truncated two-point correlation function σ(x) is given by (2.12). We consider only

the case of Assumption 2 but a similar claim can be obtained with Assumption 2’. Let c(x)

be a function that satisfies the triangle inequality. The estimate of Theorem 3.1 yields

ec(x) σ(x) ≤ e2+4βB
∑
m≥0

zm em+2βBm
(

ec(·)
∣∣ e−βU(·) − 1

∣∣)∗m(x) (4.7)

(with f ∗0 ≡ f). Recall that ‖f ∗n‖∞ ≤ ‖f‖∞‖f‖n−1
1 , and let

Cp =
∥∥ec(·)∣∣ e−βU(·) − 1

∣∣∥∥
p
. (4.8)

Then we get

σ(x) ≤ e−c(x) e2+4βB C∞
C1

(
1− z e1+2βB C1

)−1
. (4.9)

If the inequality (4.2) is strict, one can usually find a function c(x) such that C1 ≤ (z e1+2βB )−1;

the truncated two-point correlation function then decays faster than e−c(x) .
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4.2 Asymptotic expansion of the log-partition function

The aim of this section is to demonstrate the method which is used in Section 5 to prove

the asymptotic expansions for the log-partition functions of the loop models. The existing

methods of proving asymptotic expansions for the log-partition functions are based on the

estimates of all the semiinvariants of the system. The new approach uses only bounds of the

two-point semiinvariants.

To clarify the method and our strategy for the case of interacting Brownian loops, we

start with a brief discussion of the same problem for a much simpler case of classical gas in a

bounded domain Λ. To make the exposition more transparent we consider the planar case.

Consider again a gas of point particles enclosed in a bounded domain Λ ⊂ R2. The

state space of the system is the space M(Λ) = {ω ⊂ Λ
∣∣ |ω| < ∞} of all finite subsets

(configurations) of Λ with a canonical σ-algebra (see the details in [92]).

We assume that particles interact via stable pair interaction φ, which is differentiable

and together with its derivatives is uniformly bounded and decreases at infinity sufficiently

fast. The exact conditions on the potential φ are given at the beginning of Section 5.2. The

Gibbs distribution on M(Λ) is given by formula (3.42).

We want to derive an asymptotic expansion of the log-partition function ln Z(ΛR, z) as

R → ∞. For simplicity we consider the case where Λ is an open convex bounded subset of

R2. We assume that the boundary ∂Λ is one dimensional closed C3-manifold.

We apply the abstract cluster expansion method of Chapter 2 by taking X = X (ΛR),

dµ(x) = d(x), u(x, y) = βφ(x, y), a(x) = 1, b(x) = βB and assuming that z is sufficiently

small. We start with the cluster representation of the log-partition function, Theorem 2.1:

ln Z(ΛR, z) =
∑
n≥0

zn

n!

∫
ΛnR

dx1 · · · dxnϕ(x1, · · · , xn) =

∫
M(ΛR)

dW (µ)ϕ(µ) (4.10)

where ϕ is the Ursell function given by formula (2.6) and ΛR = {Ru
∣∣ u ∈ Λ}. In the second

step, with the help of the well-known formula, see (5.15) below, we rewrite ln Z(ΛR, z) as:

ln Z(ΛR, z) =

∫
ΛR

dx

∫
M

dW (µ)gz(x, µ)1M(ΛR)(x, µ) (4.11)

where

gz(µ) = z|µ|
ϕ(µ)

|µ|
, if |µ| ≥ 1.

Now

ln Z(ΛR, z) =

∫
ΛR

dx

∫
M

dW (µ)gz(x, µ)−
∫

ΛR

dx

∫
M

dW (µ)gz(x, µ)

· 1Mc(ΛR)(µ) =

∫
ΛR

dx IA(x,R)−
∫

ΛR

dx IB(x,R) (4.12)
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where (by translation invariance)

IA(x,R) ≡
∫
M

dW (µ)gz(x, µ) =

∫
M

dW (µ)gz(0, µ) (4.13)

and

IB(x,R) ≡
∫
M

dW (µ)gz(x, µ)1Mc(ΛR)(µ). (4.14)

According to Theorem 2.2 the two-point truncated correlation function has the represen-

tation

σΛ(x, y) =

∫
M

dW (µ)gz(x, y, µ)

The following bound follows directly from (4.9) with c(x) = l · ln(1 + |x|), l > d.

The Main Bound : if the activity z is sufficiently small then for all bounded Λ ⊂ R2 and

x, y ∈ Λ,

|σΛ(x, y)| ≤
∫
M

dW (µ)
∣∣∣ gz(x, y, µ)

∣∣∣≤ C(1 + |x− y|)−l (4.15)

with C = C(φ, β, z, l) > 0.

We set

ΛR,δ = {x ∈ ΛR

∣∣ d(u, ∂ ΛR) < δRε}.

Then ∫
ΛR

IB(x,R)du =

∫
ΛR,δ

IB(x,R)dx+

∫
ΛR\ΛR,δ

IB(x,R)dx. (4.16)

An application of the Main Bound with l sufficiently large (we can take l > 16) gives∫
ΛR\ΛR,δ

IB(x,R)dx = o(1) (4.17)

Therefore we need to treat only the first term on the right side of (4.16) We set up at

each point r ∈ ∂ Λ local coordinates (ξ, η) where ξ is along the tangent vector s = s(r) and

η is along the inward drawn unit normal n = n(r) to ∂ Λ at r. Then ∂ Λ is given locally by

η = fr(ξ), |ξ| < δRε, for δ > 0 small enough where fr is a function of class C2. Choosing

δ = 1
2
[ sup
r∈∂ Λ

|κ(r)|]−1 and taking into account that the volume element in ΛR,δ is equal to

(1− tkR(r))dtσ(dr) (see, for example, [87]), we have that

∫
ΛR,δ

IB(x,R)dx =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))IB(r + tn, R) (4.18)

where kR(r) is the curvature of ∂ΛR at the point r ∈ ∂ΛR, k1(r) ≡ k(r). Evidently kR(r) =

R−1k(R−1r), r ∈ ∂ΛR.
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Furthermore, we associate to each r ∈ ∂ΛR a cylinder

Πr,δRε = {(ξ, η)
∣∣ |ξ| < δRε}. (4.19)

From now on we take ε = 1
8
. To get rid of configurations that have points outside of the

cylinder Πr,δRε , we decompose IB by decomposing Mc(ΛR) as follows:

Mc(ΛR) =Mc(ΛR)M(Πr,δRε) +Mc(ΛR)Mc(Πr,δRε), r ∈ ∂ ΛR.

(We use + for the union of disjoint sets.) According to the Main Bound the term which

corresponds to Mc(ΛR)Mc(Πr,δRε) is o(R−2).

Let

F+
r,δRε = {(ξ, η) ∈ Πr,δRε

∣∣ η > fr,R(ξ)},

where fr,R(ξ) = Rfr
(
ξ
R

)
. Then

Mc(ΛR)M(Πr,δRε) =Mc(ΛR)M(F+
r,δRε) +M(Πr,δRε)Mc(F+

r,δRε)

and applying once more the Main Bound, we get

IB(r + tn, R) =

∫
M

dW (µ)gz(r + tn, µ)1M(Πr,δRε )Mc(F+
r,δRε )(µ) + o(R−2). (4.20)

The configurations which have points on the both sides of the tangent give rise to the

boundary term. Assuming that r is a point of the convex part of the boundary ∂ΛR (the

concave case is treated similarly), we make the decomposition

M(Πr,δRε)Mc(F+
r,δRε) =M(Πr,δRε)Mc(Π+

r,δRε) +M(Π+
r,δRε)M

c(F+
r,δRε). (4.21)

This implies

IB(r + tn, R) =

∫
M

dW (µ)gz(r + tn, µ)1M(Πr,δRε )Mc(Π+
r,δRε )(µ)

+

∫
M

dW (µ)gz(r + tn, µ)1M(Π+
r,δRε )Mc(F+

r,δRε )(µ)

= J(r + tn, R) +K(r + tn, R) + o(R−2). (4.22)

Substituting this into (4.18) we find

∫
ΛR,δ

IB(x,R)dx =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))J(r + tn, R)

+

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))K(r + tn, R) + o(1)

= J (R) +K(R) + o(1). (4.23)
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Consider first J (R). Let

Π+
r = {(ξ, η)

∣∣ η ≥ 0}. (4.24)

To get rid of the restriction to the cylinder we use the decomposition

M(Πr,δRε)Mc(Π+
r,δRε) =Mc(Π+

r )−Mc(Π+
r )Mc(Π+

r,δRε).

With the help of the Main Bound we find from here that

J (R) = J b(R)− J c + o(1) (4.25)

where the boundary term

J b(R) = R

∫
∂ Λ

dσ(r)

∞∫
0

dt

∫
Mc(Π+

r )

dW (µ)gz(r + tn, µ) (4.26)

and the first contribution to the constant term

J c =

∫
∂ Λ

dσ(r)k(r)

∞∫
0

dt t

∫
Mc(Π+

r )

dW (µ)gz(r + tn, µ). (4.27)

Thus combining (4.12), (4.13), (4.16), (4.18), (4.23) and (4.25) - (4.27) we have

ln Z(ΛR, z) = R2|Λ|
∫
M

dW (µ)gz(0, µ)− J b(R) + J c −K(R) + o(1). (4.28)

To treat K(R) we first rewrite K(r + tn, R) from (4.23) as

K(r + tn, R) =

∫
M

dW (µ)gz(r + tn, µ)1M(Π+
r,δRε )Mc(F+

r,δRε )(µ)

=

∫
M+(Π+

r,δRε (F+
r,δRε )c)

dW (ω)(−1)|ω|+1

∫
M

dW (µ)gz(r + tn, µ, ω)

· 1M(Π+
r,δRε ))(µ) (4.29)

where M+ denotes the set of non-empty finite configurations. This is due to the equation∫
Mc(A)

dW (ω)h(ω) =

∫
M+(A)c

dW (ω)(−1)|ω|+1

∫
M

dW (µ)h(µ, ω) (4.30)

which is valid for any absolutely integrable function h.

Now note that we can neglect the contribution to K(r + tn, R) of the configurations ω

which have more then one point in Π+
r,δRε(F

+
r,δRε)

c. Indeed

K(r + tn, R) =

∫
Π+
r,δRε (F+

r,δRε )c
dx

∫
M(Π+

r,δRε )

dW (µ)gz(r + tn, µ, x) +
∑
m≥2

(−1)m

m!

·
∫

(Π+
r,δRε (F+

r,δRε )c)
m

dx1 · · · dxm
∫
M(Π+

r,δRε )

dW (µ) (4.31)

· gz(r + tn, µ, x1, · · · , xm) = K1(r + tn, R) +K2(r + tn, R).
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By Lemma 5.3 below, for sufficiently small z,

|K2(r + tn, R)| ≤
∑
m≥2

1

meū

[
zeβB+1ū

1− zeβB+1ū

]m ∣∣∣ Π+
r,δRε(F

+
r,δRε)

c
∣∣∣m≤ CR−

5
4 . (4.32)

This is because of the inequality ∣∣∣ Π+
r,δRε(F

+
r,δRε)

c
∣∣∣≤ CR−

5
8 (4.33)

which can be proved easily with the help of the following obvious bound

|fr,R(ξ)| ≤ C|ξ|2R−1. (4.34)

It remains to treat K1(r + tn, R). By the Main Bound it is obvious that

K1(r + tn, R) =

∫
Π+
r,δRε (F+

r,δRε )c
dx

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, x) + o(R−2). (4.35)

Using the local coordinate system and the conditions (5.55) and (5.56) on φ ∈ C1 we can

write ∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, η)) =

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0))

+
∂

∂η

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, θη))η, 0 < θ < 1. (4.36)

By Lemma 5.4 the second summand on the right side of (4.36) is bounded in absolute value

by a constant D which depends only on the potential φ and parameters β, z. This together

with (4.33) implies

∫
∂ ΛR

dσ(r)

δRε∫
0

dt|1− tkR(r)

∫
Π+
r,δRε (F+

r,δRε )c
dξdη (4.37)

·
∣∣∣ ∂
∂η

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, θη))η
∣∣∣= o(1).

Combining (4.23), (4.29), (4.31), (4.32) and (4.35) - (4.37) we find

K(R) =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt

∫
Π+
r,δRε (F+

r,δRε )c
dξdη

∫
M(Π+

r )

dW (µ) (4.38)

· gz(r + tn, µ, (ξ, 0))−
∫
∂ ΛR

dσ(r)kR(r)

δRε∫
0

dt t

∫
Π+
r,δRε (F+

r,δRε )c
dξdη

·
∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0)) + o(1) = K3(R) +K4(R) + o(1).

It is easy to prove using Lemma 5.3 and the bound (4.24) that

K4(R) = o(1). (4.39)
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So we need to treat only K3(R). With the help of the Main Bound we rewrite it as

K3(R) =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt

∫ δRε

−δRε
dξ

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0))

·
∫ fr,R(ξ)

0

dη =

∫
∂ ΛR

dσ(r)kR(r)

δRε∫
0

dt

∫ δRε

−δRε
dξ
ξ2

2

∫
M(Π+

r )

dW (µ)

· gz(r + tn, µ, (ξ, 0)) +

∫
∂ ΛR

dσ(r)

δRε∫
0

dt

∫ δRε

−δRε
dξ

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0))

(
fr,R(ξ)− kR(r)

ξ2

2

)

=

∫
∂ ΛR

dσ(r)kR(r)

∞∫
0

dt

∫ ∞
−∞

dξ
ξ2

2

∫
M(Π+

r )

dW (µ)

· gz(r + tn, µ, (ξ, 0)) + o(1) (4.40)

From (4.38) - (4.40) it follows that

K(R) = Kc + o(1) (4.41)

where

Kc =
1

2

∫
∂ Λ

dσ(r)k(r)

∞∫
0

dt

∫ ∞
−∞

dξ ξ2

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0)) (4.42)

Thus (4.28), (4.41) and (4.42) imply the following

Theorem 4.1 (Classical gas) . If the pair potential φ satisfies the conditions (5.55),

(5.56) and if Λ ⊂ R2 is a bounded convex domain such that the boundary ∂Λ is one di-

mensional C3-manifold, then the following expansion holds true for all sufficiently small z:

ln Z(ΛR, z) = R2|Λ|
∫
M

dW (µ)gz(0, µ) +R

∫
∂ Λ

dσ(r)

∞∫
0

dt

∫
Mc(Π+

r )

dW (µ)

· gz(r + tn, µ) +

∫
∂ Λ

dσ(r)k(r)

∞∫
0

dt

[
t

∫
Mc(Π+

r )

dW (µ) (4.43)

· gz(r + tn, µ)−
∫ ∞
−∞

dξ ξ2

∫
M(Π+

r )

dW (µ)gz(r + tn, µ, (ξ, 0))

]
+ o(1)

as R → ∞. If the potential in addition is rotation invariant, the expansion (4,43) can be

simplified in a natural way, cf. Theorem 5.2.
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We note that the method which we used to prove Theorem 4.1 appeared in [99, 94].

In contrast to the methods of earlier papers [92, 6, 7] and [19] which were based on the

estimates of all semiinvariants of the corresponding Gibbs distribution, this new approach

uses only bounds of two-point semiinvariants. On the other hand it proves the absence of

logarithms as it was conjectured in [92], improves the results and can be applied to marked

Gibbs random fields as well.

4.3 Local limit theorems

Let Y be a standard space with σ-algebra Y . This means that Y is a subspace of a Polish

space such that the trace of the corresponding Borel σ-algebra coincides with Y . We intro-

duce the space Ỹ = {Y, ∅} and the element ∅ we call the vacuum. Let m be a measure on Ỹ

such that the restriction of m on Y is a probability measure and m(∅) = 1. Let M be the

set of all mappings η : Zd → Ỹ such that η(u) 6= ∅ only for finitely many u ∈ Zd:

M = {η : Zd → Ỹ
∣∣ |s(η)| <∞} (4.44)

where s(η) = supp η = {u ∈ Zd, η(u) 6= ∅}. M is the configuration space of our spin model

with spin space Y and elements of M we call spin configurations. We will use also the set

of all finite subsets of Zd which we denote by M0.

Let

M(Λ) = {η : Zd → Ỹ
∣∣ s(η) ⊂ Λ}, Λ ⊂ Zd. (4.45)

We consider many-body potentials φ which are real measurable functions on M ≡
M(Zd). A potential φ we call Euclidean invariant if φ(gη) = φ(η) for arbitrary automor-

phism g of the lattice Zd, (gη)(u) = η(g(u)). We call φ translation invariant if φ(ηa) = φ(η),

for all a ∈ Zd, ηa(u) = η(u− a),

Let δ be a translation invariant metric on Zd. For ξ ∈ M0 we denote by Lδ(ξ) the

minimum of the lengths (with respect to the metric δ) of the trees constructed on ξ and

possibly any other points of Zd (see also [35]).

We assume that φ decays at infinity sufficiently fast, namely:

pδ(φ) =
∑

ξ∈M0, 0∈ξ

sup
η:s(η)=ξ

eLδ(ξ)|φ(η)| <∞ (4.46)

where the metric δ is such that

Dδ(l) =
∑
u∈Zd

(1 + |u|)l exp

(
−1

2
δ(0, u)

)
<∞, l > d. (4.47)

We define the energy of configuration η by

U(η) =
∑
J⊂s(η)

φ(ηJ) (4.48)
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where ηJ(t) = η(t), t ∈ J and ηJ(t) = ∅, t ∈ Zd \ J .

The Gibbs distribution on the space M(Λ) of spin configurations in a finite volume

Λ ⊂ Zd is given by the density Z−1(Λ) exp(−U(η)), η ∈M(Λ) with respect to the measure

mΛ =
∏

t∈Λmt, mt = m, where the normalizing factor

Z(Λ) =

∫
M(Λ)

∏
t∈Λ

dmΛ(η)e( − U(η)). (4.49)

For a parallelepiped Λ ⊂ Zd we denote by Λ(k) the set of all k-faces of Λ, k = 0, · · · , d and

by |Λ(k)| the total volume of all the k-faces of Λ and we write ΛR for {Ru | u ∈ Λ}, R > 0.

Let z(η) = e−φ(η), |s(η)| = 1 and let ẑ = supη |z(η)|.

Theorem 4.2 (Asymptotic expansion. Lattice systems [6, 7]) . Let the Euclidean

invariant potential φ satisfy the conditions (4.46) and (4.47). Assume that

ẑCδ(φ)(2eDδ(l) + 1) < 1 (4.50)

where

Cδ(φ) = 2 exp(pδ(φ) + epδ(φ) − 1). (4.51)

Then for any parallelepiped Λ ⊂ Zd,

lnZ(ΛR) =
d∑

k=0

ak(φ)Rd−k|Λ(d−k)|+ o(1), R→∞. (4.52)

The powerful technique of tree estimates from Section 2.2, which is known also as strong

cluster estimates [34], [35]), was applied in the papers [9],[7] to prove a local limit theorem

(l.l.t.) for the particle number in lattice spin systems with general many-body interaction.

For η ∈ M(Λ) we will use also the notation ηΛ to indicate the dependence on Λ and we

set |η| = |s(η)|, η ∈M(Λ). We say that |ηΛ|, η ∈M(Λ) satisfies the l.l.t. if the relation

Pr(η ∈M(Λ) : |η| = N) = (2πD|η|)−
1
2 exp

[
−(N − E|η|)2

2D|η|

]
(1 + o(1)) (4.53)

as |Λ| → ∞, holds true uniformly with respect to the particle number N ∈ Z+, such that

N − E(ηΛ) ∼ |Λ| 12 . Here and below in this Chapter 4

E|ηΛ| =
∑
N≥0

NP (|ηΛ| = N), D|ηΛ| = E(|ηΛ| − E|ηΛ|)2. (4.54)

The theorem formulated below gives the conditions for the potential under which the

central limit theorem (c.l.t.) for the particle number yields the l.l.t.. We say that |ηΛ|
satisfies the c.l.t. if D|ηΛ| ∼ D|Λ|, D > 0 and

Pr

(
η ∈M(Λ)

∣∣∣ |ηΛ| − E|ηΛ|
(D|ηΛ|)

1
2

< x

)
→ (2π)−

1
2

∫ x

−∞
e−

t2

2 dt (4.55)
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where x ∈ R1, |Λ| → ∞.

The c.l.t. for the Gibbs random fields has been obtained, for example, in [51], [78], [24]

and [50].

Theorem 4.3 (c.l.t. yields l.l.t. [7, 9]) . Let the translation invariant potential φ satisfy

the conditions of Theorem 4.2 with l > 8d in (4.47) and (4.50). Then the l.l.t. for the particle

number follows from the c.l.t..

Proof. It is sufficient to show that

AΛ = sup
N∈Z+

∣∣∣∣∣ (2πD|ηΛ|)
1
2P (|ηΛ| = N)− exp

[
−(N − E|ηΛ|)2

2D|ηΛ|

] ∣∣∣∣∣→ 0 (4.56)

as |Λ| → ∞. According to the inversion formula, we have

P (|ηΛ| = N) = (2π)−
1
2

∫ π

−π
ψΛ(t)dt. (4.57)

Here ψΛ is the characteristic function of a random variable |ηΛ|:

ψΛ(t) =
∑
N≥0

eitNP (|ηΛ| = N). (4.58)

Further

exp

[
−(N − E|ηΛ|)2

2D|ηΛ|

]
= (2π)−

1
2

∫ ∞
−∞

exp

[
−itRΛ(N)− t2

2

]
dt (4.59)

where

RΛ(N) = (N − E|ηΛ|)D|ηΛ|)−
1
2 . (4.60)

The change of variable t = τ(D|ηΛ|)−
1
2 in (4.57) yields

P (|ηΛ| = N) = (2π)−1D|ηΛ|)−
1
2

∫ π(D|ηΛ|)
1
2

−π(D|ηΛ|)
1
2

Eeiτ(SΛ−RΛ(N)dτ (4.61)

where

SΛ = (D|ηΛ|)−
1
2 (|ηΛ| − E|ηΛ|). (4.62)

Let us take B and ε such that 0 < B ≤ πε(D|ηΛ|)
1
2 , 0 < ε < 1. Then substituting (4.59)

and (4.61) in(4.56), we obtain

AΛ ≤ (2π)−
1
2

[∫ B

−B
|EeiτSΛ − e−

τ2

2 |dτ +

∫
|τ |≥B

e−
τ2

2 dτ

+

∫
B≤|τ |≤ε(D|ηΛ|)

1
2

|EeiτSΛ|dτ +

∫
ε(D|ηΛ|)

1
2≤|τ |≤π(D|ηΛ|)

1
2

|EeiτSΛ|dτ

]
= (2π)−

1
2 (I1 + I2 + I3 + I4). (4.63)
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Let us estimate the integral I4. Let

Λ = Λk = {t ∈ Zd, 0 < ti < ak, i = 1, 2, ·, d} (4.64)

where {ak} is a monotone increasing sequence. All edges of the cube Λk lying on the coor-

dinate axes are divided on the intervals

Ji,j(r) = {ti ∈ Z1, jr < ti < (j + 1)r}, i = 1, · · · , d,

where r = rk = o(ak), k → ∞. These partitions generate in a natural way the partition of

the cube Λk on the subcubes which are assumed to be enumerated in some way: Λj
k, j =

1, · · · , [ak/r]d where [·] stands for the integer part. It is evident that

Λk =

[ak/r]
d⋃

j=1

Λj
k +Qk (4.65)

where |Qk| ≤ Cda
d−1
k . Hence

|Qk|
|Λk|

→ 0, k →∞. (4.66)

Denote by λjk the center of the cube Λj
k and let C = {λjk, j = 1, · · · , [ak/r]d}.

It is easy to see that

I4 ≤ (D|ηΛ|)
1
2

∫
ε<t≤π

|Eeit|ηΛ||dt. (4.67)

Next, using the general properties of conditional expectations, we get for ζ ∈M(Λ \ C),

|Eeit|ηΛ|| = |EE(eit|ηC |+ iτ |ηΛ\C|/ζ)| ≤ sup
ζ∈M(Λ\C)

|E(eit|ηC |/ζ)|. (4.68)

By the definition of the Gibbs random fields

|E(eit|ηC |/ζ)| =
∫
M(C)

eit|η|e−U(η/ζ)dmΛ(η)

[∫
M(C)

e−U(η/ζ)dmΛ(η)

]−1

(4.69)

where the conditional energy

U(η/ζ) =
∑

∅6=I⊂s(η)
J⊂s(ζ)

φ(ηI + ζJ), η ∈M(C). (4.70)

Let

T (t, η, ζ) =


∑

J⊂s(ζ) φ(ηI + ζJ), t ∈ s(η)

0, otherwise
(4.71)

and

V (η, ζ) =
∑

I⊂s(η), |I|≥2, J⊂s(ζ)

φ(ηI + ζJ) (4.72)
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Then combining (4.69) - (4.72) we obtain

|E(eiτ |ηC |/ζ)| =
∫
M(C)

eiτ |η|
∏
t∈s(η)

e−T (t,η,ζ)e−V (η,ζ)dmΛ(η)

·

∫
M(C)

∏
t∈s(η)

e−T (t,η,ζ)e−V (η,ζ)dmΛ(η)

−1

. (4.73)

Since

V (η, ζ) ≤ |s(η)|
∑

0∈I⊂Zd
diam(I)>r(Λ)

sup
ζ∈M(I), |s(ζ)|=|I|

|φ(ζ)| ≤ |C|pδ(φ)

rs(Λ)
, s > d, (4.74)

one can show (for details see [7, 9]) that for large k we have

|E(eit|ηC |/ζ)| ≤ 2 sup
η,ζ
|e−V (η,ζ)|+ 2

∫
M(C)

eit|η|
∏
t∈s(η)

e−T (t,η,ζ)dmC(η)

·

∫
M(C)

∏
t∈s(η)

e−T (t,η,ζ)dmC(η)

−1

≤ 2e
|C|pδ(φ)

rs(Λ)

+
∏
t∈C

{∣∣∣ 1∑
σ=0

∫
Ỹ

eiτσe−T (t,η(t),ζ)f(η, σ)dmt(η)
∣∣∣

·

[∣∣∣ 1∑
σ=0

∫
Ỹ

e−T (t,η(t),ζ)f(η, σ)dmt(η)
∣∣∣]−1}

(4.75)

where

f(η, σ) =

1, if σ = 1,

eT (t,η(t), if σ = 0
.

Now consider a family of random variables {Xt, t ∈ C} which takes the values σ = 0, 1

with probabilities

Pr(Xt = σ) = pt(σ) =

∫
Ỹ

e−T (t,η(t),ζ)f(η, σ)dmt(η)

·

[
1∑

σ=0

∫
Ỹ

e−T (t,η(t),ζ)f(η, σ)dmt(η)

]−1

. (4.76)

Thus from (4.75) we obtain

|E(eit|ηC |/ζ)| ≤ 2e
|C|pδ(φ)

rs(Λ)
+
∏
t∈C

ψXt(τ), (4.77)

where ψXt is the characteristic function of the random variable Xt.

It is easy to check that ψXt satisfies the following estimate

ψXt(τ) = (1− 2pt(0)pt(1))(1− cosτ) ≤ 1− α, t ∈ C, (4.78)
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if only ε < |τ | ≤ π where 0 < α < 1.

To get the bound (4.78) we note that

T (t, η(t), ζ) =
∑

∅6=J⊂s(ζ)

φ(ηI + ζJ) +
∑

t∈I⊂s(η), |I|≥2

1

|I|
∑

∅6=J⊂s(ζ)

φ(ηI + ζJ)

≤ ||φ||+ |C|pδ(φ)

rs(Λ)
≤Mpδ(φ), 0 < M <∞. (4.79)

Using formulae (4.77) and (4.78) we obtain

|E(eit|ηC |/ζ)| ≤ 2e
|C|pδ(φ)

rs(Λ)
+ (1− α)|C|, (4.80)

This together with (4.67) yields

|I4| ≤ π(D|ηΛ|)
1
2

(
2e
|C|pδ(φ)

rs(Λ)
+

1

2
(1− α)|C|

)
. (4.81)

Now pass to the estimation of the integral I3. The change of variables t = 2τ(D|ηΛ|)−
1
2

in I3 yields

I3 =
1

2
(D|ηΛ|)

1
2

∫
B
2

(D|ηΛ|)−
1
2≤|t|≤ε

|Eeit(|ηΛ|−E|ηΛ|)|dt. (4.82)

Then

Eeit(|ηΛ|−E|ηΛ|) = e−
τ2

2
D|ηΛ|+|Λ|τ3h(τ,Λ) = e−|Λ|τ

2(
D|ηΛ|
2|Λ| −τh(τ,Λ)) (4.83)

where

|Λ|h(τ,Λ) =
∑
n≥3

τn−3

n!

dn

dτn
logEeit(|ηΛ|−E|ηΛ|)

∣∣∣
τ=0

. (4.84)

It follows from the integral c.l.t. that D|ηΛ|
|Λ| → a > 0 as |Λ| → ∞. To prove that the integral

I3 tends to zero when |V | → ∞, it is sufficient to show that h(τ,Λ) is uniformly bounded in

a complex neighborhood of the origin: |h(τ,Λ)| ≤ a1 if |τ | < ε. Indeed then for sufficiently

small ε we have

I3 ≤ (D|ηΛ|)
1
2

∫ ε

B
2

(D|ηΛ|)−
1
2

e−|Λ|t
2 a

4 dt ≤ k

∫ ∞
cB

e−u
2

du (4.85)

with k > 0, c > 0. So we are going to prove the boundedness of h(τ,Λ). Let 〈σ1, · · · , σn〉 be

the semiinvariant of the family of the random variables σ1, · · · , σn:

〈σ1, · · · , σn〉 =
1

in
∂n

∂τ1 · · · ∂τn
lnE exp

(
i

n∑
k=1

τkσk

) ∣∣∣∣∣
τ1=···τn=0

. (4.86)

Then, using the multi-linearity of semiinvariants, we have

dn

dτn
lnEeiτ(|ηΛ|−E|ηΛ|)

∣∣∣
τ=0

=
1

in
〈|ηΛ|, · · · , |ηΛ|︸ ︷︷ ︸〉ntimes

=
∑

t1,··· ,tn∈Λ

〈|ηt1|, · · · , |ηtn|〉. (4.87)
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The well know formula which expresses the semiinvariants by means of moments yields

〈|ηt1 |, · · · , |ηtn|〉 =
∑
P

(−1)|P|−1(|P| − 1)
∏
p∈P

〈
∏
t∈p

|ηt|〉 (4.88)

where the sum is taken over all partitions of the set {t1, · · · , tn} into the subsets p ∈ P .

It is possible to express the moments
∏

t∈p |ηt| by means of correlation functions. Indeed

〈
∏
t∈p

|ηt|〉 = Z−1(Λ)

∫
M(Λ)

e−U(η)
∏
t∈p

|ηt|dmΛ(η) = Z−1(Λ)
∑

I:p⊂I⊂Λ

∫
M(I)

e−U(η)

· dmI(η) =

∫
M(I)

1s(η)=p(η)dmp(η)
∑

I:p⊂I⊂Λ

Z−1(Λ)

∫
M(I)

1I\p(ζ)

· e−U(η+ζ)dmI\p(ζ) =

∫
M(I)

1s(η)=p(η)%Λ(η)dmp(η) = %̂Λ(p) (4.89)

where, as usual, 1A stands for the indicator of the set A. Further∏
p∈P

%̂Λ(p) =

∫
M({t1,··· ,tn})

∏
p∈P

%(ηp)dm{t1,··· ,tn}(η), (4.90)

where ηp(u) = η(u) if u ∈ p and ηp(u) = ∅, otherwise.

Thus, combining (4.88) - (4.90) and using the well known relation between the correlation

and truncated correlation functions, we obtain

〈|ηt1|, · · · , |ηtn|〉 =

∫
M({t1,··· ,tn})

∑
P

(−1)|P|−1(|P| − 1)
∏
p∈P

%(ηp)dm{t1,··· ,tn}(η)

=

∫
M({t1,··· ,tn})

%T (ηp)dm{t1,··· ,tn}(η) = %̂TΛ({t1, · · · , tn}) (4.91)

Now we need the following result

Theorem 4.4 (Strong cluster estimate [5, 7]) . Let the translation invariant potential

φ satisfy the conditions of Theorem 4.2 , including (4.46) and (4.47). Then

|%TΛ(η)| ≤ C−1
δ (φ)

(
ẑCδ(φ)

1− ẑCδ(φ)

)|s(η)|

e−Lδ(s(η)). (4.92)

With the help of this theorem we can write

dn

dτn
lnEeiτ(|ηΛ|−E|ηΛ|)

∣∣∣
τ=0
≤

∑
t1,··· ,tn∈Λ

|%̂TΛ({t1, · · · , tn})| ≤
(

ẑCδ(φ)

1− ẑCδ(φ)

)n
· C−1

δ (φ)
∑

t1,··· ,tn∈Λ

e−Lδ({t1,··· ,tn}) ≤ (C̄(δ))n|Λ|. (4.93)

where 0 < C̄(δ).

This bound ensures the analyticity of the function h(τ,Λ) in a complex neighborhood

of the origin where h satisfies the bound |h(τ,Λ)| ≤ a1 with a constants a1 > 0 which is
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independent of Λ. Finally, combining (4.81) and (4.85), we find that for any ε > 0 and

sufficiently large Λ and small ε > 0, we have that

AΛ ≤ (2π)−
1
2

(∫ B

−B
|EeiτSΛ − e−

τ2

2 |dτ +

∫
|τ |≥B

e−
τ2

2 dτ + ε

)
. (4.94)

This completes the proof of Theorem 4.3

Combining Theorem 4.3 with the c.l.t. from [78] (Theorem 9.5.4) we directly obtain

Theorem 4.5 (Local limit theorem [9]) . Under conditions of Theorem 4.3, we have

that |ηΛ| satisfies the l.l.t..

4.4 Convergence rate and large deviations

The next theorem gives an estimate of the convergence rate in the l.l.t. for the number of

particles in a bounded region (see Theorem 4.5).

Theorem 4.6 (Convergence rate [84]) . Let the Euclidean invariant potential φ satisfy

the conditions of Theorem 4.4 with l > 8d in (4.47) and (4.50). Then for any parallelepiped

Λ ⊂ Zd the following bound holds true:

sup
N∈Z+

∣∣∣∣∣ (2πD|ηΛ|)
1
2P (|ηΛ| = N)− exp

[
−(N − E|ηΛ|)2

2D|ηΛ|

] ∣∣∣∣∣≤ C√
|Λ|

. (4.95)

At the end of this Chapter, we consider classical lattice Gibbs random fields in a fi-

nite volume Λ ⊂ Zd with empty boundary conditions. As an application of Theorem 4.2,

we present a local limit theorem for the probabilities of large deviations of the number of

particles in a grand canonical ensemble in Λ as |Λ| → ∞. The proof has two ingredients:

a modification of the well known method of Cramer [20] for studying the probabilities of

large deviations of the sums of independent identically distributed random variables and the

asymptotic expansion of the log-partition function [6] and [7], together with the central l.l.t.

for the number of particles, Theorem 4.5 . Note that classical lattice systems are a special

case of spin systems where the spin space Y consists of a unique point. For simplicity we

consider the planar case, d = 2.

Theorem 4.7 (Large deviations [91],[90]) . Let the Euclidean invariant potential φ sat-

isfy the conditions of Theorem 4.3. Let α = α(Λ, β, z) = N − E|ηΛ|. If α|Λ|− 1
2 ≥ 1 and

α = o(|Λ|), then for any parallelepiped Λ ⊂ Z2

Pr
(
ω ∈M(ΛR)

∣∣∣ |ω| = N
)

=
1√

2π|ΛR|

√
Ω′′ΛR,z(0) exp

(
− α2

2|ΛR|
Ω′′ΛR,z(0)

)
· exp

(
−|ΛR|

∑
n≥3

αn

n!|ΛR|n
Ω

(n)
ΛR,z

(0)

)[
1 +O

(
α

|ΛR|

)]
. (4.96)
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where ΩΛR,z(x) is the so-called deviation function [20] which is a real analytic function in x

in a neighborhood of the origin. Moreover the second and the third derivatives of ΩΛR,z(x)

with respect to x have the following expansions

Ω′′ΛR,z(0)

|ΛR|
= [a0(φ, z)R2|Λ|+ a1(φ, z)R|∂Λ|+ a2(Λ, φ, z) + r(Λ, φ, z)]−1 (4.97)

and

Ω′′′ΛR,z(0)

|ΛR|2
= −

[
a0(φ, z)R2|Λ|+ a1(φ, z)R|∂Λ|+ a2(Λ, φ, z) + r(Λ, φ, z)

]−3

·
[∂a0(φ, z)

∂(ln z)
R2|Λ|+ ∂a1(φ, z)

∂(ln z)
R|∂Λ|+ ∂a2(Λ, φ, z)

∂(ln z)
+
∂r(Λ, φ, z)

∂(ln z)

]
(4.98)

where
∂jr(ΛR, φ, z)

∂(ln z)j
= o(1), R→∞, j = 0, 1.

Sketch of the proof. Let

PΛ,ξ(N) = Pr
(
ω ∈M(Λ)

∣∣∣ |ω| = N
)

where ξ = ln z. By the inversion formula, we have

PΛ,ξ(N) = (2π)−
1
2

∫ π

−π
ψΛ,ξ(t)dt (4.99)

where the characteristic function of the particle number has the form

ψΛ,ξ(t) =
Z(Λ, ξ + it)

Z(Λ, ξ)
. (4.100)

Under the conditions of the theorem the partition function Z(Λ, ξ) is analytic in ξ on the

whole plane (see for example [105]) and differs from zero for real ξ. Therefore ψΛ,ξ(t) is

analytic in t on the complex plane. Moreover

ψΛ,ξ(u− iτ)

ψΛ,ξ(−iτ)
= ψΛ,ξ+τ (u). (4.101)

Hence

PΛ,ξ(N) = ψΛ,ξ(−iτ)e−τNPΛ,ξ+τ (N). (4.102)

Let EΛ,ξ|ω| be the mathematical expectation and DΛ,ξ|ω| be respectively the variance of

the particle number in a volume Λ with respect to the Gibbs distribution in Λ with activity

z = eξ. We define a function h(Λ, ξ) by

h(Λ, ξ) = |Λ|−1 (EΛ,ξ+τ |ω| − EΛ,ξ|ω|) (4.103)

where EΛ,ξ|ω| stands for the mathematical expectation with respect to the Gibbs distribution

in Λ with activity z = eξ. One can easily check the following relations

EΛ,ξ|ω| =
d

dξ
lnZ(Λ, ξ),

d

dξ
EΛ,ξ|ω| = DΛ,ξ|ω|. (4.104)
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Hence the function h(Λ, ξ) is analytic in τ on the real axes. On the other hand, by Lemma

2 from [31] for sufficiently large Λ and for arbitrary bounded ξ-interval, the following bound

|Λ|−1DΛ,ξ|ω| ≥ C(φ) > 0. (4.105)

Therefore for large Λ in some neighborhood of the origin which is independent of Λ there

exists a function gΛ,ξ which is the inverse of h(Λ, ξ). Now we define the deviation function

ΩΛ,ξ(x) by

ΩΛ,ξ(x) = gΛ,ξ(x)
(
|Λ|−1EΛ,ξ|ω|+ x

)
− |Λ|−1 lnψΛ,ξ(−igΛ,ξ(x)). (4.106)

Since
d

ds
lnψΛ,ξ(s) = iEΛ,ξ+iτ |ω|, (4.107)

we get from (4.106) that d
dx

ΩΛ,ξ(x) = gΛ,ξ(x). This implies real analyticity of the deviation

function in some neighborhood of the origin which is independent of Λ, as well as the relations

ΩΛ,ξ(0) =
d

dx
ΩΛ,ξ(0) = 0,

d2

dx2
ΩΛ,ξ(x) =

 d

dτ
hΛ,ξ(τ)

∣∣∣∣∣
τ=gΛ,ξ(x)

−1

=

|λ|−1 d

dτ
EΛ,ξ+τ |ω|

∣∣∣∣∣
τ=gΛ,ξ(x)

−1

=
(
|Λ|−1DΛ,ξ+gΛ,ξ(x)|ω|

)−1
(4.108)

Suppose that EΛ,ξ+τ |ω| = N, N ∈ Z+, then by l.l.t. Theorem 4.5

PΛR,ξ+τ (N) = (2πDΛR,ξ+τ (x)|ω|)−
1
2

(
1 +O

1√
|ΛR|

)
(4.109)

for ξ + τ < − ln(Cδ(φ)) as R→∞.

On the other hand, setting τ = gΛ,ξ(x) we get from (4.103) and (4.106) that

ψΛ,ξ(−iτ) exp(−τEΛ,ξ+iτ |ω|) = exp(−|Λ|ΩΛ,ξ(x)). (4.110)

Now let τα = gΛ,ξ(
α
|Λ|) then using again (4.104) we find that for large Λ

N

|Λ|
− EΛ,ξ|ω|
|Λ|

= hΛ,ξ

(
gΛ,ξ

(
α

|Λ|

))
=
EΛ,ξ+τα|ω|
|Λ|

− EΛ,ξ|ω|
|Λ|

. (4.111)

Hence EΛ,ξ+τα|ω| = N . According to (4.102), (4.108) and (4.109) we have

PΛR,ξ(N) =

(
1

2π|Λ|
d2

dx2
ΩΛ,ξ

( α

|Λ|

)) 1
2

exp
[
−|Λ|ΩΛ,ξ

( α

|Λ|

)](
1 +O

( 1√
|Λ|

))
. (4.112)

This implies equation (4.96).

To prove (4.97) and (4.98) we note that

d2

dx2
ΩΛ,ξ(0) = |Λ|

(
d2

dξ2
lnZ(Λ, ξ)

)−1

(4.113)

To complete the proof of Theorem 4.7 it remains to apply the asymptotic expansion of the

log-partition function, Theorem 4.2.
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5 Asymptotic expansion of the log-partition function.

Quantum gas

In this chapter we consider Boltzmann loop gas (see section 3.5.4) which is a quantum gas

with Maxwell-Boltzmann statistics in the Feynman-Kac representation .

We study the asymptotics of the logarithm of the grand partition function ln Z(ΛR, z)

of the loop gas in a bounded domain ΛR = {Ru
∣∣ u ∈ Λ} as R → +∞, where z > 0 is the

activity or intensity parameter. For the convenience of the reader we recall the definition of

the MB measure Wzρ which is defined on the space

M =M(X ) = {µ ⊂ X
∣∣ |µ| <∞}, X = Xβ

of finite configurations of loops of fixed time interval β in R2 by

Wzρ(h) =

∫
M

dWzρ(ω)h(ω) =
∞∑
n=0

zn

n!

∫
X
. . .

∫
X
h(x1, . . . , xn)dρ(x1) . . . dρ(xn), (5.1)

where h is any non-negative, measurable function on M. See Chapter 3.3, formula (3.37).

The asymptotic expansions of the log-partition function presented in this section can be

viewed in the spirit of the Kac problem. In [54] Kac has considered the problem of finding the

asymptotics of the partition function Tr exp(β∆) =
∑∞

n=1 e
−βλn , where λn are eigenvalues of

the Laplacian −∆ in a bounded domain as β → 0. This problem has a long history and goes

back to Hendrik Lorentz and Herman Weyl, see [54]. Kac has shown that the eigenvalues

λn uniquely define geometrical characteristics of the domain, such as the area, the length

of the boundary, and his conjecture was that the constant term is 1
6
(1 − h) where h is the

number of the holes of the domain. Using Feynman-Kac formula the partition function can

be written as a Brownian integral with a path of a time length β constrained to a bounded

domain. This leads to an equivalent formulation of the Kac problem, that is, to find the

asymptotics of the Brownian integral as β → 0. A dual problem is to study the asymptotics

of the Brownian integral with a path of a fixed time length β, constrained to a bounded

domain as this domain is delated to infinity. This was considered in 5 for the case of MB

statistics. Note that the Brownian integral can be identified with the log partition function

ln Zid(Λ, z) of the ideal Ginibre gas.

Here we study the large volume asymptotics of the log-partition function for the loop gas

with interaction.

Chapter 5 is organized as follows. In Section 5.1 we consider domains with smooth

boundaries. We assume that the particles interact via stable pair potential with nice decay

properties at infinity.

The following expansion is the main result of Section 5.1:

ln Z(ΛR, z) = R2βp(φ, z)|Λ|+R b(φ, z)|∂ Λ|+ o(R) as R→ +∞. (5.2)
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Here β is the inverse temperature, |Λ| is the volume and |∂ Λ| the surface measure of Λ. The

coefficients p(φ, z) and b(φ, z) are the same as in expansion (4.3) below.

To get the constant term, in Section 5.2, we impose more restrictive conditions on the

potential φ and consider domains Λ which are open convex bounded subsets of R2 with

finitely many convex closed holes. We assume that the connected parts of the boundary of

Λ are one dimensional closed C3-manifolds.

Then the main result of section Section 5.2 is:

ln Z(ΛR, z) = R2|Λ|βp(φ, z) +R |∂ Λ|b(φ, z) + 2πχ(Λ)c(φ, z) + o(1). (5.3)

Here χ(Λ) is the Euler-Poincare characteristic of the domain Λ. The coefficients p(φ, z),

b(φ, z) and c(φ, z) are explicitly expressed as functional integrals and are analytic functions

of the activity z in a neighborhood of the origin; p(φ, z) is the pressure and b(φ, z) can be

interpreted as the surface tension.

We consider the case ν = 2 only for simplicity.

Section 5.3 is devoted to the asymptotic expansion of the log-partition function of the

ideal Bose gas. The class of admissible domains is the same as in Section 5.2.

Finally Section 5.4 presents a different method of proving the asymptotic expansion which

is applicable only to polygonal domains. This method, in contrast to the method adopted

for the domains with smooth boundaries, permits to get all the non-decreasing terms of the

expansion.

5.1 Boundary term

We consider classical stable pair interaction given by a function φ which is continuous, even

function on R2 \ {0}. We assume also that∫
R2

du|φ(u)|(1 + |u|)l < +∞ (5.4)

where l ≥ 0 will be chosen later.

Let Λ be an open convex bounded subsets of R2 with finitely many convex closed holes.

We assume that the connected parts of the boundary of Λ are one dimensional closed C2-

manifolds.

Let n(r) be the inward drawn unit normal to ∂ Λ at the point r ∈ ∂ Λ and let

Π+
r = {x ∈ R2

∣∣ 〈x,n(r)〉 ≥ 0}

where 〈., .〉 is the scalar product in R2. When there is no confusion, we denote the configu-

ration (µ ∪ ω) by (µ, ω) as well as the configuration ({x} ∪ µ) by (x, µ) .

The following theorem will be proved in this section.
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Theorem 5.1 (Boundary term) . If φ satisfies (3) with l > 16 and z is from the interval

0 < z < C ·
[∫

R2

du |φ(u)|(1 + |u|)l
]−1

(5.5)

where C = C(β, l), then the log-partition function of the Boltzmann gas in ΛR has the

following asymptotic expansion:

ln Z(ΛR, z) = zR2|Λ|
∫
X 0

dP 0(x0)

∫
M

dWzρ(µ)
ϕ(x0, µ)

|µ|+ 1

− zR
∫
∂ Λ

dσ(r)

+∞∫
0

dt

∫
X 0

dP 0(x0)

∫
M

dWzρ(µ) (5.6)

· 1Mc(Π+
r )(r + tn(r) + x0, µ)

ϕ(r + tn(r) + x0, µ)

|µ|+ 1
+ o(R)

as R→ +∞ where ϕ is the Ursell function, σ(dr) is the arc length element and 1A denotes

the indicator function of the set A.

If φ is also rotation invariant then

ln Z(ΛR, z) = zR2|Λ|
∫
X 0

dP 0(x0)

∫
M

dWzρ(µ)
ϕ(x0, µ)

|µ|+ 1

− zR|∂ Λ|
+∞∫
0

dt

∫
X 0

dP 0(x0)

∫
M

dWzρ(µ)1Mc(Π+
0 )(tn

0 + x0, µ)·

· ϕ(tn0 + x0, µ)

|µ|+ 1
+ o(R) as R→ +∞. (5.7)

Here n0 is any fixed unit vector and Π+
0 = {x ∈ R2

∣∣ 〈x,n0〉 ≥ 0}.

To prove this theorem we undertake the following strategy. We start with the cluster

representation of the log-partition function by means of the Ursell function ϕ:

lnZ(ΛR, z) = WzρΛR
(ϕ) =

∫
M

dWρ(µ)z|µ|ϕ(µ) if z is sufficiently small. (5.8)

Here Wzρ is given by (3.37) and g is defined below by (5.10). In the second step we rewrite

(5.8) as:

ln Z(ΛR, z) =

∫
X

dρ(x)

∫
M

dWρ(µ)gz(x, µ)1M(ΛR)(x, µ) (5.9)

where

gz(µ) = z|µ|
ϕ(µ)

|µ|
, if |µ| ≥ 1. (5.10)

Writing explicitly the integration with respect to ρ, we obtain the representation

lnZ(ΛR, z) =

∫
ΛR

du

∫
X 0

dP 0(x0)

∫
M

dWρ(µ)1M(ΛR)(u+ x0, µ)

· gz(u+ x0, µ). (5.11)
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Then the main idea is the following: we write this integral as an integral over the set A
of all configurations (u + x0, µ) of loops with arbitrary x0 ∈ X 0, µ ∈ M, then we subtract

the integral over the set A1 of configurations (u + x0, µ) where at least one loop leaves the

domain ΛR (it can be u+x0 or any loop from µ). The integral over A gives the main term of

our asymptotics which is proportional to the area of ΛR. The second integral we split in two

integrals by decomposing the set A1 as A1 = A2 +A3. Here A2 is the set of configurations

(u+x0, µ) where at least one loop crosses the tangent and A3 consists of those configurations

where at least one leaves ΛR but non of them crosses the tangent. The integral over A2 gives

us the boundary term. The analysis of the correction terms is based on the estimates for

the decay of correlations in the loop gas which was obtained in Section 3.5.4. To show that

the last integral over the set A3 is o(R) as R→∞ we also translate some arguments given

in section II of Ref.[62] where similar problem for one loop case is solved.

5.1.1 Proof of Theorem 5.1

We start with the cluster representation of the log-partition function:

ln Z(ΛR, z) = WzρΛR
(ϕ) if z is sufficiently small. (5.12)

In the second step we rewrite (5.12) as:

ln Z(ΛR, z) =

∫
X

dρ(x)

∫
M

dWρ(µ)gz(x, µ)1M(ΛR)(x, µ). (5.13)

Writing explicitly the integration with respect to ρ we obtain the representation

ln Z(ΛR, z) =

∫
ΛR

du

∫
X 0

dP 0(x0)

∫
M

dWρ(µ)1M(ΛR)(u+ x0, µ)

· gz(u+ x0, µ). (5.14)

The representation (5.13) directly follows from (5.12) with the help of the following well-

known formula (see, for example, [46])∫
M
F (µ)

∑
ω⊂µ

h1(ω)h2(µ \ ω)dWρ(µ) (5.15)

=

∫
M

∫
M
F (µ1 ∪ µ2)h1(µ1)h2(µ2)dWρ(µ1)dWρ(µ2)

which is valid if either the functions F, h1 and h2 are non-negative or at least one side is

absolutely convergent.

For any measurable A ⊂M let

WAf(µ) =

∫
A

dWρ(ω))f(µ, ω), µ ∈M. (5.16)
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We use the notation f(µ, ω) instead of f(µ∪ω) and since ρ is diffuse we can consider µ and

ν in (5.16) as disjoint configurations. For brevity we will write W instead of WM.

Note that the two-point truncated correlation function can be written in this notations

as

σΛ(x, y) =

∫
M(Λ)

dWzρ(ω)ϕ(x, y, ω) =WM(Λ)ϕ(x, y) (5.17)

We will use often the notation

WA|f |(µ) =

∫
A

dWρ(ω))|f(µ, ω)|, µ ∈M. (5.18)

It follows from Theorem 3.1 that

WM(Λ)|ϕ|(x, y) ≤ e2βB+1 sup
x,y
|q(x, y)|

∞∑
m=1

[ze2βB+1

∫
X

dρ(y)|q(x, y)|]m. (5.19)

Since supx,y |q(x, y)| < e2βB + 1 we have that uniformly in Λ,

WM(Λ)|ϕ|(x, y) <∞ (5.20)

provided

ze2βB+1

∫
X

dρ(y)|q(x, y)| < 1. (5.21)

Now(5.14) implies

ln Z(ΛR, z) =

∫
ΛR

du

∫
X 0

dP 0(x0)(W1M(ΛR)gz)(u+ x0)

=

∫
ΛR

du

∫
X 0

dP 0(x0)(Wgz)(u+ x0)

−
∫

ΛR

du

∫
X 0

dP 0(x0)(W1Mc(ΛR)gz)(u+ x0). (5.22)

Putting

IA(u,R) =

∫
X 0

dP 0(x0)(Wgz)(u+ x0) (5.23)

and

IB(u,R) =

∫
X 0

dP 0(x0)(W1Mc(ΛR)gz)(u+ x0), (5.24)

we can rewrite (5.22) as

ln Z(ΛR, z) =

∫
ΛR

du IA(u,R)−
∫

ΛR

du IB(u,R). (5.25)

Consider the first integral on the right-hand side of (5.25). Note that (Wgz)(u+x0) does

not depend on u ∈ R2 because of translation invariance of M, Wρ and gz. It follows from

Theorem 2.1, formula (2.8), that

(W|gz|)(u+ x0) ≤ e2βB+1. (5.26)
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Therefore ∫
ΛR

du IA(u,R) = R2 |Λ|
∫
X 0

dP 0(x0)(Wgz)(x
0). (5.27)

The integral on the right-hand side of (5.23) multiplied by β−1 is called pressure.

Now consider the second integral on the right-hand side of (5.25). Let

ΛR,δ = {u ∈ ΛR

∣∣ d(u, ∂ ΛR) < δRε}.

Then ∫
ΛR

IB(u,R)du =

∫
ΛR,δ

IB(u,R)du+

∫
ΛR\ΛR,δ

IB(u,R)du. (5.28)

Taking from now on ε = 1
8

and l > 16 in condition (4) (see (3.71)), we find from Corollary

3.16 that ∫
X 0

dP 0(x0)(W1Mc(BδRε (u))|gz|)(u+ x0) = o(R−2) (5.29)

as R → ∞, uniformly in u ∈ R2. Here BδRε(u) is a ball of radius δRε centered at u ∈ R2.

On account of (5.29) ∫
ΛR\ΛR,δ

IB(u,R)du = o(1).

Therefore ∫
ΛR

IB(u,R)du =

∫
ΛR,δ

IB(u,R)du+ o(1). (5.30)

To treat the integral on the right-hand side of (5.30) we set up at each point r ∈ ∂ Λ local

coordinates (ξ, η) where ξ is along the tangent vector s = s(r) and η is along the inward

drawn unit normal n = n(r) to ∂ Λ at r. Then ∂ Λ is given locally by η = fr(ξ), |ξ| < δRε,

for δ > 0 small enough where fr is a function of class C2. Choosing δ = 1
2
[ sup
r∈∂ Λ
|κ(r)|]−1 and

taking into account that the volume element in ΛR,δ is equal to (1− tkR(r))dtσ(dr) (see, for

example,[87]), we have that

∫
ΛR,δ

IB(u,R)du =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))IB(r + tn, R) (5.31)

where kR(r) is the curvature of ∂ΛR at the point r ∈ ∂ΛR, k1(r) ≡ k(r). Evidently kR(r) =

R−1k(R−1r), r ∈ ∂ΛR.

Furthermore, we associate to each r ∈ ∂ΛR the cylinder

Πr,δRε = {(ξ, η)
∣∣ |ξ| < δRε}.
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To get rid of configurations that have loops visiting outside of the cylinder Πr,δRε , we de-

compose IB by decomposing Mc(ΛR) as follows:

Mc(ΛR) =Mc(ΛR)M(Πr,δRε) +Mc(ΛR)Mc(Πr,δRε), r ∈ ∂ ΛR.

(We use + for the union of disjoint sets.) According to Corollary 3.16 the term which

corresponds to Mc(ΛR)Mc(Πr,δRε) in this decomposition is o(R−2), therefore

IB(r + tn, R) =

∫
X 0

dP 0(x0)(W1Mc(ΛR)gz)(r + tn + x0)

=

∫
X 0

dP 0(x0)(W1Mc(ΛR)M(Πr,δRε )gz)(u+ x0) + o(R−2)

= IB1 (r + tn, R) + o(R−2). (5.32)

To treat IB1 , we put

F+
r,δRε = {(ξ, η) ∈ Πr,δRε

∣∣ η > fr,R(ξ)},

where fr,R(ξ) = Rfr
(
ξ
R

)
.

Now we decompose IB1 by decomposing Mc(ΛR)M(Πr,δRε) as follows:

Mc(ΛR)M(Πr,δRε) =Mc(ΛR)M(F+
r,δRε) +M(Πr,δRε)Mc(F+

r,δRε).

Note that each configuration µ ∈Mc(ΛR)M(F+
r,δRε) contains at least one loop touching the

exterior of ΛR in F+
r,δRε (which can be a hole). Again using Corollary 3.16, we get∫
X 0

dP 0(x0)(W1Mc(ΛR)M(F+
r,δRε )gz)(r + tn + x0) = o(R−2).

Hence

IB1 (r + tn, R) =

∫
X 0

dP 0(x0)(W1Mc(F+
r,δRε )M(Πr,δRε )gz)(r + tn + x0)

+ o(R−2) = IB2 (r + tn, R) + o(R−2). (5.33)

To obtain the boundary term of the expansion, we separate from the setM(Πr,δRε)Mc(F+
r,δRε)

those configurations which have at least one loop crossing the tangent. Let

Π+
r,δRε = {(ξ, η) ∈ Πr,δRε

∣∣ η ≥ 0}.

Then

M(Πr,δRε)Mc(F+
r,δRε) =M(Πr,δRε)Mc(Π+

r,δRε) +M(Π+
r,δRε)M

c(F+
r,δRε). (5.34)

Remark. For shortness we consider only the case where r is a point of the convex part

of the boundary ∂ ΛR. The case where r belongs to the concave part of the boundary (the
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boundary of a hole) can be treated similarly. For example, (5.34) in the concave case will

have the form:

M(Πr,δRε)Mc(F+
r,δRε) =M(Πr,δRε)Mc(Π+

r,δRε)−M
c(Π+

r,δRε)M(F+
r,δRε).

From (5.34) it follows that

IB3 (r + tn, R) =

∫
X 0

dP 0(x0)(W1Mc(Π+
r,δRε )M(Πr,δRε )gz)(r + tn + x0)

+

∫
X 0

dP 0(x0)(W1Mc(F+
r,δRε )M(Π+

r,δRε )gz)(r + tn + x0)

= J(r + tn, R) +K(r + tn, R). (5.35)

Now combining (5.31) - (5.33) and (5.35) we get

∫
ΛR,δ

IB(u,R)du =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))J(r + tn, R)

+

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))K(r + tn, R) + o(1)

= J (R) +K(R) + o(1). (5.36)

Below we will show that J (R) is the boundary term (up to the corrections) and that

K(R) = o(R). First we treat J (R). To get rid of the restriction to the cylinder, we

decompose J(r + tn, R) by decomposing M(Πr,δRε)Mc(Π+
r,δRε):

M(Πr,δRε)Mc(Π+
r,δRε) =Mc(Π+

r )−Mc(Π+
r )Mc(Π+

r,δRε),

where

Π+
r = {(ξ, η)

∣∣ η ≥ 0} (5.37)

We estimate the term corresponding to Mc(Π+
r )Mc(Π+

r,δRε) by using again Corollary 3.16

and find from (5.35) and (5.36) that

J (R) = J1(R)− J2(R) + o(1)

where

J1(R) =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt

∫
X 0

dP 0(x0)(W1Mc(Π+
r )gz)(r + tn + x0)

and

J2(R) =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt tkR(r)

∫
X 0

dP 0(x0)(W1Mc(Π+
r )gz)(r + tn + x0).
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Furthermore, writing the integration
∫ δRε

0
dt as the difference

∫∞
0
dt −

∫∞
δRε

dt and using

the translation invariance of gz,Wρ and Mc(Π+
r ) as well as Corollary 3.16, we obtain

J (R) = J b(R)− J c
1 (R) + o(1) (5.38)

where

J b(R) = R

∫
∂ Λ

dσ(r)

∞∫
0

dt

∫
X 0

dP 0(x0)(W1Mc(Π+
r )gz)(r + tn + x0) (5.39)

and

J c
1 (R) =

∫
∂ Λ

dσ(r)

∞∫
0

dt tk(r)

∫
X 0

dP 0(dx0)(W1Mc(Π+
r )gz)(r + tn + x0). (5.40)

By Corollary 3.16 ∫
X 0

dP 0(x0)(W1Mc(Π+
r )|gz|)(r + tn + x0) ≤ C

(1 + t)l
,

therefore both integrals J b(R) and J c
1 (R) are convergent.

Note that J b(R) is the boundary term and J c
1 (R) is a contribution to the constant term

Now we consider K(R) from (5.36). In this section we show only that K(R) = o(R).

The further analysis, which we carry out in the next section, allows to separate from K(R)

additional contributions to the constant term. The term K(r + tn, R) from (5.35) can be

written in the form

K(r + tn, R) =

∫
X 0

dP 0(x0)(W1Mc(F+
r,δRε )M(Π+

r,δRε )gz)(r + tn + x0)

=

∫
X 0

dP 0(x0)1X (F+
r,δRε )(r + tn + x0)(W1Mc(F+

r,δRε )M(Π+
r,δRε )gz)(r + tn + x0)

+

∫
X 0

dP 0(x0)1X c(F+
r,δRε )(r + tn + x0)(W1Mc(F+

r,δRε )M(Π+
r,δRε )gz)(r + tn + x0)

= KA(r + tn, R) +KB(r + tn, R). (5.41)

This implies the following decomposition of K(R):

K(R) =

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))KA(r + tn, R)

+

∫
∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))KB(r + tn, R)

= KA(R) +KB(R). (5.42)
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Let us estimate first KA(R). By the choice of δ, |1− tkR(r)| ≤ 2 for all t ∈ [0, δRε], hence

∣∣ KA(R)
∣∣ ≤ 2

∫
∂ ΛR

dσ(r)

δRε∫
0

dt
∣∣ KA(r + tn, R)

∣∣ . (5.43)

It is easy to check that for any measurable and non-negative function f defined on the

space M and any measurable Λ1, Λ2 ⊂ R2∫
M

dWρ(µ)1Mc(Λ1)(µ)1M(Λ2)(µ)f(µ) ≤
∫
X c(Λ1)

dρ(x)

∫
M

dWρ(µ)f(x, µ). (5.44)

Indeed, using formula (5.15), we have that∫
M

dWρ(µ)1Mc(Λ1)(µ)1M(Λ2)(µ)f(µ)

≤
∫
M

dWρ(µ)1Mc(Λ1)(µ)1M(Λ2)(µ)f(µ)
∑
µ̄⊂µ

1Mc
1(Λ1)(µ̄)1M1(Λ2)(µ̄)

≤
∫
X c(Λ1)X (Λ2)

dρ(x)

∫
M

dWρ(µ)f(x, µ) =

∫
X c(Λ1)X (Λ2)

dρ(x)(Wf)(x)

where M1 = {µ ∈M
∣∣ |µ| = 1} is the subspace of one-element configurations.

Then on account of (5.43)∣∣ KA(r + tn, R)
∣∣ ≤ ∫

X 0

dP 0(x0)

∫
M

dWρ(µ)1Mc(F+
r,δRε )M(Π+

r,δRε )(µ)

·
∣∣ gz(r + tn + x0, µ)

∣∣≤ ∫
X 0

dP 0(x0)

∫
X c(F+

r,δRε )X (Π+
r,δRε )

dρ(y)

· (W
∣∣ gz ∣∣)(r + tn + x0, y).

As it was mentioned above, there exists a constant C = C(β, z, φ, l) such that (W
∣∣ gz ∣∣

)(x, y) ≤ C, for any x, y ∈ X . Hence putting D(r, R) = ρ(X c(F+
r,δRε)X (Π+

r,δRε)) we find that

∣∣ KA(r + tn, R)
∣∣≤ C

2πβ
· D(r, R). (5.45)

Thus we need to study D(r, R), r ∈ ∂ΛR. Obviously

D(r, R) =

δRε∫
−δRε

dξ

∞∫
0

dη

∫
X 0

dP 0(y0)1X c(F+
r,δRε )X (Π+

r,δRε )(y
0 + (ξ, η)).

Note that (ξ, η) + y0 ∈ X (Π+
r,δRε) iff

 inf0≤t≤β〈y0(t) + η,n(r)〉 ≥ 0,

sup0≤t≤β |ỹ0(t) + ξ| < δRε
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where ỹ0(t) = y0(t)− 〈y0(t),n(r)〉 is the projection of y0(t) onto the tangent to ∂ΛR at the

point r. On the other hand, (ξ, η) + y0 ∈ X c(F+
r,δRε) iff sup0≤t≤β[fr,R(ỹ0(t) + ξ) − 〈y0(t) +

η,n(r)〉] > 0.

To simplify notations, where there is no confusion, we will omit below the arguments in

the above mentioned conditions, for example, we will write the last condition in the form:

sup[fr,R(ỹ0 + ξ)− 〈y0 + η,n〉] > 0.

Now putting for each ξ ∈ (−δRε, δRε) and r ∈ ∂ΛR,

AR(r, ξ) = {(η, y0) ∈ [0,+∞)×X 0
∣∣ − inf〈y0,n〉 < η < sup[fr,R(ỹ0 + ξ)− 〈y0,n〉]},

we can write, using Fubini’s theorem, that

D(r, R) =

δRε∫
−δRε

dξ

∞∫
0

dη

∫
X 0

dP 0(y0)1sup |ỹ0+ξ|<δRε(ξ, y
0)1AR(r,ξ)(η, y

0)

=

δRε∫
−δRε

dξ

∫
X 0

dP 0(y0)1sup |ỹ0+ξ|<δRε(ξ, y
0){sup[fr,R(ξ + ỹ0)− 〈y0,n〉] + inf〈y0,n〉}.

Following the paper 5, we choose τ(n) and τR(ξ) so that inf〈y0,n〉 = 〈y0(τ(n)),n〉,

sup[fr,R(ξ + ỹ0)− 〈y0,n〉] = fr,R(ξ + ˜y0(τR(ξ)))− 〈y0(τR(ξ)),n〉

Note that τ(n) is P 0-almost surely unique (see Ref. [55] and reference there, a direct

proof is given in Appendix A.3). Then

fr,R(ξ + ˜y0(τ(n))) ≤ sup[fr,R(ξ + ỹ0)− (y0,n)] + inf(y0,n) ≤ fr,R(ξ + ˜y0(τR(ξ))).

At the same time, we have that

|fr,R(ξ)| ≤ CR−1|ξ|2 , if |ξ| < δRε, (5.46)

with a constant C = C(Λ). Therefore, using the condition: sup |ξ + ỹ0| < δRε, we obtain

| sup[fr,R(ξ + ỹ0)− 〈y0,n〉] + inf〈y0,n〉| ≤ CR−
3
4 , (5.47)

uniformly in r ∈ ∂ΛR. This implies

D(r, R) ≤ CR−
5
8 (5.48)

and therefore from (5.46) and (5.48) it follows that∣∣ KA(R)
∣∣≤ C

πβ
R

1
2 . (5.49)
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Now we estimate
∣∣ KB(R)

∣∣. We can rewrite KB(r + tn, R) from (5.42) as

KB(r + tn, R) =

∫
X 0

dP 0(x0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

·
∫
Mc(F+

r,δRε )M(Π+
r,δRε )

dWρ(µ)gz)(r + tn + x0, µ).

Hence ∣∣ KB(r + tn, R)
∣∣ ≤ ∫

X 0

dP 0(x0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

· (W
∣∣ gz ∣∣)(r + tn + x0). (5.50)

Using Fubini’s theorem and (5.26) we have

∣∣ KB(R)
∣∣ ≤ ∫

∂ ΛR

dσ(r)

δRε∫
0

dt(1− tkR(r))
∣∣ KB(r + tn, R)

∣∣ (5.51)

≤ 2e2βB+1

∫
∂ ΛR

dσ(r)

∞∫
0

dt

∫
X 0

dP 0(x0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

= 2e2βB+1

∫
∂ ΛR

dσ(r)

∫
X 0

dP 0(x0)1sup |x̃0|<δRε(x
0)·

· {sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉} ≤ e2βB+1

πβ
|∂Λ|R

1
4 .

Here we used also the estimate (5.48) with ξ = 0. Thus KB(R) = o(R). This together with

(5.42) and (5.49) gives: K(R) = o(R).

Now combining (5.30), (5.36) and (5.38) - (5.40) we get∫
ΛR

IB(u,R)du = J b(R) + o(R). (5.52)

Finally (5.23), (5.25) and (5.52) imply

ln Z(ΛR, z) = R2 |Λ|
∫
X 0

dP 0(x0)(Wgz)(x
0)

−R
∫
∂ Λ

dσ(r)

∞∫
0

dt

∫
X 0

dP 0(x0)(W1Mc(Π+
r )gz)(r + tn + x0) + o(R).

To get (5.6), it remains to write explicitly the integrals Wgz and W1Mc(Π+
r )gz).

Now if φ is in addition rotation invariant then, because of rotation invariance of the Ursell

function and the measure Wzρ, the integral (W1Mc(Π+
r )gz)(r + tn + x0) does not depend on

the orientation of the normal n(r) and the half-plane Π+
r , r ∈ ∂ΛR, hence it can be evaluated

with respect to any fixed unit vector n0 and corresponding half-plane Π+
0 . This implies (5.7)

or, in other words, the expansion (1) with

p(φ, z) = β−1

∫
X 0

dP 0(x0)(Wgz)(x
0)
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and

b(φ, z) = −
∞∫

0

dt

∫
X 0

dP 0(x0)(W1Mc(Π+
0 )gz)(tn

0 + x0) (5.53)

which completes the proof of Theorem 5.1.

5.2 Constant term.

We continue the study of the asymptotic behavior of the log-partition function of a quantum

gas with MB statistics.

This section studies the third (constant) term of the asymptotics of ln Z(ΛR, z) as R→
+∞ . The class of domains Λ to be considered in this section consists of open convex

bounded subsets of R2 with finitely many convex closed holes such that the connected parts

of the boundary of Λ are one dimensional closed C3-manifolds.

We assume that particles interact via pair interaction φ, which is an even function on R2

and satisfies the stability condition with a constant B ≥ 0:∑
1≤i<j≤n

φ(ui − uj) ≥ −Bn. (5.54)

Moreover we assume that φ is differentiable and is uniformly bounded together with its

derivatives so that

|φ(u)| ≤M, ||φl||1 =

∫
Rν
du|φl(u)| < +∞ (5.55)

where φl(u) = φ(u)(1 + |u|)l with l ≥ 16, and

|∇φ(u)| ≤M ′, ||∇φ||1 =

∫
Rν
du|∇φ(u)| < +∞. (5.56)

Let X 0 = {x ∈ C([0, β],R2)
∣∣ x(0) = x(β) = 0} be the space of Brownian loops in R2

which start and end at 0. Let P 0 be the non-normalized Brownian bridge measure on X 0,

P 0(X 0) = (2πβ)−1 . We will consider also modified measures P 0
k , k = 1, 2, · · · , given by

P 0
k (dx0) = (sup |x0|)kP 0(dx0). Let λ = λ(β) = max{P 0

1 (X 0), P 0
2 (X 0)}.

The main result of Section 5.2 is

Theorem 5.2 (Constant term) . If the potential φ satisfies the above mentioned condi-

tions (5.54) - (5.56) and z is from the interval

0 < z < [2lβeβB+1λmax(M, ||φl||1, ||∇φ||1)]−1 (5.57)

then for any admissible domain Λ the log-partition function has the following asymptotic

expansion:

ln Z(ΛR, z) = R2|Λ|βp(φ, z) +Rb(Λ, φ, z) + c(Λ, φ, z) + o(1). (5.58)

81



where the coefficients p(φ, z), b(Λ, φ, z) and c(Λ, φ, z) are given explicitly by Eqs. (5.23),

(5.64) and (5.133) respectively.

If φ is rotation invariant the coefficients b(Λ, φ, z) and c(Λ, φ, z) take a simpler form

ln Z(ΛR, z) = R2|Λ|βp(φ, z) +R |∂ Λ|b(φ, z) + 2πχ(Λ)c(φ, z) + o(1) (5.59)

with b(φ, z) and c(φ, z) given by Eqs. (5.135) and (5.136).

5.2.1 The proof of Theorem 5.2.

Here we briefly describe how the volume, the boundary terms as well as the first contribution

to the constant term were obtained in Section 4.1.

We write ln Z(ΛR, z) as an integral of the Ursell function over the finite configurations

of loops in ΛR, we then separate a loop and release all the constraints except that the

separated loop starts in ΛR. This gives the volume term. Then we take away the integral

over the configurations where at least one loop leaves ΛR. Approximating this integral by

the integral over the configurations where at least one loop crosses the tangent line we obtain

the boundary term as well as the first contribution J c
1 to the constant term (see Eq. (5.66)

below ).

So using the notations of Section 4.1.1 we rewrite the formula (5.36) as∫
ΛR

IB(u,R)du =

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))J(r + tn, R)

+

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))K(r + tn, R) + o(1)

= J (R) +K(R) + o(1), (5.60)

with

J(r + tn, R) =

∫
X 0

dP 0(x0)W(1Mc(Π+
r,δRε )M(Πr,δRε )gz)(r + tn + x0) (5.61)

and

K(r + tn, R) =

∫
X 0

dP 0(x0)W(1Mc(F+
r,δRε )M(Π+

r,δRε )gz)(r + tn + x0). (5.62)

It was shown (see (5.38) ) that

J (R) = −Rb(Λ, φ, z)− J c
1 + o(1). (5.63)

Here

b(Λ, φ, z) = −
∫
∂ Λ

dσ(r)

∫ ∞
0

dt

∫
X 0

dP 0(x0)W(1Mc(Π+
r )gz)(r + tn + x0) (5.64)
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and

J c
1 =

∫
∂ Λ

dσ(r)k(r)

∫ ∞
0

dt t

∫
X 0

dP 0(x0)W(1Mc(Π+
r )gz)(r + tn + x0) (5.65)

where Π+
r = {(ξ, η)

∣∣ η > 0}.
The integrals on the right-hand side of Eqs. (5.64) and (5.65) are absolutely convergent

for z satisfying

0 < z < π(2l−1eβB+1||φl||1)−1. (5.66)

We observe that Rb(Λ, φ, z) is the boundary term and J c
1 is the first contributions to the

constant term of the asymptotic expansion (5.58).

Now we consider the term K(R) from (5.60). In Section 4.1.1 we have just shown that

K(R) = o(R). Below, analyzing this term in more details, we will separate from K(R) the

second and the third contributions to the constant term and will show that the rest is o(1).

Note that, due to the factor 1Mc(F+
r,δRε )M(Π+

r,δRε ), the integration on the right-hand side

of Eq. (5.62) is over those configurations {r + tn + x0, ω} in Π+
r,δRε where at least one loop

leaves ΛR. There are two possibilities: either the loop r + tn + x0 stays in ΛR then at least

one loop from the configuration ω leaves ΛR, or the loop r + tn + x0 itself leaves ΛR then ω

is any configuration in Π+
r,δRε . We will treat these cases separately.

Therefore we write K(r + tn, R) as

K(r + tn, R) =

∫
X 0

dP 0(x0)1X (F+
r,δRε )(r + tn + x0)W(1Mc(F+

r,δRε )M(Π+
r,δRε )gz)

× (r + tn + x0) +

∫
X 0

dP 0(dx0)1X c(F+
r,δRε )(r + tn + x0)

×W(1Mc(F+
r,δRε )M(Π+

r,δRε )gz)(r + tn + x0)

= KA(r + tn, R) +KB(r + tn, R). (5.67)

Respectively

K(R) =

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))KA(r + tn, R)

+

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))KB(r + tn, R)

= KA(R) +KB(R). (5.68)

B. Analysis of KA(R). The second contribution to the constant term.

In this subsection we will separate from KA(R) the second contribution J c
2 to the constant

term (see Eq. (5.112) below). Note that integration inKA(r+tn, R) is over the configurations
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(r + tn + x0, ω) where the loop r + tn + x0 stays in ΛR and at least one loop from the

configuration ω leaves ΛR. To get rid of the dependence on ΛR we decompose KA(R) as

KA(r + tn, R) =

∫
X 0

dP 0(x0)1X (Π+
r,δRε )(r + tn + x0)WMc(F+

r,δRε )M(Π+
r,δRε )

× gz(r + tn + x0)−
∫
X 0

dP 0(x0)1X c(F+
r,δRε )X (Π+

r,δRε )

× (r + tn + x0)WMc(F+
r,δRε )M(Π+

r,δRε )gz(r + tn + x0)

= KA1(r + tn, R)−KA2(r + tn, R). (5.69)

Now the integration in KA2(r+tn, R) is over the configurations {r+tn+x0, ω} that have

two or more loops visiting the domain Π+
r,δRε \F

+
r,δRε . The contribution of such configurations

is small (due to the bound (5.48)).

By similar arguments we approximate KA1(r+ tn, R) by the integral over the configura-

tions {r + tn + x0, ω} where the loop r + tn + x0 stays in Π+
r,δRε and exactly one loop from

ω visits the domain Π+
r,δRε \ F

+
r,δRε . Then we approximate the last integral by the integral

where this loop crosses the parabola tangent to ∂ΛR, but not the tangent. Thus we get the

quantity J c
2 .

The decomposition (5.69) implies

KA(R) = KA1(R)−KA2(R) (5.70)

where

KA1(R) =

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))KA1(r + tn, R) (5.71)

and

KA2(R) =

∫
∂ ΛR

dσ(r)

∫ δRε

0

dt(1− tkR(r))KA2(r + tn, R) (5.72)

Denote

S(r + tn + x0) =WMc(F+
r,δRε )M(Π+

r,δRε )(gz)(r + tn + x0).

With the help of the equality∫
Mc(X (Λ))

h(ω)dWρ(ω) =

∫
M+(X c(Λ))

dWρ(ω)(−1)|ω|+1Wh(ω) (5.73)
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which holds true for any absolutely integrable h, we have

S(r + tn + x0) =

∫
M+(X c(F+

r,δRε ))M(Π+
r,δRε )

dWρ(ω)(−1)|ω|+1WM(Π+
r,δRε )(gz)

· (r + tn + x0, ω) =

∫
X c(F+

r,δRε )X (Π+
r,δRε )

dρ(y)WM(Π+
r,δRε )(gz)

· (r + tn + x0, y) +
∞∑
m=2

(−1)m

m!

∫
[X c(F+

r,δRε )X (Π+
r,δRε )]m

m∏
i=1

dρ(yi)

· WM(Π+
r,δRε )(gz)(r + tn + x0, y1, · · · , ym)

= S1(r + tn + x0) + Ŝ2(r + tn + x0). (5.74)

According to this we split KA1 into two parts

KA1(r + tn, R) =

∫
X 0

dP 0(x0)1X (Π+
r,δRε )(r + tn + x0)S1(r + tn + x0)

+

∫
X 0

dP 0(x0)1X (Π+
r,δRε )(r + tn + x0)Ŝ2(r + tn + x0)

= KA1
1 (r + tn, R) + K̂A1(r + tn, R). (5.75)

We estimate the series Ŝ2(r + tn + x0) with the help of the following lemma (see Appendix

A.1).

Lemma 5.3 . Let ū = βmax{M, (2πβ)−1||φ||1} then for all z from the interval

0 < z < (ūeβB+1)−1 (5.76)

and all ω ∈M the following inequality holds true:

W(|g̃z|)(ω) ≤ (|ω| − 1)!

eū

[
zeβB+1ū

1− zeβB+1ū

]|ω|
. (5.77)

Due to the inequality (5.48)

ρ(X c(F+
r,δRε)X (Π+

r,δRε)) ≤ CR−
5
8 (5.78)

where C = C(Λ, β) is a positive constant. Using this bound and Lemma 5.3 we find that for

all z from the interval (5.76),

|Ŝ2(r + tn + x0)| ≤ 1

eū

∞∑
m=2

(
zūeβB+1

1− zūeβB+1)

)m+1 [
ρ(X c(F+

r,δRε)X (Π+
r,δRε))

]m
≤ CR−

5
4 (5.79)

with C = C(Λ, β, z). Hence

|K̂A1(R)| ≤ 2

∫
∂ ΛR

σ(dr)

∫ δRε

0

dt
∣∣ K̃A1(r + tn, R)

∣∣≤ |∂Λ|CR−
1
8 . (5.80)
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Now passing to KA1
1 (R) from (5.75) we have

KA1
1 (R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dt

∫
X 0

P 0(dx0)1X (Π+
r,δRε )(r + tn + x0)

× S1(r + tn + x0)−
∫
∂ ΛR

σ(dr)

∫ δRε

0

dttkR(r)

∫
X 0

P 0(dx0)

× 1X (Π+
r,δRε )(r + tn + x0)S1(r + tn + x0). (5.81)

From the bound (5.48) and Lemma 5.3 it follows that the second summand on the right-hand

side of Eq. (5.81) is o(1). Therefore, combining Eqs. (5.71), (5.80) and (5.81), we have

KA1(R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dtKA1
2 (r + tn, R) + o(1) = KA1

2 (R) + o(1) (5.82)

where

KA1
2 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r,δRε )(r + tn + x0)

×
∫
X c(F+

r,δRε )X (Π+
r,δRε )

ρ(dy)WM(Π+
r,δRε )(g̃z)(r + tn + x0, y). (5.83)

We can not use directly Corollary 3.16 to get rid of the restrictions to the cylinder Π+
r,δRε

in Eq. (5.83). First observe that with the help of the identity (5.15) we have∫
X
ρ(dy)

∫
Mc(BδRε (r+tn))

Wρ(dω)|g̃z(r + tn + x0, y, ω)|

=

∫
M
Wρ(dω)

(∑
y∈ω

1Mc(BδRε (r+tn))(ω \ {y})

)
|g̃z(r + tn + x0, ω)|

≤
∫
Mc(BδRε (r+tn))

Wρ(dω)|gz(r + tn + x0, ω)|. (5.84)

Then applying Corollary 3.16 we get

KA1
2 (r + tn, R) = KA1

3 (r + tn, R) + o(R−2) (5.85)

with

KA1
3 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
X c(F+

r,δRε )X (Π+
r,δRε )

× ρ(dy)WM(Π+
r )(g̃z)(r + tn + x0, y). (5.86)

Since φ ∈ C1, writing y = (ξ, η) + y0 in the local coordinates, we have

WM(Π+
r )(g̃z)(r + tn + x0, y) =WM(Π+

r )(g̃z)(r + tn + x0, (ξ, η0) + y0)

+
∂

∂η
WM(Π+

r )(g̃z)(r + tn + x0, (ξ, η̄0) + y0)

× (η − η0) (5.87)
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where η0 = − inf〈y0,n〉 = − inft〈y0(t),n〉 and η̄0 = η0 + θ(η − η0), 0 < θ < 1. According to

this we decompose KA1
3 (r + tn, R) as

KA1
3 (r + tn, R) = KA1

4 (r + tn, R) +KA1
5 (r + tn, R) (5.88)

where

KA1
4 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

×
∫ ∞

0

dη

∫
X 0

P 0(dy0)1X c(F+
r,δRε )X (Π+

r,δRε )((ξ, η) + y0)

×WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0). (5.89)

and

KA1
5 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

∫ ∞
0

dη(η − η0)

×
∫
X 0

P 0(dy0)1X c(F+
r,δRε )X (Π+

r,δRε )((ξ, η) + y0)

× ∂

∂η
WM(Π+

r )(g̃z)(r + tn + x0, (ξ, η̄0) + y0). (5.90)

To estimate KA1
5 we use the following lemma (see the proof in Appendix A.2).

Lemma 5.4 If φ ∈ C1 satisfies conditions (5.54) - (5.56), then for all z from the interval

0 < z < 2π[eβB+1 max(||φ||1, ||∇φ||1)]−1, the derivative of the two-point truncated correlation

function satisfies the following bound

| ∂
∂η
W(gz)(x

0 + (ξ, η), y)| ≤ D, (ξ, η) ∈ R2 (5.91)

where D = D(φ, β, z) does not depend on x0 + (ξ, η), y.

Using Fubini’s theorem we have

KA1
5 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

∫
X 0

P 0(dy0)

× 1|ỹ0+ξ|≤δRε(y
0)
∂

∂η
WM(Π+

r )(g̃z)(r + tn + x0, (ξ, η̄0) + y0)

×
∫ sup[fr,R(ξ+ỹ0)−〈y0,n〉]

η0

dη(η − η0). (5.92)

We recall that ỹ0 = ỹ0(t) denotes the projection of y0(t) onto the tangent to ∂ΛR : ỹ0(t) =

y0(t)− 〈y0(t),n〉. Due to the bound (5.47),

{sup[fr,R(ξ + ỹ0)− 〈y0,n〉]− η0}2 ≤ C(Λ, β)R−
3
2 . (5.93)
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Therefore applying Lemma 5.4 we get

|KA1
5 (r + tn, R)| ≤ DC(Λ, β)R−

11
8 . (5.94)

Combining Eqs. (5.82), (5.85), (5.88) and (5.94) we find

KA1(R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dtKA1
4 (r + tn, R) + o(1) = KA1

4 (R) + o(1) (5.95)

where KA1
4 (r + tn, R) is given by Eq. (5.89). Observe that

KA1
4 (R) =

∫
∂ ΛR

σ(dr)

∫ ∞
0

dtKA1
4 (r + tn, R) + o(1). (5.96)

Indeed, by Corollary 3.16,∣∣ ∫ ∞
δRε

dtKA1
4 (r + tn, R)

∣∣≤∫ ∞
δRε

dt

∫
X 0

P 0(dx0)

∫
X c(Bt(r+tn))

WM(Π+
r )|g̃z|(r + tn

+ x0, (ξ, η0) + y0) ≤ CR−
15
8 (5.97)

which implies Eq. (5.96).

The integral in KA1
4 (R) over the loops (ξ, η) + y0 ∈ X c(F+

r,δRε)X (Π+
r,δRε) we approximate

by the integral over the loops which cross the parabola, tangent to ∂ΛR, without crossing

the tangent line. Arguing as we did above to estimate KA1
5 (r+ tn, R), we can write that for

all t > 0,

KA1
4 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

∫
X 0

P 0(dy0)

× 1
sup |ξ+ỹ0|≤δRε(ξ, y

0)WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0)

× {sup[fr,R(ξ + ỹ0)− 〈y0,n〉]− η0}. (5.98)

Approximating {sup[fr,R(ξ + ỹ0)− 〈y0,n〉]− η0} by 1
2
kR(r)(ξ + ˜y0(τ(n)))2 we get

KA1
4 (r + tn, R) = KA1

6 (r + tn, R) +KA1
7 (r + tn, R) (5.99)

where

KA1
6 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

∫
X 0

P 0(dy0)

× 1
sup |ξ+ỹ0|≤δRε(ξ, y

0)WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0)

× 1

2
kR(r)(ξ + ˜y0(τ(n)))2 (5.100)

and the correction

KA1
7 (r + tn, R) =

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫
|ξ|≤δRε

dξ

∫
X 0

P 0(dy0)

× 1
sup |ξ+ỹ0|≤δRε(ξ, y

0)WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0)

× {sup[fr,R(ξ + ỹ0)− 〈y0,n〉]− η0 −
1

2
kR(r)(ξ + ˜y0(τ(n)))2}. (5.101)
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Here τ(n) satisfies the condition inf〈y0,n〉 = 〈y0(τ(n)),n〉. As in Section 4.1.1 we also choose

τR(ξ) so that

sup[fr,R(ξ + ỹ0)− 〈y0,n〉] = fr,R(ξ + ˜y0(τR(ξ)))− 〈y0(τR(ξ)),n〉. (5.102)

We want to show that ∫
∂ ΛR

σ(dr)

∫ ∞
0

dtKA1
7 (r + tn, R) = o(1). (5.103)

Since ∂Λ ∈ C3, we have that

|fr,R(ξ)| ≤ C|ξ|2R−1 and |fr,R(ξ)− 1

2
kR(r)ξ2| ≤ C|ξ|3R−2 (5.104)

for ξ, |ξ| ≤ δRε. By the choice of τR(ξ) and τ(n), obviously

0 ≤〈y0(τR(ξ)),n〉 − 〈y0(τ(n)),n〉

≤ fr,R(ξ + ˜y0(τR(ξ)))− fr,R(ξ + ˜y0(τ(n))) ≤ CR−
3
4 ,

for all y0, ξ with sup |ξ + ỹ0| ≤ δRε. Now τ(n) is P 0-almost surely unique (see Appendix

A.3), hence τR(ξ) → τ(n) as R → ∞. Using Eq. (5.104) and the definitions of τ(n) and

τR(ξ), we have

sup[fr,R(ξ + ỹ0)− 〈y0,n〉] + inf〈y0,n〉 − 1

2
kR(r)(ξ + ˜y0(τ(n)))2

≤ fr,R(ξ + ˜y0(τR(ξ)))− 1

2
kR(r)(ξ + ˜y0(τ(n)))2

≤ CR−2|ξ + ˜y0(τR(ξ))|3 +
1

2
kR(r)

[
(ξ + ˜y0(τR(ξ)))2 − (ξ + ˜y0(τ(n)))2

]
≤ CR−

13
8 +

1

2
R−1k̄Λ

∣∣ (ξ + ˜y0(τR(ξ)))2 − (ξ + ˜y0(τ(n)))2
∣∣ .

On the other hand

sup[fr,R(ξ + ỹ0)− 〈y0,n〉] + inf〈y0,n〉 − 1

2
kR(r)(ξ + ˜y0(τ(n)))2

≥ fr,R(ξ + ˜y0(τ(n)))− 1

2
kR(r)(ξ + ˜y0(τ(n)))2

≥ −CR−2|ξ + ˜y0(τ(n))|3 ≥ −CR−
13
8 .

Thus ∣∣ sup[fr,R(ξ + ỹ0)− 〈y0,n〉] + inf〈y0,n〉 − 1

2
kR(r)(ξ + ˜y0(τ(n)))2

∣∣
≤ CR−

13
8 +

1

2
R−1k̄Λ

∣∣ (ξ + ˜y0(τR(ξ)))2 − (ξ + ˜y0(τ(n)))2
∣∣ (5.105)
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Substituting this into Eq. (5.101) we get

|KA1
7 (r + tn, R)| ≤CR−

13
8

∫
X 0

P 0(dx0)

∫ δRε

−δRε
dξ

∫
X 0

P 0(dy0)1
sup |ξ+ỹ0|≤δRε(ξ, y

0)

×WM(Π+
r )|g̃z|(r + tn + x0, (ξ, η0) + y0) +R−1k̄Λ

×
∫
X 0

P 0(dx0)

∫ δRε

−δRε
dξ

∫
X 0

P 0(dy0)1
sup |ξ+ỹ0|≤δRε(ξ, y

0)

×WM(Π+
r )|g̃z|(r + tn + x0, (ξ, η0) + y0)

∣∣ (ξ + ˜y0(τR(ξ)))2

− (ξ + ˜y0(τ(n)))2
∣∣= K̂A1

7 (r + tn, R) + K̃A1
7 (r + tn, R) (5.106)

Let us fix any t > 0. According to Corollary 3.16

K̂A1
7 (r + tn, R) ≤CR−

13
8

∫
X 0

P 0(dx0)

∫
X c(Bt(r+tn))

ρ(dy)

×WM|g̃z|(r + tn + x0, y) ≤ CR−
13
8 (1 + t)−l. (5.107)

Since τR(ξ)→ τ(n) as R→∞, by Lebesgue dominated convergence theorem

R−1k̄Λ

∫
∂ ΛR

σ(dr)

∫ ∞
0

dtK̃A1
7 (r + tn, R)→ 0. (5.108)

To apply the Lebesgue theorem, we observe that due to Corollary 3.16∫ ∞
0

dt

∫
X 0

P 0(dx0)

∫ ∞
−∞

dξ|ξ|s
∫
X 0

P 0
j (dy0)WM|g̃z|(r + tn + x0, (ξ, η0) + y0)

≤
∫ ∞

0

dt
∞∑
k=0

(k + 1)s
∫
X 0

P 0(dx0)

∫ ∞
−∞

dξ1k≤|ξ|<k+1

∫
X 0

P 0
j (dy0)WM|g̃z|(r + tn

+ x0, (ξ, η0) + y0) ≤
∫ ∞

0

dt
∞∑
k=0

(k + 1)s
∫
X 0

P 0(dx0)

∫
X c(Bmax(k,t)(r+tn))

ρj(dy)

×WM|g̃z|(r + tn + x0, y) ≤ C(β, z, l), j, s = 0, 1, 2. (5.109)

From Eqs. (5.107), (5.108) we get Eq. (5.103) which together with Eqs. (5.95) and (5.99)

implies

KA1(R) = KA1
6 (R) + o(1) =

∫
∂ ΛR

σ(dr)

∫ ∞
0

dtKA1
6 (r + tn, R) + o(1) (5.110)

where KA1
6 (r + tn, R) is given by Eq. (5.100). Thus applying once more Corollary 3.16 to

KA1
6 (R) we get

KA1(R) = J c
2 + o(1) (5.111)

with the constant term

J c
2 =

1

2

∫
∂ Λ

σ(dr)k(r)

∫ ∞
0

dt

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫ ∞
−∞

dξ

×
∫
X 0

P 0(dy0)WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0)(ξ + ˜y0(τ(n)))2. (5.112)
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Note that due to Eq. (5.109) the integral on the right-hand side of Eq. (5.112) is absolutely

convergent in the interval

0 < z < (2lβeβB+1λ||φl||1)−1. (5.113)

Lemma 5.3 and formulas (5.74) and (5.78) imply that for R large enough∣∣WMc(F+
r,δRε )M(Π+

r,δRε )(g̃z)(r + tn + x0)
∣∣≤ C(Λ, β, z)R−

5
8 (5.114)

On the other hand, using the bound (5.93) with ξ = 0, we have∣∣ ∫ δRε

0

dt(1− tkR(r))

∫
X 0

P 0(dx0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)
∣∣

≤ 2

∫
X 0

P 0(dx0)1sup |x̃0|<δRε(x
0){sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉}

≤ C(Λ, β)R−
3
4 (5.115)

Hence |KA2(R)| ≤ C(Λ, β, z)R−
3
8 . Thus we conclude from Eqs. (5.75) and (5.111) that

KA(R) = J c
2 (R) + o(1). (5.116)

C. Analysis of KB(R). The third contribution to the constant term.

The treatment of KB(R) in many aspects is similar to that of KA(R). Approximating the

integral in KB(r+tn, R) (see Eqs. (5.67) and (5.117)) over the configurations (r+tn+x0, ω)

where the loop r + tn + x0 leaves ΛR by the integral over (r + tn + x0, ω) where the loop

r + tn + x0 crosses the parabola tangent to ∂ΛR but not the tangent line, we get the

contribution J c
3 . Thus the constant term is the sum J c

1 + J c
2 + J c

3 . If the potential is

rotation invariant each term of this sum is factorized into a potential dependent factor times

the integral of the curvature along the boundary ∂ΛR, which by the Gauss-Bonnet theorem

is the Euler-Poincare characteristic of Λ multiplied by 2π.

From Eqs. (5.67), (5.68) and Corollary 3.16 we get

KB(R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dt(1− tkR(r))KB
1 (r + tn, R) + o(1) (5.117)

where

KB
1 (r + tn, R) =

∫
X 0

P 0(dx0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

×WM(Π+
r )(g̃z)(r + tn + x0). (5.118)

Similarly to Eq. (5.87) we have

WM(Π+
r )(g̃z)(r + tn + x0) =WM(Π+

r )(g̃z)(r + t0n + x0)

+
∂

∂t
WM(Π+

r )(g̃z)(r + t̄0n + x0)(t− t0) (5.119)
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where t0 = − inf〈x0,n〉, t̄0 = t0 + θ(t− t0). Hence

KB
1 (r + tn, R) = KB

2 (r + tn, R) +KB
3 (r + tn, R) (5.120)

where

KB
2 (r + tn, R) =

∫
X 0

P 0(dx0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

×WM(Π+
r )(g̃z)(r + t0n + x0) (5.121)

and

KB
3 (r + tn, R) =

∫
X 0

P 0(dx0)1X c(F+
r,δRε )X (Π+

r,δRε )(r + tn + x0)

× ∂

∂t
WM(Π+

r )(g̃z)(r + t̄0n + x0)(t− t0). (5.122)

Using Lemma 5.4, the bound (5.93) with ξ = 0 and invoking arguments which were used to

derive Eq. (5.94), we can write

∣∣ ∫ δRε

0

dt(1− tkR(r))KB
3 (r + tn, R)

∣∣≤ 2

∫ ∞
0

dt

∫
X 0

P 0(dx0)1X c(F+
r,δRε )X (Π+

r,δRε )

× (r + tn + x0)
∣∣ ∂
∂t
WM(Π+

r )(g̃z)(r + t̄0n + x0)
∣∣∣∣ (t− t0)

∣∣≤ 2D

∫
X 0

P 0(dx0)

× {sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉}2 ≤ C(Λ, φ, β, z)R−
3
2 . (5.123)

Hence

KB3 (R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dt(1− tkR(r))KB
3 (r + tn, R) = o(1) (5.124)

It remains to separate the last contribution to the constant term coming from KB2 (R).

We split KB2 (R) in two parts

KB2 (R) =

∫
∂ ΛR

σ(dr)

∫ δRε

0

dtKB
2 (r + tn, R)

−
∫
∂ ΛR

σ(dr)kR(r)

∫ δRε

0

dttKB
2 (r + tn, R) (5.125)

With the help of Lemma 5.3 and the bound (5.93) one can easily show that the second

summand on the right-hand side of Eq. (5.125) is o(1). By Corollary 3.16 we can replace

the integral
∫ δRε

0
dt by

∫∞
0
dt in the first summand of Eq. (5.125) with correction o(1). On

the other hand, by Fubini’s theorem∫ ∞
0

dtKB
2 (r + tn, R) =

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n + x0)

× {sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉}. (5.126)
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Therefore

KB2 (R) =

∫
∂ ΛR

σ(dr)

∫ ∞
0

dtKB
2 (r + tn, R) + o(1). (5.127)

Now we approximate {sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉} by 1
2
kR(r)

× ( ˜x0(τ(n)))2 and estimate the correction. We proceed in a similar way as we did in the

proof of Eqs. (5.103) and (5.110). It follows from Eq. (5.127) that∫ ∞
0

dtKB
2 (r + tn, R) =

1

2
kR(r)

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n + x0)

× ( ˜x0(τ(n)))2 +

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n

+ x0){sup[fr,R(x̃0)− 〈x0,n〉] + inf〈x0,n〉

− 1

2
kR(r)( ˜x0(τ(n)))2} (5.128)

where τ(n) is defined by inf〈x0,n〉 = 〈x0(τ(n)),n〉. Then applying the inequality (5.105)

with ξ = 0 we get∫
∂ ΛR

σ(dr)

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n + x0){sup[fr,R(x̃0)− 〈x0,n〉]

+ inf〈x0,n〉 − 1

2
kR(r)( ˜x0(τ(n)))2} = o(1) (5.129)

Thus ∫
∂ ΛR

σ(dr)

∫ ∞
0

dtKB
2 (r + tn, R) = J c

3 + o(1) (5.130)

where

J c
3 =

1

2

∫
∂ Λ

σ(dr)k(r)

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n + x0)( ˜x0(τ(n)))2. (5.131)

Observe that the integral in Eq. (5.131) absolutely converges for z from the interval (5.113).

Now combining Eqs. (5.116), (5.117), (5.120), (5.124) and (5.127) we find that

K(R) = J c
2 + J c

3 + o(1) (5.132)

with J c
2 and J c

3 given by Eqs.(5.112) and (5.131) respectively.

The desired expansion (5.58) of the log-partition function follows from

formulas (5.25), (5.60), (5.63) and (5.132). We observe that the constant term

c(Λ, φ, z) =J c
1 − J c

2 − J c
3

=

∫
∂ Λ

σ(dr)k(r)

∫ ∞
0

dt t

∫
X 0

P 0(dx0)W(1Mc(Π+
r )g̃z)(r + tn + x0)

− 1

2

∫
∂ Λ

σ(dr)k(r)

∫ ∞
0

dt

∫
X 0

P 0(dx0)1X (Π+
r )(r + tn + x0)

∫ ∞
−∞

dξ

×
∫
X 0

P 0(dy0)WM(Π+
r )(g̃z)(r + tn + x0, (ξ, η0) + y0)(ξ + ˜y0(τ(n)))2

− 1

2

∫
∂ Λ

σ(dr)k(r)

∫
X 0

P 0(dx0)WM(Π+
r )(g̃z)(r + t0n + x0)( ˜x0(τ(n)))2. (5.133)
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is an analytic function in z for |z| from the interval (5.113).

If φ is rotation invariant, the Ursell function and the measure Wzρ, also are rotation

invariant therefore the integral
∫∞

0
dt
∫
X 0 P

0(dx0)W(1Mc(Π+
r )g̃z)(r

+ tn+x0) does not depend on the orientation of the normal n(r) and can be evaluated with

respect to any fixed unit vector d1 and the half-plane Π+
d1

= {u ∈ Rν
∣∣ 〈u,d1〉 ≥ 0}. In a

similar way the corresponding potential dependent factors in the integrals J c
1 ,J c

2 ,J c
3 do not

depend on r ∈ Λ and can be evaluated with the help of an arbitrary fixed pair of orthogonal

unit vectors d1,d2. Thus the terms b(Λ, φ, z) and c(Λ, φ, z) of the expansion (5.58) have

simpler form:

b(Λ, φ, z) = |∂Λ|b(φ, z) and c(Λ, φ, z) = 2πχ(Λ)c(φ, z) (5.134)

where

b(φ, z) = −
∫ ∞

0

dt

∫
X 0

P 0(dx0)W(1Mc(Π+
d1

)g̃z)(td1 + x0), (5.135)

and

c(φ, z) =

∫ ∞
0

dt t

∫
X 0

P 0(dx0)W(1Mc(Π+
d1

)g̃z)(td1 + x0)− 1

2

∫ ∞
0

dt

∫
X 0

P 0(dx0)

× 1X (Π+
d1

)(td1 + x0)

∫ ∞
−∞

dξ

∫
X 0

P 0(dy0)WM(Π+
d1

)(g̃z)(td1 + x0, y0

+ (ξ,− inf〈y0,d1〉))[〈ξ,d2〉+ 〈y0(τ(d1)),d2〉]2 −
1

2

∫
X 0

P 0(dx0)

×WM(Π+
d1

)(g̃z)(r − inf〈x0,d1〉d1 + x0)〈x0(τ(d1)),d2〉2. (5.136)

Here τ(d1) is defined by inf〈y0,d1〉 = 〈y0(τ(d1)),d1〉.
In conclusion we note that the second equality in Eq. (5.134) is a consequence of the

Gauss-Bonnet theorem:
∫
∂ Λ
σ(dr)k(r) = 2πχ(Λ).

Theorem 5.2 is proved.

It is worth to note that the expansion of the log-partition function

ln Ξid(ΛR, z) of the ideal gas is obtained from the expansion (5.58) by setting φ ≡ 0. In this

case

lnZid(ΛR, z) = R2|Λ|βzpid +R|∂Λ|zbid + πχ(Λ)zcid (5.137)

with pid =
∫
X 0 P

0(dx0), bid =
∫
X 0 P

0(dx0) inf〈x0,n〉 and cid =
∫
X 0 P

0(dx0)

× [(inf〈x0,n〉)2 − ( ˜x0(τ(n)))2].
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Let us show how to get the constant term of the expansion (5.137):

cid(Λ, z) =J c
id,1 − J c

id,3 = z

∫
∂ Λ

σ(dr)k(r) ·
∫
X 0

P 0(dx0)

− inf〈x0,n〉∫
0

dt t

− z1

2

∫
∂ Λ

σ(dr)k(r)

∫
X 0

P 0(dx0)( ˜x0(τ(n)))2 = z
1

2

∫
∂ Λ

σ(dr)k(r)

×
∫
X 0

P 0(dx0)[(inf〈x0,n〉)2 − ( ˜x0(τ(n)))2] = πχ(Λ)cid(z).

Thus one recovers the familiar case of large volume asymptotic expansion of Brownian

integrals (see Eqs. (2.55) and (2.56) in [62] with F = 0).

Notice that the same arguments in the d-dimensional case, d > 2 give

ln Z(ΛR, z) = Rdβp(φ, z)|Λ|+Rd−1 b(φ, z)|∂ Λ|+Rd−2c1(Λ)c2(φ, z) + o(Rd−2).

Here p(φ, z) and b(φ, z) are given by formulas similar to Eqs. (5.23) and (5.134) and c1(Λ) =

(d−1)
∫
∂ Λ
σ(dr)km(r), where km(r) is the mean curvature of ∂Λ at the point r ∈ ∂Λ. At the

same time, we are not able to get more terms of the expansion. This is a familiar case also

for the ideal gas and it is not clear whether the reason is technical or not (cf. [62], section

VII).

To prove boundedness property of the derivative of the two-point truncated correlation

functions we used the tree identity [16] which involves the function u(x, y) and here for the

sake of simplicity we assumed the boundedness of the interaction φ. One can release this

restrictive condition by developing further the techniques of the Ref. [71] for the bounded

function e−u(x,y) − 1.

5.3 Asymptotics of Brownian integrals. Bose statistics

This section is devoted to the study of the asymptotics of the Brownian integrals with paths

which are constrained to a bounded domain Λ of Rd when the domain is dilated to infinity.

We consider the case of BE statistics where the paths are of random time intervals which

are integer multiplies of some fixed β > 0.

The present section consists of two parts. In part one we obtain the three first terms of the

asymptotics for the case of small activity. The first two terms are proportional respectively

to the volume and the area of the boundary of Λ . We prove that in two dimensional case

the third term is purely topological and is proportional to the Euler-Poincare characteristic

of the domain.

In part two we consider the Bose gas with repulsive two-body interaction at low activity.

We find an explicit expression for the pressure in terms of functional integrals and prove

that the correction is of order of the area of the boundary of Λ. The proof is based on the
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abstract cluster expansion method developed in Chapter 2 and uses the results on the decay

of correlations from Chapter 3.

For shortness we use in this section the following notations: we denote by P u
z the measure

P u
+,z given by (3.31), by ρz the measure ρ+,z defined by (3.36) and byWz,Λ the measureWρ+,z,Λ

defined by (3.37).

The main object of our interest is the grand partition function Z(Λ, z) of the Bose gas

in a bounded domain Λ which is defined by

Z(Λ, z) =

∫
M(Λ)

exp {−U(ω)} dWz,Λ(ω), (5.138)

We want to study the asymptotics of logZ(Λ, z) for large Λ. Since∫
X (Λ)

ρz,Λ(X) = logZid(Λ, z)

It is natural to start with the study of the asymptotics of logZid(Λ, z) for large Λ.

We suppose that φ is a non-negative even function which satisfies condition (4) with

l > 0:

The class of admissible domains Λ consists of open bounded convex subsets of Rd with

n, n ≥ 0, convex closed holes. We assume that the boundary ∂Λ of Λ consists of n + 1

(d − 1)-dimensional closed C3 manifolds. At each point r ∈ ∂Λ we define local coordinates

(η, ξ1, . . . , ξd−1) so that η is along the inward drawn unit normal n and ξ1, . . . , ξd−1 are along

the directions of principal curvatures of ∂Λ at the point r. In this local coordinates ∂Λ is

given by a C3 function fr:

η = fr(ξ1, . . . , ξν−1) = fr(ξ), ||ξ|| < δ (5.139)

for some δ > 0 small enough, ξ = (ξ1, . . . , ξd−1).

Let F (X), X ∈ X be a translation invariant function: F (X + u) = F (X), for all X ∈ X
and u ∈ Rd. Hence we can think of F as a function on X 0 and we assume that F ∈ L2(X 0, P 0

z )

for some z > 0.

Theorem 5.5 . For any admissible domain Λ and for all z from the interval 0 < z ≤ z the

following expansion holds true∫
X (ΛR)

F (X)dρz,ΛR(X) =Rd|Λ|a0(F, z) +Rd−1a1(Λ, F, z)

+Rd−2a2(Λ, F, z) + o(Rd−2)

as R → ∞,the coefficients a0, a1 and a2 are given explicitly in terms of functional integrals

by formulas (5.143), (5.169) and (5.170) respectively.
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In the case where the function F is in addition rotation invariant the coefficients a1 and

a2 have simpler form.

Theorem 5.6 . If under the conditions of Theorem 5.5 the function F is in addition rotation

invariant, then∫
X (ΛR)

F (X)dρz,ΛR(X) =Rd|Λ|a0(F, z) +Rd−1|∂Λ|a1(F, z)

+Rd−2

∫
∂Λ

HΛ(r)dσ(r)a2(F, z) + o(Rd−2)

where a1 and a2 are given by (5.171) and (5.172), HΛ(r) is the mean curvature of ∂Λ at the

point r ∈ ∂Λ and σ is the d− 1-dimensional surface measure.

Remark 1 . In dimension two, d = 2, according to Gauss-Bonnet theorem∫
∂Λ

HΛ(r)dσ(r) = 2πχ(Λ),

where χ(Λ) is the Euler-Poincaré characteristic of Λ, χ(Λ) = 1 − n, if Λ has n holes.

Therefore the corresponding term is purely topological.

Remark 2 . In particular case where F ≡ 1 Theorem 5.6 gives an asymptotic expansion of

the log-partition function logZid(ΛR, z) of the ideal Bose gas in ΛR, as R→∞.

The next result gives the main term of the asymptotic expansion of the log-partition

function of the Bose gas in ΛR with repulsive interaction φ.

Theorem 5.7 . Let the non-negative potential φ satisfy the condition (4) with l > 1 and z

be from the interval

0 < z <
[
C(d, l)||φl||1β1− d

2 ζ
(d

2
+ 1
)]−1

(5.140)

then for any admissible domain Λ ⊂ Rd

lnZ(ΛR, z) = Rd · p(φ, z)|Λ|+O(Rd−1) as R→∞

where the so-called pressure p(φ, z) is given by

p(φ, z) =

∫
X 0

dP 0
z (X)

∫
M(X )

ϕ(ω,X)

|ω|+ 1
dWρz(ω).
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5.3.1 Proof of Theorem 5.5

Let

I(R, z) =

∫
X (ΛR)

F (X)dρz,ΛR(X).

We decompose this integral as follows

I(R, z) =

∫
ΛR

du

∫
X 0

F (X)dP 0
z (X)−

∫
ΛR

du

∫
X 0

1X c(ΛR)(X + u)F (X)dP 0
z (X) ≡ (5.141)

≡ I0(R, z)− I1(R, z).

This gives the volume term:

I0(R, z) = Rd · |Λ| · a0(F, z) (5.142)

with

a0(F, z) =

∫
X 0

F (X)dP 0
z (X). (5.143)

Then

I1(R, z) =

∫
ΛR,δ

du

∫
X 0

1X c(ΛR)(X + u)F (X)dP 0
z (X)+

+

∫
ΛR\ΛR,δ

du

∫
X 0

1X c(ΛR)(X + u)F (X)dP 0
z (X) ≡ (5.144)

≡ I2(R, z) + I ′2(R, z).

Evidently

|I ′2(R, z)| ≤
∫

ΛR\ΛR,δ

du

∫
X 0

1{sup ||||≥δ
√
R}(X) |F (X)| dP 0

z (X).

By Schwarz inequality and Lemma 3.4∫
X 0

1{sup ||X||≥δ
√
R}(X) |F (X)| dP 0

z (X) ≤ (5.145)

≤ ‖F‖L2

[
P 0

+,z

(
sup ‖X| ≥ δ

√
R
)]1/2

≤

≤ C (ν) β−ν/4‖F‖L2 exp[−C(β, z)δR]

for all z, 0 < z < 1, where C(β, z) =
(
| ln z|
64β

)1/2

and

‖F‖L2
=

∫
X 0

F 2(X)dP 0
+,z(X)

1/2

.
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Hence

|I ′2(R, z)| ≤ |Λ|C (ν, β, z) ‖F‖L2 exp[−C(β, z)δR] (5.146)

Now consider I2(R, z). We have

I2(R, z) =

∫
ΛR,δ

du

∫
X 0

1X c(ΛR)X (ΛR)(X + u)

· 1{sup ||X||<δ
√
R}(X)F (X)dP 0

z (X)+

+

∫
ΛR,δ

du

∫
X 0

1X c(ΛR)X (ΛR)(X + u) (5.147)

· 1{sup ||X||≥δ
√
R}(X)F (X)dP 0

z (X) ≡

≡ I3(R, z) + I ′3(R, z).

According to (5.145)

|I ′3(R, z)| ≤ |Λ|C (ν, β, z) ‖F‖L2 exp[−C(β, z)δR] (5.148)

To estimate I3(R, z) we use the local coordinates. Similarly to (5.139) ∂ΛR is given

locally by

η = fr,R(ξ), ‖ξ‖ < δ
√
R

We have the following relations between the functions fr,R and fr ≡ fr,1:

fr,R(ξ) = Rfr,1(R−1ξ) (5.149)

Let ki(r|R), i = 1, . . . , ν − 1, be the principal curvatures of ∂ΛR at the point r ∈ ∂ΛR.

From (5.149) it follows that

ki(r|R) = R−1ki(r|1), i = 1, . . . , ν − 1. (5.150)

Then similarly to (4.31)

I3(R, z) =

∫
∂ΛR

dσR(r)

δ
√
R∫

0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1X c(ΛR)X (ΛR)(X + r + τn)1sup ‖X|<δ
√
R(X)F (X)dP 0

z (X)

For each X ∈ X 0 such that sup ‖X‖ < δ
√
R we put

γ(X) ≡ γr,R(X) = inf
t

[Xn(t)− fr,R(XT (t)] .

Here

Xn(t) = 〈X(t),n〉, XT (t) = X(t)− 〈X(t),n〉n (5.151)
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where 〈·, ·〉 stands for the scalar product in Rd. It is easy to check that, for any X ∈ X 0

with sup ‖X‖ < δ
√
R, 1X (ΛR)(X + r + τn) = 0 iff τ + γ(X) < 0. Therefore

I3(R, z) =

∫
∂ΛR

dσR(r)

δ
√
R∫

0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖X‖<δ
√
R(X)F (X)dP 0

z (X). (5.152)

Using the equality

1sup ‖Xn‖<δ
√
R = 1sup ‖X‖<δ

√
R + 1sup ‖X‖≥δ

√
R1sup ‖Xn‖<δ

√
R

we can rewrite (5.152) as

I3(R, z) =

∫
∂ΛR

σR(dr)

δ
√
R∫

0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<δ
√
R(X)F (X)dP 0

z (X)− (5.153)

−
∫
∂ΛR

dσR(r)

δ
√
R∫

0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖X‖≥δ
√
R(X)1sup ‖Xn‖<δ

√
R(X)F (X)dP 0

z (X) ≡

≡ IA(R, z) + ĨA(R, z).

Let us estimate the second term ĨA(R, z). It is clear that for each admissible domain Λ

k = max
1≤i≤d−1

sup
r∈∂Λ
|ki(r|1)| <∞.

Assuming δ < k
−1

, we have that

∣∣∣∣d−1∏
i=1

(1− τki(r|R)

∣∣∣∣ < 2d−1 for all 0 < τ < δR. Hence using

(5.145) we see that ∣∣∣ĨA(R, z)
∣∣∣ ≤ |Λ|C (ν, β, z) ‖F‖L2 exp[−C(β, z)δR]. (5.154)

The first term IA(R, z) in (5.153) we decompose as
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IA(R, z) =

∫
∂ΛR

dσR(r)

∞∫
0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<δ
√
R(X)F (X)dP 0

z (X)−

−
∫
∂ΛR

dσR(r)

∞∫
δ
√
R

d−1∏
i=1

(1− τki(r|R)) dτ · (5.155)

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<δ
√
R(X)F (X)dP 0

z (Xb) ≡

≡ IA1 (R, z) + ÎA(R, z)

Let us show that ∣∣∣ÎA(R, z)
∣∣∣ ≤ C exp

(
−C(β, z)δ

√
R
)

(5.156)

where C = C(d, β, z,Λ, F, δ) does not depend on R.

From (5.150) it follows that

d−1∏
i=1

(1− τki(r|R)) =
d−1∑
s=0

τ sas(r|R) =
d−1∑
s=0

R−sτ sas(R
−1r|1), (5.157)

where a0(r|R) = 1, as(r|R) = (−1)s
∑

1≤i1<···<is≤d−1

ki1(r|R) · · · kis(r|R), s = 1, · · · , d− 1.

Hence

∣∣∣ÎA(R, z)
∣∣∣ ≤ d−1∑

s=0

∫
∂ΛR

|as(r|R)|dσR(r)

∞∫
δ
√
R

τ sdτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<δ
√
R(X)|F (X)|dP 0

z (X).

Now with the help of (5.149) and the condition that fr,R is of class C3 one can easily

obtain that

fr,R(ξ) = R−1 1

2

d−1∑
s=0

ki(R
−1r|1)ξ2

i +R−2εr,R(ξ), ‖ξ‖ < δ
√
R (5.158)

where

|εr,R(ξ)| ≤ C(d)C(Λ)‖ξ‖3 (5.159)

uniformly in r ∈ ∂ΛR and R ≥ 1. This implies that for all ξ, ‖ξ‖ < δR and R large enough

|fr,R(ξ)| ≤ kδ2.
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Using the fact that supt ‖X(t)‖ > τ − kδ2 for any loop X starting at the point r + τn

with τ > δ
√
R and such that τ + γ(X) < 0, we can write:∫

X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<σ
√
R(X)|F (X)|dP 0

z (X) ≤

≤
∫
X 0

1sup ‖X‖>τ−kδ2(X)|F (X)|dP 0
z (X) ≤

≤ ‖F‖L2

[
P 0

+,z

(
sup ‖X‖ > τ − kδ2

)]1/2 ≤
≤ C(d)β−d/4‖F‖L2 exp[C(β, z)kδ2] exp[−C(β, z)τ ].

Hence

|ÎA(R, z)| ≤ C(d, β, z, k, δ)‖F‖L2

d−1∑
s=0

∫
∂ΛR

as(r|R)dσR(r)·

·
∞∫

σ
√
R

τ s exp[−C(β, z)τ ]dτ ≤

≤ C(d, β, z,Λ, δ)‖F‖L2 exp[−C(β, z)δ
√
R], (5.160)

which proves the formula (5.156).

Hence combining the formulas (5.141)-(5.144), (5.146)-(5.148), (5.153) and (5.156) we

find that

I1(R, z) =

∫
∂ΛR

σR(dr)

∞∫
0

d−1∏
i=1

(1− τki(r|R)) dτ ·

·
∫
X 0

1τ+γ(X)<0(X)1sup ‖Xn‖<δ
√
R(X)F (X)dP 0

z (X) +O(e−C
√
R).

Applying Fubini’s theorem and formula (5.157) to the last integral we find that

I1(R, z) =
d−1∑
s=0

∫
∂ΛR

as(r|R)dσR(r)

∫
X 0

1sup ‖Xn‖<δ
√
R(X)F (X)dP 0

z (Xb)·

·
−γ(X)∫

0

τ sdτ +O(e−C
√
R)

or

I1(R, z) =
d−1∑
s=0

Ls(z,R) +O(e−C
√
R). (5.161)

with

Ls(z,R) =
1

s+ 1

∫
∂ΛR

as(r|R)σR(dr)· (5.162)

·
∫
X 0

1sup ‖Xn‖<δ
√
R(X)F (X) (−γ(X))s+1 dP 0

z (X).
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Let e1, . . . , ed−1 be unit vectors drawn along the directions of the principal curvatures

of ∂ΛR at the point r ∈ ∂ΛR. For each X ∈ X 0, with sup ‖X‖ < δR, we choose tn =

tn(X) and tR = tR(X) from the interval [0, |X|β] so that Xn(tn) = inf
t
Xn(t) and Xn(tR)−

fr,R(XT (tR)) = inf
t

(Xn(t)− fr,R(XT (t))). By Proposition 5.11 from Appendix A.3 tn is P 0
z -

almost surely unique and by Proposition 5.12 from Appendix A.4 tn → tR, as R → ∞,

P 0
z -almost surely for all 0 < z ≤ 1.

Let us show that the following representation of γ(X) is valid:

− γ(X) = −Xn(tn) +
R−1

2

d−1∑
i=1

ki(R
−1r|1) 〈XT (tn), ei〉2 +R−1ε̃r,R(X), (5.163)

where

|ε̃r,R(X)| ≤ C(d, β)

{
d−1∑
i=1

(
〈XT (tR), ei〉2 − 〈XT (tn), ei〉2

)
+R−1‖X‖3

}
. (5.164)

Note that from Proposition 5.12 and the Lebesgue dominant convergence theorem it follows

that ∫
∂ΛR

dσR(r)

∫
X 0

ε̃r,R(X)dP 0
z (X) = o

(
Rd−1

)
, as R→∞. (5.165)

Let us prove (5.163). We have that

−γ(X) = fr,R(XT (tn))−Xn(tn) + ∆ (X|r, R) ,

where

0 ≤ ∆ (X|r, R) = fr,R(XT (tR))−Xn(tR)− fr,R(XT (tn)) +Xn(tn).

Using 5.158 we find that

∆ (X|r, R) ≤ fr,R(XT (tR))− fr,R(XT (tn)) =
R−1

2

d−1∑
i=1

ki
(
R−1r|1

)
·

·
[
〈XT (tR), ei〉2 − 〈XT (tn), ei〉2

]
+R−2 [εr,R(XT (tR))− εr,R(XT (tn))] .

This according to 5.159 and Proposition 5.12, Appendix A.4, implies (5.163) and (5.164).

With the help of (29) we can treat the terms Ls(z,R) from (5.162). Consider L0(z,R).

We have that

L0(z, R) = Rd−1

∫
∂Λ

dσ(r)

∫
X 0

F (X)

(
−Xn(tn) +

R−1

2

d−1∑
i=1

ki(r|1)

)
·

· 〈XT (tn), ei〉2 +R−1ε̃r,R(X)
)

dP 0
z (X) =

= −Rd−1

∫
∂Λ

dσ(r)

∫
X 0

F (X) inf XndP 0
z (X)+ (5.166)

+
Rd−2

2

∫
∂Λ

dσ(r)

∫
X 0

d−1∑
i=1

ki(r|1)F (X) 〈XT (tn), ei〉2 dP 0
z (X) + o(Rd−2)
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In a similar way, according to (5.157),

L1(z, R) = −1

2
Rd−2

∫
∂Λ

d−1∑
i=1

ki(r|1)dσ(r)· (5.167)

·
∫
X 0

F (X)X2
n(tn)dP 0

z (X) +O(Rd−3).

It is easy to check that
d−1∑
s=2

Ls(z,R) = O(Rd−3). (5.168)

Indeed for R large enough |γ(X)|s ≤ C sup ‖X‖s.
With the help of Lemma 3.4 it is easy to check that sup ‖X‖s ∈ L1(X 0, P 0

z ). Therefore

d−1∑
s=2

|Ls(z, R)| ≤
d−1∑
s=2

Rd−1

s+ 1

∫
∂Λ

R−sas(r|1)dσ(r)·

·
∫
X 0

F (X) sup ‖X‖s+1dP 0
z (X) = O(Rd−3).

Now from (5.161), (5.166)-(5.168) it follows that

I1(R, z) = Rν−1a1(Λ, F, z) +Rν−2a2(Λ, F, z) + o(Rν−2)

where

a1 = −
∫
∂Λ

dσ(r)

∫
X 0

F (X) inf XndP 0
z (X) (5.169)

a2 =
1

2

∫
∂Λ

dσ(r)

∫
X 0

F (X)
d−1∑
i=1

ki(r|1)· (5.170)

·
[
〈XT (tn), ei〉2 −X2

n(tn)
]

dP 0
z (X)

This together with (5.141) complete the proof of Theorem (5.5).

Now suppose that the function F (X) is in addition rotation invariant. Then the integral∫
X0

F (X) inf XndP 0
z (X)

does not depend on the orientation of the unit normal n in Rd, because the measure P 0
z also

is rotation invariant. Hence a1 takes a simple form:

a1 = |∂Λ|a1(F, z)

with

a1(F, z) = −
∫
X0

F (X) inf〈X,d1〉dP 0
z (X) (5.171)
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where d1 is any fixed unit vector in Rd. In the same way

a2 =
1

2

∫
∂Λ

d−1∑
i=1

ki(r|1)dσ(r)

∫
X 0

F (X)·

·
[〈
XT (t),d2

〉2 −
〈
Xn(t),d1

〉2
]

dP 0
z (X)

or

a2 =

∫
∂Λ

HΛ(r)dσ(r)a2(F, z),

where

HΛ(r) =
1

d− 1

d−1∑
i=1

ki(r|1)

is the mean curvature of ∂Λ at the point r and

a2(F, z) =
d− 1

2

∫
X 0

F (X)
[〈
XT (t), d2

〉2 −
〈
X(t), d1

〉2
]

dP 0
z (X)

Here d1,d2 is an arbitrary fixed pair of orthogonal unit vectors in Rd and t is defined by〈
Xn(t),d1

〉
= inf 〈Xn(t),d1〉.

Theorem 5.6 is proved.

5.3.2 Proof of Theorem 5.7

To develop the large volume asymptotics of the log-partition function lnZ(ΛR, z) of the Bose

gas with interaction we start as before with the cluster representation of lnZ(ΛR, z):

lnZ(ΛR, z) =

∫
M(ΛR)

ϕ(ω)dWz,ΛR(ω)

where ϕ is the Ursell function. Then

lnZ(ΛR, z) =

∫
X (ΛR)

Gz(X)dρz(X)−
∫
X (ΛR)

dρz(X)

∫
Mc(ΛR)

ϕ(X,ω)

|ω|+ 1
dWρz(ω)

≡ A0(R, z)− A1(R, z), (5.172)

where

Gz(X) =

∫
M

ϕ(X,ω)

|ω|+ 1
dWρz(ω).

Note that Gz is translation invariant function: Gz(X + u) = Gz(X), for any u ∈ Rd and

X ∈M. This follows from the translation invariance of the Ursell function and the measure

Wρz . By Theorem 2.1, Eq. (2.8), Gz ∈ L2(X 0, P 0
z ) for all z from the interval (5.140).

According to Theorem 5.5

A0(R, z) = Rd|Λ|a0(Gz) +Rd−1a1(Λ, Gz) +Rν−2a2(Λ, Gz) + o(Rd−2).

105



Now consider A1(R, z). We will show below that A1(R, z) = O(Rd−1). Similarly to

(5.144) we decompose A1 as:

A1(R, z) =

∫
ΛR,δ

du

∫
Xu

1X (ΛR)(X)dP u
z (X)

∫
Mc(ΛR)

ϕ(X,ω)

|ω|+ 1
dWρz(ω)+

+

∫
ΛR\ΛR,δ

du

∫
Xu

1X (ΛR)(X)P u
z d(X)

∫
Mc(ΛR)

ϕ(X,ω)

|ω|+ 1
dWρz(ω) ≡

≡ A2(R, z) + A′2(R, z). (5.173)

Applying Lemma 3.4 we find that

|A′2(R, z)| ≤
∫

ΛR\ΛR,δ

du

∫
Xu

P u
z d(X)

∫
Mc(Bu(δR)

∣∣∣∣ϕ(X,ω)

|ω|+ 1

∣∣∣∣Wρz(dω) ≤

≤ C (1 + δR)−lRν |Λ| = O(Rν−1), (5.174)

where C = C (Φ, β, ν, z, l) > 0.

Consider A2(R, z). Using the local coordinate system we can write

A2(R, z) =

∫
∂ΛR

σR(dr)

δR∫
0

d−1∏
i=1

(1− tki(r|R)) dt· (5.175)

·
∫
X 0

1X (ΛR)(X
0 + r + tn)dP 0

z (X0)

∫
Mc(ΛR)

ϕ(X0 + r + tn, ω)

|ω|+ 1
dWρz(ω).

Again applying Lemma 3.4 we have that

|A2(R, z)| ≤ 2ν−1

∫
∂ΛR

dσR(r)

δR∫
0

dt

∫
X 0

dP 0
z (X0)· (5.176)

·
∫

Mc(Br+tn(t))

∣∣∣∣ϕ(X0 + r + tn, ω)

|ω|+ 1

∣∣∣∣ dWρz(ω) ≤

≤ C (Φ, β, ν, z, l)

∫
∂ΛR

dσR(r)

∞∫
0

(1 + t)−l dt = O(Rν−1).

This completes the proof of Theorem 5.7.

5.4 Polygonal regions

The previous section was devoted to the study of the asymptotic behavior of the the logarithm

of the grand partition function lnZ(Λ, z) of ideal Bose gases in a bounded domain with

smooth boundary. The three first terms of the expansion were obtained. In this final
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section applying different method we find all the nondecreasing terms of the large volume

asymptotics of lnZ(Λ, z) for interacting Bose gas in a bounded Λ with polygonal boundaries.

For simplicity, only the two-dimensional case is analyzed.

Let Λ be a polygonal domain in R2, and for simplicity we consider only the case of

two-dimensional convex polygonal domains Λ with m obtuse angles θ1, . . . , θm with vertices

A1, . . . , Am. We fix the orientation of Λ by inner unit normals nj so that nj is a normal to

the side Aj−1Aj and 〈nj, nj+1〉 = |cosθj|, j = 1, . . . ,m, with m + 1 identified to 1, where

〈· , ·〉 stands for the scalar product in R2.

Theorem 5.8 (Polygonal regions) . If the interaction potential φ satisfies the conditions

(a)– (c) from Section 5.3, with l > 16 in (c), then for all z from the interval

0 < z < [C(l)||φl||1ζ (2)]−1 (5.177)

where ζ is the Riemann zeta function, the following expansion holds true:

lnZ(ΛR, β, z) = R2|Λ|p(β, z) +R
m∑
j=1

|Aj−1Aj|bnj(β, z)

+
m∑
j=1

cnj ,nj+1
(β, z) + o(1) as R→∞, (5.178)

where the contribution of the angle θj has the form

cnj ,nj+1
(β, z) =

∫ θj

0

dϕĉnj ,nj+1
(ϕ, β, z) +

∫ π/2

π−θj
dϕcnj(ϕ, β, z)

+

∫ θj

π/2

dϕcnj+1
(ϕ, β, z), j = 1, . . . ,m, (5.179)

with m + 1 identified to 1. Here βp(β, z) is the pressure given by formula (5.185) be-

low, |Aj−1Aj| is the length of the side Aj−1Aj and the quantities bnj(β, z), cnj(ϕ, β, z) and

ĉnj ,nj+1
(ϕ, β, z) are explicitly given in terms of the Brownian integrals by formulas (5.186),

(5.189) and (5.193) respectively.

If the interaction φ is rotation-invariant, then the expansion (5.178) takes a simpler form.

Namely, the terms bnj(β, z)and cnj(ϕ, β, z) do not depend on the orientation of the normals

nj and can be evaluated for a fixed unit vector e. Similarly, the term ĉnj ,nj+1
(ϕ, β, z) becomes

independent of the orientation of the corresponding angle θj. Therefore, this angle can be

defined by a pair of unit vectors e1(θj) and e2(θj) that are orthogonal to the sides of the angle

and satisfy the equality 〈e1(θj), e2(θj)〉 = |cosθj|. Thus, the following corollary of Theorem

5.8 is true.
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Corollary 5.9 . If, in addition to the conditions of Theorem, the potential φ is rotation-

invariant, then

Ξ(ΛR, β, z) = R2|Λ|p(β, z) +R|∂Λ|be(β, z) +
m∑
j=1

c(θj, β, z) + o(1)

as R→∞, where

c(θj, β, z) =

∫ θj

0

dϕĉe1(θj),e2(θj)(ϕ, β, z) +

∫ θj

π−θj
dϕce(ϕ, β, z). (5.180)

Here be(β, z), ce(ϕ, β, z) and ĉθj are given by the below formulas (5.194), (5.195) and (5.196)

respectively.

A similar result is true for the case d > 2. We formulate it without proof.

Theorem 5.10 . Let the potential φ be the same as in Corollary 4.9 then for all z from the

interval

0 < z <

[
C(d, l)||φl||1β1− d

2 ζ

(
d

2
+ 1

)]−1

and any convex polyhedron Λ ⊂ Rd

lnZ(ΛR, β, z) = Rd|Λ|p(φ, β, z) +
d∑
i=1

Rd−ici(φ, β, z)
∑

ξ∈Λ(d−i)

|ξ|+ o(1). (5.181)

Here Λ(i), i = 0, · · · , d− 1 is the family of all i-faces of the polyhedron Λ and |ξ|, ξ ∈ Λ(i),

is the i- dimensional volume of ξ.

Proof of Theorem 5.8. We write the grand partition function in terms of the composite

(or winding) loops:

Z(ΛR, β, z) =

∫
M(Λ)

dWρz ,Λ(ω)eU(ω)

where the energy U(ω) of the configuration ω is given by (3.38) and the measure Wρz ,Λ =

Wρ+,z,Λ
is given by formula (3.37). Then write the cluster representation of lnZ(ΛR, β, z):

lnZ(ΛR, β, z) =

∫
M

dWρz(ω)ϕ(ω)1M(ΛR)(ω), (5.182)

where ϕ is the Ursell function with q(X, Y ) = exp(−U2(X, Y )) − 1 where U2(X, Y ) is that

of (3.40).

This implies

lnZ(ΛR, β, z) =

∫
X

dρz(X)

∫
M

dWρz(ω)g (X,ω) 1M(ΛR) (X,ω)

=

∫
ΛR

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + u, ω

)
1M(ΛR)

(
X0 + u, ω

)
(5.183)
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where g(ω) = ϕ(ω)
|ω| . Let AR,1, . . . , AR,m be the vertices of the convex m-gone ΛR. Then,

defining H(t) = 1[0,+∞)(t), −∞ < t <∞, we get

1M(ΛR)(ω) =
m∏
j=1

H (inf 〈ω, nj〉) ,

where

inf〈ω;nj〉 = min
X∈ω

inf
t
〈X(t);nj〉 .

Hence,

1M(ΛR)

(
X0 + u, ω

)
=

∑
J⊂{1,...,m}

(−1)|J |
∏
j∈J

H
(
− inf

〈
X0 + u, ω, nj

〉)
in virtue of the identity H(t) = 1−H(−t). Substituting the above equality into (5.183), we

get

lnZ(ΛR, β, z) =

∫
ΛR

du

∫
X 0

dP 0
z (X0)

∫
M

dWρz(ω)g
(
X0 + u, ω

)
−

m∑
j=1

∫
ΛR

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + u, ω

)
·H
(
− inf

〈
X0 + u, ω, nj

〉)
+

m∑
j=1

∫
ΛR

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + u, ω

)
H
(
− inf

〈
X0 + u, ω, nj

〉)
·H
(
− inf

〈
X0 + u, ω, nj+1

〉)
+ I ′(R, z)

≡ IA(R, z) +
m∑
j=1

IBj (R, z) +
m∑
j=1

ICj (R, z) + I ′(R, z), (5.184)

where

I ′(R, z) =
∑

J⊂{1,...,m},|J |≥3

(−1)|J |
∫

ΛR

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + u, ω

)∏
j∈J

H
(
− inf

〈
X0 + u, ω, nj

〉)
.

Note that the configurations which contribute to I ′(R, z) contain loops that cross at least

two non-adjacent faces. Hence, we can estimate this term with the help of Theorem 3.15,

Corollary 3.16 and get I ′(R, z) = o(1) as R→∞.

Now, by the translation-invariance of g,Wρz and M we obtain

IA(R, z) = Rd|Λ|βp(β, z),

where the pressure p(β, z) has the cluster representation

p(β, z) = β−1

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + u, ω

)
. (5.185)
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Let us fix any j, 1 ≤ j ≤ m, and consider the term Ibj (R, z) defined by (5.184). Consider

the corresponding side AR,j−1AR,j between the vertices of the angles θj−1 and θj. Here and

below we identify 0 with m, so that AR,0 = AR,m, θ0 = θm, etc. Further, we choose the

coordinates u1, u2, with u1 along the side AR,j−1AR,j and u2 along the normal nj, to provide

that the coordinates of the vertices AR,j−1 and AR,j be (Raj−1, 0) and (Raj, 0) respectively.

To this side, we associate three disjoint regions in ΛR: a rectangle Dj of the height δR (with

a fixed δ = δ(Λ)) and the length R(aj − aj−1) and two sectors S1(j − 1) and S2(j) of the

radius δR and angles θj−1 − π/2 and θj − π/2 respectively. Then we have the following

decomposition of the term IBj (R, z):

IBj (R, z) =

∫
S1(j−1)

du

∫
X 0

dP 0
z (X0)

∫
M

dWρz(dω)g
(
X0 + u, ω

)
H
(
− inf

〈
X0 + u, ω, nj

〉)
−
∫
Dj

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(dω)g
(
X0 + u, ω

)
H
(
− inf

〈
X0 + u, ω, nj

〉)
−
∫
S2(j)

du

∫
X 0

dP 0
z (X0)

∫
M

dWρz(dω)g
(
X0 + u, ω

)
H(− inf〈X0 + u, ω, nj〉)

+ o(1) = IBS1(j−1)(R, z) + IBDj(R, z) + IBS2(j)(R, z) + o(1) as R→∞.

Note that in this decomposition the term IBDj(R, z) gives the contribution to the boundary

term, while IBS1(j−1)(R, z) and IBS2(j)(R, z) contribute to the constant term.

Observing that Dj =
{

(u1, u2) ∈ Λ
∣∣ Raj−1 ≤ u1 ≤ Raj, 0 ≤ u2 ≤ δR

}
, we get

IBDj(R, z) =−
∫ Raj

Raj−1

du1

∫ δR

0

du2

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + (u1, u2), ω

)
H
(
− inf

〈
X0 + (u1, u2), ω, nj

〉)
=

∫ Raj

Raj−1

du1bnj(u1, β, z) + o(1),

where

bnj(u1,β, z) = −
∫ ∞

0

du2

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + (u1, u2), ω

)
H
(
− inf

〈
X0 + (u1, u2), ω, nj

〉)
. (5.186)

Now, note that

inf
〈
X0 + (u1, u2), ω, nj

〉
= inf

〈
X0 + (0, u2), ω, nj

〉
.

Hence, the functions g1 and H do not depend on u1, and therefore also the quantity

bnj(u1, β, z) is independent of u1 due to the translation-invariance of Wρz . Thus, we have

IBDj(R, z) = R(aj − aj−1)bnj(β, z) + o(1) (5.187)

with bnj(β, z) ≡ bnj(0, β, z) defined by (5.186).
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Proceeding to the sector S1(j−1) and using polar coordinates centered at AR,j−1, we get

S1(j − 1) =
{

(r, ϕ)
∣∣ 0 ≤ r ≤ δR,

π

2
≤ ϕ ≤ θj−1

}
,

where the angle ϕ is measured from the side AR,j−1AR,j. Therefore, by (??)

IBS1(j)(R, z) =−
∫ θj−1

π/2

dϕ

∫ δR

0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + (r, ϕ), ω

)
H
(
− inf

〈
X0 + (r, φ), ω, nj

〉)
=

∫ θj−1

π/2

dϕcnj(ϕ, β, z) + o(1), (5.188)

where

cnj(ϕ, β, z) = −
∫ ∞

0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g1

(
X0 + (r, ϕ), ω

)
H
(
− inf

〈
X0 + (r, ϕ), ω, nj

〉)
. (5.189)

Observe that by translation-invariance cnj(ϕ, β, z) is invariant with respect to the shift of

the center of polar coordinates by any vector a = (a1, 0).

Similarly, we obtain that the contribution of the sector S2(j) is equal to

IBS2(j)(R, z) =

∫ π/2

π−θj
dϕcnj(ϕ, β, z) + o(1), (5.190)

where cnj(ϕ, β, z) is that of (5.189). Combining formulas (5.187)-(5.190), we get

m∑
j=1

IBj (R, z) = R
m∑
j=1

(aj − aj−1)bnj(u1, β, z)

+
m∑
j=1

{∫ π/2

π−θj
dϕcnj(ϕ, β, z) +

∫ θj

π/2

dϕcnj+1
(ϕ, β, z)

}
+ o(1). (5.191)

For analyzing the term ICj (R, z), 1 ≤ j ≤ m, in (5.184), consider the angle θj with vertex

AR,j, which is measured from the face AR,jAR,j+1 with the inner normal nj+1. Let Sj be a

sector in ΛR of the radius δR, angle θj and vertex AR,j. Choosing u1-axis along AR,jAR,j+1

and u2-axis along the normal nj+1 we get

ICj (R, z) =

∫
Sj

du

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + u, ω

)
·H
(
− inf

〈
X0 + u, ω, nj

〉)
H
(
− inf

〈
X0 + u, ω, nj+1

〉)
+ o(1).

Using polar coordinates (r, ϕ) centered at AR,j, we can rewrite this equality in the form

ICj (R, z) =

∫ θj

0

dϕ

∫ ∞
0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + (r, ϕ), ω

)
·H
(
− inf

〈
X0 + (r, ϕ), ω, nj

〉)
·H
(
− inf

〈
X0 + (r, ϕ), ω, nj+1

〉)
+ o(1)

=

∫ θj

0

dϕĉnj ,nj+1
(ϕ, β, z) + o(1), (5.192)
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where

ĉnj ,nj+1
(ϕ, β, z) =

∫ ∞
0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
{X0 + (r, ϕ)} ∪ ω

)
·H
(
− inf

〈
X0 + (r, ϕ), ω, nj

〉)
·H
(
− inf

〈
X0 + (r, ϕ), ω, nj+1

〉)
. (5.193)

To get the constant term of the expansion (5.180), we collect all contributions of angles given

in formulas (5.191) and (5.192):

cnj ,nj+1
(β, z) =

∫ θj

0

dϕĉnj ,nj+1
(ϕ, β, z)

+

∫ π/2

π−θj
dϕcnj(ϕ, β, z) +

∫ θj

π/2

dϕcnj+1
(ϕ, β, z),

where cnj and ĉnj ,nj+1
are defined by (5.189) and (5.193) respectively. This completes the

proof of Theorem.

If, in addition to translation-invariance, the interaction φ is rotation-invariant, then bnj(β, z)

and cnj(ϕ, β, z) do not depend on nj, due to the rotation-invariance of P 0
z and Wρz . Assuming

that e ∈ R2 is an arbitrarily fixed unit vector, we choose the Cartesian coordinates (u1, u2)

with u2 along e and set

be(β, z) =−
∫ ∞

0

du2

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + (0, u2), ω

)
H
(
− inf

〈
X0 + (0, u2), ω, e

〉)
. (5.194)

Similarly, evaluating the terms cnj given by (5.189) for a fixed vector e, we get

ce(ϕ, β, z) =−
∫ ∞

0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)

· g
(
X0 + (r, ϕ), ω

)
H
(
− inf

〈
X0 + (r, ϕ), ω, e

〉)
. (5.195)

Finally, the terms cnj ,nj+1
in (5.193) are independent of the orientation of nj, nj+1 and depend

only on the opening θj of the corresponding angle, and therefore we can evaluate them by any

fixed pair of unit vectors e1(θj), e2(θj) ∈ R2 such that 〈e1(θj), e2(θj)〉 = |cosθj|, j = 1, . . . ,m.

We assume that

ĉθj(ϕ, β, z) =

∫ ∞
0

dr

∫
X 0

dP 0
z

(
X0
) ∫
M

dWρz(ω)g
(
X0 + (r, ϕ), ω

)
·H
(
− inf

〈
X0 + (r, ϕ), ω, e1(θj)

〉)
·H
(
− inf

〈
X0 + (r, ϕ), ω, e2(θj)

〉)
. (5.196)

Then, for obtaining (5.180) it remains to replace in (5.179) the terms cnj and ĉnj ,nj+1
by

ce(ϕ, β, z) and ĉθj(ϕ, β, z) respectively, and replacing the terms bnj by be in (5.178) we com-

plete the proof of Corollary.
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Appendix

A.1 Proof of Lemma 4.3

Let ω = {x1, · · · , xm}. Then, with the help of Proposition 6.1 (b) from Ref. 14 and Stirling’s

formula we can write

W(|g̃z|)(ω) ≤
∞∑
n=0

(ze2βB)n+m

n!

∑
T∈T (1,··· ,m,m+1,··· ,m+n)

∫
Xn

∏
{i,j}∈T

|u(xi, xj)|

· dxm+1 · · · dxm+n ≤
1

ū

∞∑
n=0

(zūe2βB)n+m

n!
(m+ n)m+n−2

≤ (m− 1)!

eū

[
zūe2βB+1

1− zūe2βB+1

]m
.

Here, we used the well-known fact that the number of trees with n + m vertices is (n +

m)n+m−2, and the last line is a consequence of the formula:

∞∑
n=0

(m+ n− 1)!

n!
tn =

(m− 1)!

(1− t)m
, |t| < 1.

from [105], section 4.4 . This completes the proof of Lemma 4.3.

A.2 Proof of Lemma 4.4

To prove Lemma 4.4 we use the tree identity from [15].∑
γ∈Cn

∏
{i,j}∈γ

(e−ui,j − 1) =
∑
T∈Tn

∏
{i,j}∈T

(−ui,j)
∫
dλT ({sij}) exp

(
−
∑
i<j

sijui,j

)
Here Cn is the set of connected graphs with n vertices, the real numbers ui,j, 1 ≤ i < j ≤ n,

satisfy the stability condition
∑

1≤i<j≤n ui,j ≥ −bn, sij = sji, 0 ≤ sij ≤ 1, λT depends on

the tree T and is a probability measure supported on the set si,j, 1 ≤ i < j ≤ n, such that∑
i<j

sijui,j ≥ −bn. (A.6)

The details can be found in [15]. We will apply this identity with ui,j = u(xi, xj) and b = βB,

where B is the stability constant for φ.

Setting x1 = x0
1 + (ξ1, η1), due to the tree identity we have

∂

∂η1

g(x1, · · · , xn) =
∑
T∈Tn

∫
dλT ({sij}) exp

(
−
∑
i<j

siju(xi, xj)

)
∂

∂η1

∏
{i,j}∈T

(−u

× (xi, xj)) +
∑
T∈Tn

∫
dλT ({sij}) exp

(
−
∑
i<j

siju(xi, xj)

)

× ∂

∂η1

(
−
∑
i<j

siju(xi, xj)

) ∏
{i,j}∈T

(−u(xi, xj)).
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Interchanging integration and differentiation (see [59], Lemma 2.2), we get

∂

∂η1

W(gz)(x
0
1 + (ξ1, η1), x2) = G1(x1, x2) +G2(x1, x2). (A.7)

with

G1(x1, x2) =z2

∞∑
n=2

zn−2

(n− 2)!

∫
Xn−2

ρ(dx3) · · · ρ(dxn)
∑
T∈Tn

∫
dλT ({sij})

× exp

(
−
∑
i<j

siju(xi, xj)

) ∂

∂η1

∏
{i,j}∈T

(−u(xi, xj))


and

G2(x1, x2) =z2

∞∑
n=2

zn−2

(n− 2)!

∫
Xn−2

ρ(dx3) · · · ρ(dxn)
∑
T∈Tn

∫
dλT ({sij})

∏
{i,j}∈T

× (−u(xi, xj)) exp

(
−
∑
i<j

siju(xi, xj)

)
∂

∂η1

(
−
∑
i<j

siju(xi, xj)

)

Let us estimate G1(x1, x2). Evidently

∂

∂η1

∏
{i,j}∈T

(−u(xi, xj)) =
∑

j:{1,j}∈T

(
− ∂

∂η1

u(x1, xj)

) ∏
{k,l}∈T ;{k,l}6={1,j}

(−u(xk, xl)).

Hence by the stability inequality (A.6) we have

∣∣ G1(x1, x2)
∣∣≤ ∞∑

n=2

(zeβB)n

(n− 2)!

∑
T∈Tn

∑
j:{1,j}∈T

∫
Xn−2

ρ(dx3) · · · ρ(dxn)
∣∣ ∂

∂η1

u(x1, xj)
∣∣

×
∏

{k,l}∈T ;{k,l}6={1,j}

|u(xk, xl)| ≤ eβmax(M,M ′)(zeβB)2

∞∑
n=2

n

× (n− 1)[zβeβB+1P 0(X 0) max(||φ||1, ||∇φ||1)]n−2. (A.8)

Now we consider G2(x1, x2). Since φ has bounded derivative,∣∣∣∣ ∂

∂η1

(
−
∑
i<j

siju(xi, xj)

) ∣∣∣∣≤ n∑
j=2

s1j

∣∣ ∂

∂η1

u(x1, xj)
∣∣≤ βM ′n.

Therefore

∣∣ G2(x1, x2)
∣∣≤eβ2MM ′(zeβB)2

∞∑
n=2

n(n− 1)[zβeβB+1P 0(X 0)||φ||1]n−2. (A.9)

Now observe that if zβeβB+1P 0(X 0) max(||φ||1, ||∇φ||1) < 1, both series in the last lines of

Eqs. (A.8) and (A.9) converge, hence Lemma 4.4 is proved.
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A.3 Proposition 4.11

Proposition 5.11 [42]. The time t at which one dimensional composite Brownian loop

attains its infimum is P 0
z -almost surely unique for all z : 0 < z ≤ 1

Proof: Let X 0 be the space of all one dimensional composite Brownian loops. Let T (X) =

{t ∈ [0, |X|β|X(t) = infsX(s)}. We need to show that P 0
z {X ∈ X |card T (X) > 1} = 0.

Let h(X) = supT (X) and h(X) = inf T (X), X ∈ X 0.

For each X ∈ X 0 let X̂ ∈ X 0 be defined by X̂(t) = X(jβ − t) if X ∈ X 0
jβ. Evidently

ˆ: X 0 → X 0 is one to one mapping which preserves the measure P 0
jβ, j = 1, 2, . . ., on each

Xjβ. Thereforeˆpreserves the measure P 0
z . Taking into account that h(X̂) = h(X) we have

that ∫
X 0

h(X)dP 0
z (X) =

∫
X 0

h(X̂)dP 0
z (X̂) =

∫
X 0

h(X)dP 0
z (X)

Thus h− h ≥ 0 with ∫
X 0

(h(X)− h(X))dP 0
z (X) = 0

which implies that P 0
z {X ∈ X 0|cardT (X) > 1} = 0.

A.4 Proposition 4.12

Proposition 5.12 [42]. For each X ∈ X 0, and all z, 0 < z ≤ 1, tR(X) → tn(X), as

R→∞, P 0
z -almost surely.

Proof: It is sufficient to show that

|Xn(tR)−Xn(tn)| → 0, as R→∞, (5.197)

for each X ∈ X 0. Indeed, if τ(X) is a limiting point for the set {tR(X), R ≥ 1} then (5.197)

implies that 〈X · n〉(τ) = 〈X · n〉(tn) = inf〈X · n〉 and by Proposition 1 τ(X) = tn(X)

P 0
z -almost surely.

Let us prove (5.197). By definitions of tR and tn

inf
t

(X(tn)− fr,R(XT (t)))− inf
t
Xn(t) ≤ Xn(tn)− fr,R(XT (tn))−Xn(tn)

which implies

Xn(tR)− fr,R(XT (tR))−Xn(tn) ≤ −fr,R(XT (tn)),

which together with the bound

|fr,R(ξ)| ≤ CR−1‖ξ‖2,

(see (5.158)) gives

0 ≤ Xn(tR)−Xn(tn) ≤ 2CR−1‖X‖2.

Formula (5.197) is proved.
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6 Conclusion

The thesis presents a new general approach to the cluster expansion method, one of the

most powerful method for the study of Gibbs random fields. This approach can be applied

to classical and quantum systems, both continuous and discrete

The method of cluster expansions is presented in Chapter 2.

With the help of this approach efficient bounds for the two-point semiinvariants of the

Gibbs random fields in a bounded domaines are obtained.

The main bound for an abstract two-point semiinvariant is proved in Section 3.1. We are

interested mainly in applications to quantum systems. To apply the techniques, developed

in Chapter 2 and Section 3.1, to the study of partition functions of quantum gases, the

quantum mechanical problem involving unbounded noncommuting operators is reduced to

a classical-like problem involving only scalar functions. The key to this reduction is the

remarkable Feynman - Kac representation [40, 46, 86] of a quantum gas as a model of

interacting Brownian loops which is called the interacting loop gas. One can think about

the loop gas model as a classical system where Euclidean points are replaced by Brownian

loops, the Lebesgue integrals by Wiener integrals and classical interaction between points

by an interaction between trajectories.

For a function of two Brownian loops an integral type decay property is introduced

and it is proved that if the classical pair potential has a power decay then the two-point

semiinvariant of the corresponding loop gas has the same type of decay.

In Sections 3.4 and 3.5 the cases of repulsive integrable potentials, general stable inte-

grable potentials and potentials with hard core are considered and the corresponding bounds

for the two-point semiinvariants are derived.

Chapter 4 is devoted to classical gases. The cases of continuous gas with pair potential

and lattice spin gas with many body potential are considered.

A new approach for the derivation of the large volume asymptotics of the log-partition

function is presented. This approach, in contrast to the existing ones (see [92], [19]), uses

bounds only for the two-point semiinvariants. By a modification of this method a similar

problem for the model of interacting Brownian loops is solved in Chapter 5. In Chapter 4 we

prove the central local limit theorem [7, 9], give a bound for the convergence rate [84] and

prove the local limit theorem for the probabilities of large deviations of the particle number

in a grand canonical ensemble [91, 90].

Chapter 5 is devoted to the asymptotic expansion of the log-partition function of the

Gibbs distribution of a quantum gas in a bounded domain.

The following expansion for an interacting Boltzmann gas is the main result obtained in
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Chapter 5:

ln Z(ΛR, z) = R2|Λ|βp(φ, z) +R |∂ Λ|b(φ, z) + 2πχ(Λ)c(φ, z) + o(1). (6.1)

Here β is the inverse temperature, |Λ| is the area, |∂ Λ| the length of the boundary of Λ

and χ(Λ) is the Euler-Poincare characteristic of the domain Λ. The coefficients p(φ, z),

b(φ, z) and c(φ, z) are explicitly expressed as functional integrals and are analytic functions

of the activity z in a neighborhood of the origin; p(φ, z) is the pressure and b(φ, z) can be

interpreted as the surface tension.

For the case of ideal Bose gas a similar expansion is proved.

Using different method the asymptotic expansion of the log-partition function of the

interacting Bose gas in polygonal domains is proved.
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[14] A. Bovier, M. Zahradńık, A simple approach to the problem of convergence of cluster

expansions of polymer models, J. Statist. Phys. 100, 765–778 (2000).

118



[15] O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics II

Springer, Berlin (1981).

[16] D. C. Brydges, A short course on cluster expansions, in “Phénomènes critiques, systèmes
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