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Abstract. We consider semi-infinite and finite Bogoyavlensky
lattices

·
ai = ai

(
p∏
j=1

ai+j −
p∏
j=1

ai−j

)
,

·
bi = bi

(
p∑
j=1

bi+j −
p∑
j=1

bi−j

)
,

for some p ≥ 1, and Miura-like transformations between these
systems, defined for p ≥ 2. Both lattices are integrable (via Lax
pair formalism) by the inverse spectral problem method for band
operators, i.e., operators generated by band matrices. The key
role in this method is played by the moments of the Weyl matrix
of the corresponding band operator and their evolution in time.
We find a description of the above-mentioned transformations
in terms of these moments and apply this result to study finite
Bogoyavlensky lattices and, in particular, their first integrals.
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Introduction

Since the pioneering work of Gardner, Greene, Kruskal and Miura [12], the
integration of nonlinear equations by using various inverse problems methods
is among the main topics in modern mathematical physics. This integration
task has inspired the development of many aspects of the theory of differ-
ential and difference operators (the inverse problems for the latter can be
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considered as a part of operator theory) as well as the areas of mathemat-
ics related to inverse problems. For almost half a century, see [16–18], the
inverse spectral problems for difference operators have been applied for in-
tegration of certain nonlinear dynamical systems called nonlinear lattices.
As an example of such an application, we mention the work by Berezan-
ski [7], where the initial boundary value problem for the semi-infinite Toda
lattice was solved by using the classical inverse spectral problem for Jacobi
operators. Further on, the inverse spectral problem method was developed
aiming to cover wider classes of nonlinear lattices, see e.g. [13, 21, 30]. Such
activity has also inspired the development of the areas of the function theory
connected with the study of difference operators [2, 3, 5, 28].

Turning to nonlinear integrable equations, note that an important role
in their study is played by various Miura-like transformations which relate
the equations and their solutions. For example, a discrete Miura trans-
formation between Kac-van Moerbeke (Volterra) and Toda lattices allows
one to derive the N–soliton solutions for both such systems starting from
the trivial ones [15]. Also, as noted in [9, 10], such transformation maps
onto each other the first integrals, Hamiltonians, Poisson brackets, master
symmetries of these two systems (both of them are rich in these objects of
interest of the integrable systems theory). In [22–24], an easy description of
this transformation in terms of the inverse spectral data for Jacobi opera-
tors, which appear in the Lax representation for both lattices (including the
matrix Volterra and Toda systems), was obtained. Note that it was recently
found in [23, 25] that such transformations can be applied to the study of
self-adjointness of Jacobi operators. The latter result illustrates that the
links between the theory of nonlinear integrable equations and the operator
theory are not based entirely upon the above-mentioned inverse problems.

Here we study similar transformations between Bogoyavlensky lattices [8,
29,32] and obtain their description via the inverse spectral data for band op-
erators (the latter may also be regarded as a high order difference ones [30])
which arise in the Lax pairs of such systems. We also apply this result to
the case of finite Bogoyavlensky lattices. In particular, we show how our
findings can be helpful for obtaining some “nonstandard” first integrals of
these systems.

The paper is organized as follows. In the next section, the semi-infinite
Bogoyavlensky lattices and their integration by means of the inverse spectral
problem for band operators is considered. In Section 3, the above-mentioned
description of Miura-like transformations between these lattices is obtained.
In the final two sections, we consider the finite lattices and show how the
previous result can be applied to study their first integrals.
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1 Bogoyavlensky lattices. Inverse problem

method

Consider the Cauchy problem for two nonlinear dynamical systems in the
class of bounded solutions in the semi-infinite case:

·
ai = ai

(
r∏
j=1

ai+j −
r∏
j=1

ai−j

)
for a fixed r ∈ N; (1)

·
bi = bi

(
q∑
j=1

bi+j −
q∑
j=1

bi−j

)
for a fixed q ∈ N; (2)

for i ∈ Z+, where ai = ai(t), bi = bi(t), ai, bi ∈ C, t ∈ [0, T ), 0 < T ≤ ∞;
ai, bi 6= 0, (ai(t))

∞
i=0, (bi(t))

∞
i=0 ∈ l∞; bl = al = 0 for l < 0.

Both systems (1) and (2) (when i ∈ Z) were introduced by Bogoyavlen-
sky, see [8] and references thereafter, where it was shown that they can be
regarded as discrete versions of the Korteweg-de Vries equation.

The system (1) admits the Lax representation
·
L = [L,A] with matrices

L = L1 = L1(t) = (L1ij)
∞
i,j=0 =

=


0 0 . . . 00, r−1 1 0 0 0 . . .
a0 0 0 . . . 01,r 1 0 0 . . .
0 a1 0 0 . . . 02, r+1 1 0 . . .
0 0 a2 0 0 . . . 0 1 . . .
...

...
...

. . .
...

...
...

...
. . .

 , (3)

A = A1 = A1(t) = (A1ij)
∞
i,j=0 =

=



0 0 0 0 0 0 . . .
...

...
...

...
...

... . . .
0r,0 0 0 0 0 0 . . .

a0 · · · ar 0 0 0 0 0 . . .
0 a1 · · · ar+1 0 0 0 0 . . .
...

...
. . .

...
...

... . . .


, (4)

and the Lax pair for the system (2) can be defined as follows

L = L2 = L2(t) = (L2ij)
∞
i,j=0 =

=



0 1 0 0 0 0 0 . . .
... . . .

. . . . . . . . . . . . . . . . . .
0q−1, 0 . . . 0 1q−1, q 0 0 0 . . .
b0 0q,1 . . . 0 1q, q+1 0 0 . . .
0 b1 0 . . . 0 1 0 . . .
...

...
. . .

...
...

...
. . . . . .


, (5)
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A = A2 = A2(t) = (A2ij)
∞
i,j=0 =

= −



b0 0 . . . 00, q 1 0 0 0 0 . . .
0 b0 + b1 0 0 01, q+1 1 0 0 0 . . .
... . . .

. . .
...

...
...

. . .
...

...
...

0q, 0 . . . 0q, q−1
q∑
i=0

bi 0 . . . 0q, 2q 1 0 . . .

0 0 . . . 0q+1, q

q+1∑
i=1

bi 0 . . . 0 1 . . .

...
...

...
...

. . .
...

...
...

...
. . .


.(6)

Both L1 and L2 are special cases of the matrix M = (ai,k)
∞
i,k=0 with the

following elements:

ai,k ∈ C, ai,k = 0, k > i+ r, i > k + q,

ai, i+r = 1, ai+q, i 6= 0, i ≥ 0;
(7)

i.e.,

M =



a0,0 . . . 10, r 0 0 . . . . . . . . .
a1,0 a1,1 . . . 1 0 . . . . . . . . .

...
...

...
...

. . .
...

... . . .
aq, 0 aq ,1 aq, 2 . . . . . . 1q, q+r 0 . . .
0 aq+1, 1 aq+1, 2 aq+1, 3 . . . . . . 1 . . .

0 0
. . .

...
...

...
...

. . .


, (8)

thus M is an infinite nonsymmetric band matrix which consists of q + r+ 1
(possibly) nonzero diagonals. Denote as M any matrix of this structure. As
we see, the matrix L1 fits into the case of M with q = 1, whereas for L2 the
corresponding case is r = 1.

Denote by l2[0,∞) the Hilbert space of the complex sequences y =
(yn)∞n=0 such that

∑∞
n=0 |yn|2 < ∞, with inner product (y, z) =

∑∞
n=0 ynz̄n.

Also, denote by {en}∞n=0 its standard orthonormal basis. We identify the
matrix M with the operator defined as the closure of the operator acting on
the dense set of finite vectors from l2[0,∞), where its action is described via
matrix calculus (and keep the same notation M for this operator).

Now, consider in brief the inverse spectral problem for the operators M ;
for its full description, see e.g. [26]. First, for λ ∈ Ω(M), where Ω(M) is
the resolvent set of M, we define the following functions named the Weyl
solutions of M [26, 30,31]:

Φ(λ) = (Φi(λ))∞i=0, Φi(λ) = (Φ1
i (λ), . . . ,Φq

i (λ)),

Φn
i (λ) := (Rλen−1)i, n = 1, . . . , q,

(9)

where Rλ = (λE−M)−1 is the resolvent of M and E is the identity operator.
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In other words, Φ(λ) = (Rλe0, . . . , Rλeq−1). Also define the Weyl matrix
for M as follows:

M(λ,M) = (Mm,n(λ,M))n=1,...,q
m=1,...,r, λ ∈ Ω(A),

Mm,n(λ,M) := Φn
m−1(λ) = (Rλen−1)m−1 = (Rλen−1, em−1). (10)

For q = 1, r = 1, the matrix M(λ,M) coincides with the Weyl function for
the corresponding tridiagonal matrix of Jacobi type, and if J is the classical
Jacobi operator, then M(λ, J) is the Stieltjes transform of its spectral mea-
sure, see [1, 6, 7, 22, 23]. We also introduce the following system of formal
power series with the parameter λ ∈ C\{0}:

W (λ) = (Wm,n(λ))n=1...,q
m=1...r,

Wm,n(λ) =
∞∑
k=0

Sm,nk

λk+1
, Sm,nk = (Mk)m−1,n−1,

(11)

where (Mk) is the k-th power of the matrix M . If the operator M is bounded
(when supi,j | ai,i+j |<∞, which holds for L1 and L2), the Neumann formula
for its resolvent is valid for | λ |> ‖M‖, and, as follows from (9),

Φn
i (λ) =

∞∑
k=0

(Mk)i,n−1
λk+1

(12)

for all i and n. Therefore, for the bounded operators M , the functions
Mm,n(λ) = Φn

m−1(λ) are holomorphic at infinity and Mm,n(λ) = Wm,n(λ) in
its neighborhood. This allows us to define, in the general case, the asymp-
totic expansion of the Weyl matrix of M at infinity, as the matrix (11):

M∞(λ,M)
def
= W (λ).

Now we introduce the object which plays the key role in the considered
inverse spectral problem method. Namely, the moment sequence of the Weyl
matrix of M is defined by

S(M(λ,M)) = (Sk)
∞
k=0, Sk =

 S1,1
k . . . S1,q

k
...

...

Sr,1k . . . Sr,qk

 ,

where the elements Sm,nk for m = 1, . . . , r, n = 1, . . . , q are defined by (11),
and called the moments of M(λ,M).

As in the tridiagonal matrix case [22], our inverse spectral problem ad-
mits the following formalization: given S(M(λ,M)), find M .
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The elements of M can be recovered from S(M(λ,M)) in the recurrent
manner starting from ai+q,i, see [26], and the latter are obtained from the
following formulas:

ai+q,i =
∆i+q∆i−1

∆i+q−1∆i

, i ≥ 0, (13)

where

∆k = det(Hk) for Hk = (αi,j)
k
i,j=0, ∆−1 = 1, and αi,j = Sm1,n1

k1+k2, (14)

k1 =

⌊
i

r

⌋
, k2 =

⌊
j

q

⌋
, m1 = (i mod r) + 1, n1 = (j mod q) + 1;

(we use the common notation: r = a mod b for the remainder from integer
division). Also, set

H = (αi,j)
∞
i,j=0. (15)

Another important issue is a solvability criterion for the considered in-
verse problem method for M in terms of the moment sequence of its Weyl
matrix. It can be formulated as follows.

Theorem 1 The sequence

S(M(λ,M)) = (Sk)
∞
k=0; Sk =

 S1,1
k . . . S1,q

k
...

...

Sr,1k . . . Sr,qk

 ,

Sm,nk ∈ C, m = 1, . . . , r, n = 1, . . . , q,

is the moment sequence of the Weyl matrix of the operator M, if and only if
the following conditions hold:

(i) normalization condition:

Sm,nl = δm+lr,n, n > lr, l = 0, . . . ,
[q
r

]
;

(ii) for every k ≥ 0, ∆k 6= 0, where ∆k are the determinants defined
according to (14).

For r = 1, q = 2, the proof is given in [19]; the case of arbitrary r and
q can be proved similarly (see also [20, 30, 31] where a similar criterion was
established for another classes of band operators). Note that from the proof
it follows that there is a one-to-one correspondence between the matrices M
and the sequences satisfying the above conditions (i)− (ii). Obviously, the
condition (ii) implies that

rankH =∞,
where H is defined in (15).

Using Theorem 1 (condition (i)) and (13) and applying induction on k,
we establish the following result.
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Lemma 1 The determinants ∆k (14) are calculated by the formulas

∆0 = · · · = ∆q−1 = 1,

∆i+q = ai+q, i · · · ai+1, i−q+1(ai, i−q · · · ai−q+1, i−2q+1)
2 × · · ·

× (ai−(h−3)q, i−(h−2)q · · · ai−(h−2)q+1, i−(h−1)q+1)
h−1 ×

× (ai−(h−2)q, i−(h−1)q · · · aq, 0)h; (16)

i ≥ 0, h =

⌊
i+ q

q

⌋
; ai,k = 1 for k < 0

We now turn back to the systems (1)–(2) and, respectively, to the ma-
trices L1 and L2. As follows from the above, for the eponymous operators
the moment sequences are

S(M(λ, L1))(t) =

S
1,1
k
...

Sr,1k


∞

k=0

where Sm,1k = (L1k)m−1, 0; (17)

and

S(M(λ, L2))(t) = (S1,1
k , . . . , S1,q

k )∞k=0 where S1,n
k = (L2 k)0, n−1. (18)

Both L1 and L2 correspond to the case of “sparse” matrices M , i.e., such
ones that in addition to (7) the conditions

ai,k = 0 for k = i− q + 1, . . . , i+ r − 1

are fulfilled. In terms of S(M(λ, L1))(t) and S(M(λ, L2))(t), this property
implies that for k′ ∈ Z+,

Sm,1k = 0, m = 1, . . . , r, k 6= m− 1 + (r + 1)k′; (19)

S1,n
k = 0, n = 1, . . . , q, k 6= n− 1 + (q + 1)k′. (20)

For the complete proof of sparsity criterion for the matrices M in terms
of S(M(λ,M)), see [26], Theorem 2. Another property of the moments of
S(M(λ, L1))(t) and S(M(λ, L2))(t) can be established directly using (3),
(5) and (17)–(18), namely,

Lemma 2 For the elements of S(M(λ, L1))(t) and S(M(λ, L2))(t) defined
according to (17)–(18)

Sm,1m−1 = a0 . . . am−2, m ≥ 2; S1,1
r+1 = a0 . . . ar−1;

S1,n
n−1 = 1, S1,n

n+q =
n−1∑
l=0

bl.
(21)
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Note that S1,1
0 = 1 according to the condition (i) of the Theorem 1.

Our next aim is to find the evolution equations for the moments. First

we check that since
·
Rλ(t) = −Rλ(t)(λE

·
− L(t))Rλ(t), it follows from the

Lax equation that

·
Rλ(t) = Rλ(t) (A(t)(λI − L(t))− (λI − L(t))A(t))Rλ(t) =

= [Rλ(t), A(t)]. (22)

Let R1
λ and R2

λ be the resolvents of L1 and L2 respectively. Denote by
(R1

i,j)
∞
i,j=0 and (R2

i,j)
∞
i,j=0 their matrix representations in the basis {en}. As

follows from (10), Mm,1(λ, L1) = Mm,1(λ, L1)(t) = R1
m−1,0, M1,n(λ, L2) =

M1,n(λ, L2)(t) = R2
0,n−1. Then, using (22) and (3)–(4), we find that

·
R1
i,0 = a0 . . . arR

1
i,r+1; i = 0, . . . , r − 1. (23)

From the identity
R1
λ(λE − L1) = E, (24)

written in the matrix form, we get the following chain of relations

−R1
0,0 + λR1

0,r − arR1
0,r+1 = 0,

λR1
0,r−1 − ar−1R1

0,r = 0,

...

λR1
0,1 − a1R1

0,2 = 0,

λR1
0,0 − a0R1

0,1 = 1;

from which we obtain

arR
1
0,r+1 =

λq+1R1
0,0 − λq

a0 . . . ar−1
−R1

0,0.

Substituting the latter into (23) for i = 0, we find the equation for M1,1(λ, L1):

·
M1,1(λ, L1) = λr+1M1,1(λ, L1)− λr − a0 . . . ar−1M1,1(λ, L1).

Using (11)–(12) and (17), (21), we get the corresponding equation for the
moments

·
S1,1
k = S1,1

k+r+1 − S
1,1
r+1S

1,1
k .

For i = 1, . . . , r − 1, we derive from (24) the following relations

−R1
i,0 + λR1

i,r − arR1
i,r+1 = 0,

λR1
i,r−1 − ar−1R1

i,r = 0,

...

λR1
i,0 − a0R1

i,1 = 0;
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from which we have

arR
1
i,r+1 =

λq+1R1
i,0

a0 . . . ar−1
−R1

i,0;

and the substitution of the latter into (23) leads to

·
R1
m−1,0 =

·
Mm,1(λ, L1) =

= λr+1Mm,1(λ, L1)− a0 . . . ar−1Mm,1(λ, L1); m = 2, . . . , r.

Thus we arrive at the following equations for the elements of S(M(λ, L1))(t)

·
Sm,1k = Sm,1k+r+1 − S

1,1
r+1S

m,1
k ; m = 1, . . . , r; (25)

which can be written in the equivalent form

Sm,1k (t) = X(t)(Sm,1k (0) +

∫ t

0

X(t1)
−1Sm,1k+r+1(t1)dt1); (26)

where X(t) is the solution of:

·
X(t) = −S1,1

r+1(t)X(t); X(0) = 1,

and we find for the latter

X(t) = e
−

∫ t

0

S1,1
r (τ)

= e
−

∫ t

0

a0(τ) . . . ar−1(τ)dτ
. (27)

In order to get the equations for the elements of S(M(λ, L2))(t), first,

using the formula
·
R1
λ = [R2

λ, A2], we establish the relations similar to (23),
namely,

·
R2

0,0 = R2
q+1,0;

·
R2

0,j = R2
q+1,j − (

j∑
l=1

bl)R
2
0,j; j = 1, . . . , q − 1. (28)

From the matrix equation (λE − L2)R2
λ = E and (28), acting similarly as

above, we derive:

·
R2

0,n−1 =
·
M1,n(λ, L2) =

= λq+1M1,n(λ, L2)− λq+1−n − (
n−1∑
l=0

bl)M1,n(λ, L2); n = 1, . . . , q;

and using (21), we finally get

·
S1,n
k = S1,n

k+q+1 − S
1,n
q+nS

1,n
k ; n = 1, . . . , q. (29)
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Similarly to (26), we find that

S1,n
k (t) = Yn(t)(S1,n

k (0) +

∫ t

0

Yn(t1)
−1S1,n

k+q+1(t1)dt1); (30)

and each Yn is found from

·
Y n(t) = −S1,n

q+n(t)Yn(t); Yn(0) = 1.

In view of the above, we have obtained that if (1) and (2) have a solution,
then the elements of S(M(λ, L1))(t) and S(M(λ, L2))(t) satisfy (25) and
(29).

Assuming that (ai(t))
∞
i=0, (bi(t))

∞
i=0 ∈ l∞ (which, in turn, implies that the

operator norms ‖L1(t)‖ and ‖L2(t)‖ are bounded) and solving the integral
equations (26) and (30) by iteration, one can get the following formulas for
the moments:

Sm,1k (t) =

∞∑
l=0

tl

l!
Sm,1k+(r+1)l(0)

∞∑
l=0

tl

l!
S1,1
(r+1)l(0)

; S1,n
k (t) =

∞∑
l=0

tl

l!
S1,n
k+(q+1)l(0)

∞∑
l=0

tl

l!
S1,n
n−1+(q+1)l(0)

; k ∈ Z+. (31)

Indeed, take m = 1 and k = r + 1. Applying (26) N times, we obtain the
following equation for S1,1

r+1 :

S1,1
r+1 = X(t)

(
N∑
l=0

tl

l!
S1,1
r+1+l(r+1)(0)+

+

∫ t

0

∫ t1

0

· · ·
∫ tN

0

X−1(tN+1)S
1,1
(N+1)(r+1)(tN+1)dtN+1 . . . dt1

)
.

As follows from (17),

|S1,1
(N+1)(r+1)(tN+1)| = |(L1(N+1)(r+1)(tN+1))0,0| ≤ ‖(L1(tN+1)‖(N+1)(r+1).

Hence, due to our assumption and (27), we find that the integral in the
above formula converges uniformly to 0 as N →∞ on [0, T ). Thus,

S1,1
r+1(t) = X(t)

∞∑
l=0

S1,1
r+1+l(r+1)(0)tl

l!
. (32)

From (26) we obtain that S1,1
r+1(t) = −

·
X(t)X−1(t). On the other hand,

dX−1(t)

dt
= −

·
X(t)X−2(t) =

(
∞∑
l=0

S1,1
r+1+l(r+1)(0)tl

l!

)
.
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Using this relation, we find that

X(t)−1 =

(
∞∑
l=0

S1,1
l(r+1)(0)tl

l!

)
(here we used the sparsity condition (19)). Substituting the latter relation
into (32), we obtain (31) for m = 1 and k = r + 1. Taking other values of k
and using the above arguments we find that

S1,1
k (t) = X(t)

∞∑
l=0

S1,1
k+l(r+1)(0)tl

l!
,

from which (31) follows for m = 1 and all k. The cases for other values of
m and n are considered similarly.

Note: Comparing (25) and (29), we see that all equations (25) contain
the same multiplier S1,1

r+1, and this is not the case for the equations (29),

where each of the q equations has its own multiplier S1,n
q+n. Further on, we

will use this while studying the finite Bogoyavlensky lattices.
For arbitrary initial data (ai(0))∞i=0, (bi(0))∞i=0 ∈ l∞, ai(0), bi(0) 6= 0, the

local existence and uniqueness theorem for (2) (in the class of bounded solu-
tions) was established in [13, 21] (in fact, the lattices with matrix/operator
coefficients were considered there); for the system (1), it can be proved in a
similar way.

In view of the above, we obtain the following integration method for
(1)–(2).

Theorem 2 For each set of initial complex data (ai(0))∞i=0, (bi(0))∞i=0 ∈ l∞;
ai(0), bi(0) 6= 0, there exists δ > 0 such that the Cauchy problem for (1)–(2)
has a unique solution for t ∈ [0, δ) which can be found in the following way:

1. Construct the matrices L1(0), L2(0) defined by (3) and (5), respec-
tively, at t = 0 out of the initial data and find the moments
S(M(λ, L1))(0) and S(M(λ, L2))(0).

2. Calculate the moments S(M(λ, L1))(t) and S(M(λ, L2))(t) according
to (31).

3. Using (13) find the elements ai(t), bi(t) for i ∈ Z+ and t ∈ [0, δ),
which give the required solution.

If ai(0) and bi(0) are all real and positive (or all negative) then the global
existence and uniqueness property for the solutions of (1) was established
in [28]; a similar result for the system (2) was obtained in [3,19]. As follows
from the above considerations, in this case, our integration method can be
applied to find the global solution. To our knowledge, it remains an open
question for which (complex or real) initial data there exists the bounded
solution of (1) or (2) for all t ∈ [0, T ).
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2 Miura-like transformations

From now on, we will assume that in (1)–(2), r = q = p for some p ≥ 2. In
this case, the Weyl matrices M(λ, L1) and M(λ, L2) are of the sizes p × 1
and 1× p, respectively, and formulas (13) are written as follows:

ai =
∆i+1∆i−1

∆2
i

, bi =
∆i+p∆i−1

∆i+p−1∆i

, i ≥ 0, (33)

where ∆i’s are defined in (14).
As mentioned in [8], the systems

·
ai = ai

(
p∏
j=1

ai+j −
p∏
j=1

ai−j

)
, i ∈ Z;

after denoting
bi = ai · · · ai+p−1, (34)

take the form
·
ai = ai(bi+1 − bi−p),

and differentiating both sides of (34), one gets

·
bi = bi(

p∑
j=1

bi+j −
p∑
j=1

bi−j), i ∈ Z. (35)

Conversely, fix an arbitrary i = I in (35). Then, for p ≥ 2, let
aI , . . . , aI+p−2 be solutions of the equations

·
aI = aI(bI+1 − bI−p);

... (36)
·
aI+p−2 = aI+p−2(bI+p−1 − bI−2).

Then, by setting

aI+p−1 =
bI

aI · · · aI+p−2
, (37)

from (35)–(36), one gets

·
aI+p−1 =

bI

(∑p
j=1 bI+j −

∑p
j=1 bI−j

)
aI · · · aI+p−2

−

− bI ((bI+1 − bI−p) + (bI+2 − bI−p+1) + · · ·+ (bI+p−1 − bI−2))
aI · · · aI+p−2

= aI+p−1(bI+p − bI−1).
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In the same manner, defining successively

ai :=
bi−p+1

ai−p+1 · · · ai−1
, for i ≥ I + p, (38)

and

ai :=
bi

ai+1 · · · ai+p−1
, for i ≤ I − 1; (39)

for these values of i, one finds that

·
ai = ai(bi+1 − bi−p).

The later implies that an inverse to the transformation (34) can be defined
according to (36)–(39).

We now turn back to the Cauchy problem for semi-infinite systems (1)–
(2), considered in the previous section. The Miura transformation, as we call
it (in [32] it was called a Bäcklund transformation; since Miura mappings
may be regarded as a special cases of Bäcklund transforms, this name is also
justified), defined by (34), maps the system (1) to the system (2) with initial
conditions

bi(0) = ai(0) · · · ai+p−1(0).

The inverse Miura transformation for p ≥ 2 from (2) to (1) is defined as
follows:

ai(t) = ai(0)e

∫ t

0

bi+1(τ)dτ
for some 0 6= ai(0) ∈ C, i = 0, . . . , p− 2; (40)

and for i ≥ p− 1, it is defined recurrently as

ai(t) =
bi−p+1(t)

ai−p+1(t) · · · ai−1(t)
. (41)

Note that one can define the inverse Miura transformation starting from
(36) and set ai(t) = ai(0) exp(

∫ t
0
(bi+1(τ) − bi−p(τ))dτ) for certain complex

ai(0) 6= 0, i = I, . . . , I − p+ 2. Then, using (39), one arrives at the elements
a0(t), . . . , ap−2(t). However, if in (40) we set for ai(0) the values of the latter
at t = 0, then, applying (40)–(41), we get the same semi-infinite system
(1) with the same initial data as after using the transformations defined
according to (36)–(39); in this sense, the two procedures are equivalent.

Our next aim here is to find the expression for these Miura transforma-
tions in terms of the moment sequences S(M(λ, L1))(t) and S(M(λ, L2))(t)
introduced in the previous section. For convenience, denote their elements
defined in (17)–(18) asS

1
k
...
Spk

 and (S̃1
k , . . . , S̃

p
k), k ∈ Z+,
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respectively. Note that as follows from (19)–(20),

Slk = S̃lk = 0 for l = 1, . . . , p, k 6= l − 1 + (p+ 1)k′, k′ ∈ Z+. (42)

Theorem 3 The Miura transformation (34) between the systems (1) and
(2) for r = q = p ≥ 2 can be described as the transformation S → S̃ between
S := S(M(λ, L1))(t) and S̃ := S(M(λ, L2))(t) as follows:

Slk(t)

Sll−1(t)
= S̃lk(t), l = 1, . . . , p; k ∈ Z+. (43)

Conversely, the transformation (40)–(41) can be expressed as S̃ → S in the
following way:

S1
k(t) = S̃1

k(t),

Slk(t) = a0(0) · · · al−2(0)e

∫ t

0

(S̃ll+p(τ)− S̃1
p+1(τ))dτ

S̃lk(t), (44)

l = 2, . . . , p.

Proof. First consider (1) and the corresponding moment sequence S. In
this case we have αi,j = Sm1

k1+j
(t), r = p in (14), and formula (16) reads

∆k = ak−1a
2
k−2 · · · ak0, k ≥ 1. (45)

For k ≥ 0, set

Ŝlk(t) =
Slk(t)

Sll−1(t)
, l = 1, . . . , p; (46)

and consider the determinants ∆̃k = ∆̃k(t) = det(α̂i,j)
k
i,j=0 defined in (14)

(with α̂i,j = Ŝm1
k1+j

(t)). Then, for k = 0, . . . , p−1, applying Lemma 2, we get

∆̃k =
∆k

Sk+1
k (t) · · ·S1

0(t)
=

ak−1a
2
k−2 · · · ak0

Sk+1
k (t) · · ·S1

0(t)
= 1. (47)

For k ≥ p, k = hp+ h1 and h =

⌊
k

p

⌋
, we have

∆̃k =
∆k

(Spp−1(t) · · ·S1
0(t))h(Sh1+1

h1
(t) · · ·S1

0(t))
=

=
ak−1a

2
k−2 · · · ak0

(ap−2a2p−3 · · · a
p−1
0 )h(a0h1 · · · a

h1
0 )

=

=
ak−1a

2
k−2 · · · a

ph−1
h1+1(ah1 · · · a0)ph

(ap−2a2p−3 · · · a
p−1
0 )h

:=
I

II
(48)
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As in (34), set bk = ak . . . ak+p−1. Then it can be checked that

bk−vp · · · bk−(v+1)p+1 = (49)

= ak−(v−1)p−1a
2
k−(v−1)p−2 · · · a

p
k−vpa

p−1
k−vp−1 · · · a

2
k−(v+1)pak−(v+1)p+1,

for v = 1, . . . , h − 1. Applying (49), we rearrange the numerator in the
right-hand side of (48) as follows:

I = (bk−p · · · bk−2p+1)(bk−2p · · · bk−3p+1)
2 · · · (bk−(h−1)p · · · bk−hp+1)

h−1 × III,

where
III = ahp+h1−1a

2h
p+h1−2 · · · a

(p−1)h
h1+1 (ah1 · · · a0)ph. (50)

Then from (50) and (48), we have

III

II
=
ahp+h1−1a

2h
p+h1−2 · · · a

ph
h1
aphh1−1a

ph
0

ahp−2a
2h
p−3a

(p−h1−1)h
h1

· · · a(p−1)h0

=

= ahp+h1−1a
2h
p+h1−2 · · · a

(h1+1)h
p−1 a

(h1+1)h
p−2 · · · a(h1+1)h

h1
ah1hh1−1 · · · a

h
0 = (bh1 · · · b0)h.

Substituting the latter formulas into (48), we finally get

∆̃k = (bk−p · · · bk−2p+1)(bk−2p · · · bk−3p+1)
2 · · · (bk−(h−1)p · · · bk−hp+1)

h−1 ×
× (bh1 · · · b0)h. (51)

Comparing (47) and (51) with formulas (16) corresponding to the special
case of matrices L2 (when q = p), we find that they coincide with each
other. Due to (33), (42) and Theorem 1 (its condition (i) follows from (42)
and (46); the condition (ii) follows from the fact that (ii) is fulfilled for the
moment sequence S), this coincidence implies that (Ŝ1(t), . . . , Ŝp(t)) is the
moment sequence S̃ = S(M(λ, L2))(t) of the matrix L2 with the coefficients
bi defined by (34). Thus, the “direct” part of the theorem is proved.

To prove the converse part, we consider the system (2), the moment
sequence S̃ and the corresponding determinants ∆̃k defined according to
(14) and satisfying (51). Then we consider the sequence S = S(t) with the
elements defined from (44). Using the latter, we set

ai(t) =
Si+2
i+1(t)

Si+1
i+1(t)

= ai(0)e

∫ t

0

(S̃i+2
i+p+2(τ)− S̃i+1

i+p+1(τ))dτ
, i = 0, . . . p− 2.

As follows from Lemma 2, S̃i+2
i+p+2(τ) − S̃i+1

i+p+1(τ) = bi+1(τ), and we arrive
at formula (40). Then we consider the determimants ∆k defined according
to (14), where αi,j = Sm1

k1+j
(t), and show, reversing the arguments used to

prove the “direct” part and applying (41), that they satisfy (45) (in the
latter, the elements ak for k ≥ p − 1 are found from (41)). Using this fact
and Theorem 1, we find that S is the moment sequence of the matrix L1(t)
which appears in the Lax representation (3)–(4) for the system (1) with the
elements satisfying (40)–(41). �
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3 Finite case. First integrals

Now consider the finite systems (1)–(2), namely,

·
ai = ai

(
p∏
j=1

ai+j −
p∏
j=1

ai−j

)
; (52)

·
bi = bi

(
p∑
j=1

bi+j −
p∑
j=1

bi−j

)
; (53)

where i = 0, . . . , N ; ai, bi ∈ C, t ∈ [0, T ), 0 < T ≤ ∞; ai, bi 6= 0, bl = al = 0
for l < 0 and l > N ; for a certain p ≥ 1 and N ≥ 2p− 1. They can be called
the Bogoyavlensky lattices with open-end boundary conditions [29]. As in
the semi-infinite case, the system (52) admits the Lax representation with
the matrix

L = L1N =



0 0 . . . 00, p−1 1 0 0 . . . 0
a0 0 0 . . . 01,p 1 0 . . . 0
0 a1 0 0 . . . 02, p+1 1 . . . 0
... . . .

. . . . . . . . .
... . . .

. . .
...

0 . . . 0 aN−1 0 0 0 . . . 1
0 . . . 0 0 aN 0 0 . . . 0



of order N+2×N+2 while the L matrix for the system (53) takes the form

L = L2N =



0 1 0 0 0 0 . . . 0
... . . .

. . . . . .
...

... . . .
...

0p−1, 0 . . . 0 1p−1, p 0 0 . . . 0
b0 0p, 1 . . . 0 1 0 . . . 0
0 b1 0 . . . 0 1 . . . 0
... . . .

. . . . . .
... . . .

. . .
...

0 . . . 0 bN−1 0 0 . . . 1
0 . . . 0 0 bN 0 . . . 0


,

and its order is N + p+ 1×N + p+ 1. Both of them are special cases of the
matrices MN ; the latter may be regarded as leading principal submatrices
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of order N + q + 1 of the above considered matrices M defined by (8):

MN =



a0,0 . . . 10, r 0 0 . . . 00, q+N
... . . .

...
. . . . . .

...
...

aq, 0 aq, 1 aq,2 . . . 1q, q+r . . . 0
...

. . .
... . . . . . .

. . .
...

0 . . . aq+N−r, N−r . . . . . . . . . 1q+N−r, q+N
...

...
. . . . . . . . . . . .

...

...
... . . .

. . . . . . . . .
...

0 0 . . . 0 aq+N,N . . . aq+N, q+N


,

The inverse spectral problem method considered in Section 2, including the
reconstruction algorithm, is applicable to MN as well. The condition (i) of
Theorem 1 remains the same, while the condition (ii) is replaced by

(iiN) For k = 0, . . . , q +N , ∆k 6= 0 and

rankH = N + q + 1, (54)

where H is defined in (15).
Due to the Hankel type structure of matrix H (for r = q = 1, this is

an infinite Hankel matrix. As known, its subsequent rows/columns are the
“shortened” versions of the preceding ones, see [11], Chapter XV, Theorem
7, and this property is retained in the general case of matrix H) the condition
(54) is equivalent to

αi,j =

N+q∑
v=0

Cvαi,j−v−1, Cv ∈ C, j ≥ N + q + 1, (55)

or

αi,j =

N+q∑
v=0

Dvαi−v−1,j, Dv ∈ C, i ≥ N + q + 1, (56)

for certain sets C0, . . . , CN+q or D0, . . . , DN+q, and N+q is the least number
for which (55)–(56) are fulfilled. Also, if one of these conditions is hold,
then the second one is hold as well (the row rank of a matrix is equal to
its column rank). We call C0, . . . , CN+q and D0, . . . , DN+q the finite rank
coefficients (FRC) of the matrix H. Here, we will not give the proof of
analogue of Theorem 1 for the matrices MN , instead we refer to [20] where
a similar result was established for another class of finite band matrices (see
also [13]).

As in the previous section, we denote as

S(M(λ, L1N))(t) := SN(t) = SN =

S
1
k
...
Spk


∞

k=0
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and

S(M(λ, L2N))(t) := S̃N(t) = S̃N = (S̃1
k , . . . , S̃

p
k)∞k=0

the moment sequences of the Weyl matrices corresponding to L1N and L2N
respectively. The relations (55) and (56) for the elements of SN and S̃N can
be written as

Slk =
N+1∑
v=0

CvS
l
k−v−1, k ≥ N + 2; (57)

Sml
kl+k

=
N+1∑
v=0

DvS
m̂l,v

k̂l,v+k
, k ≥ 0; l = 1, . . . , p, (58)

where

kl =

⌊
N + 1 + l

p

⌋
, k̂l,v =

⌊
N + l − v

p

⌋
,

ml = (N + 1 + l mod p) + 1, m̂l,v = (N + l − v mod p) + 1

(as mentioned above, the order of L1N and, consequently, the rank of H
equals to N + 2);

S̃lk =

N+p∑
v=0

C̃vS̃
l
k−v−1, k ≥ N + p+ 1; (59)

S̃ñl

k̃l+k
=

N+p∑
v=0

D̃vS̃
ñl,v

k̃l,v+k
, k ≥ 0; l = 1, . . . , p, (60)

where

k̃l =

⌊
N + p+ l

p

⌋
, k̃l,v =

⌊
Nv

p

⌋
, Nv = N + p+ l − (v + 1),

ñl = (N + p+ l mod p) + 1, ñl,v = (Nv mod p) + 1

(in the L2N case, the rank of H is N + p+ 1).

The integration procedure for the semi-infinite Bogoyavlensky lattices
considered in Section 2 can be applied for integration of their finite counter-
parts as well. In particular, formulas (25) and (29) are valid for the elements
of SN(t) and S̃N(t). An additional question here is how the finite rank co-
efficients defined in (57)–(60) evolve in time. It turns out that all of them
except D̃v are time independent. Namely, the following result holds for the
systems (52)–(53).
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Theorem 4 The FRC C := {C0, . . . , CN+1} and D := {D0, . . . , DN+1}
introduced in (57)–(58) are the integrals of motion (first integrals of) the
system (52), while the FRC C̃ := {C̃0, . . . , C̃N+p} defined in (59) are the
first integrals of the system (53).

Proof. First, consider the sequence SN(t). In accordance with (14), for
a fixed j ∈ Z+, the j-th column of the corresponding matrix H = H(t)

consists of the moments αk,j = S
(kmod p)+1

b kpc+j
, k = 0, 1, . . . . We apply (57) and

(25) (here, r = p) to the first N + 2 elements of the (N + 2)-th column of
H. In particular, for α0,N+2 = S1

N+2, we have

·
S1
N+2 =

N+1∑
v=0

·
Cv S

1
N+1−v +

N+1∑
v=0

·
CvS

1
N+1−v =

=
N+1∑
v=0

Cv(S
1
N+1−v+p+1 − S1

p+1S
1
N+1−v) +

N+1∑
v=0

·
CvS

1
N+1−v =

= S1
N+p+3 − S1

p+1S
1
N+2 +

N+1∑
v=0

·
CvS

1
N+1−v =

·
S1
N+2 +

N+1∑
v=0

·
CvS

1
N+1−v.

Thus,
N+1∑
v=0

·
CvS

1
N+1−v = 0.

After that, applying successively this procedure N + 1 times to α1,N+2, . . . ,
αN+1,N+2, where

αN+1,N+2 = S
(N+1mod p)+1

bN+1
p c+N+2

= S
m̂1,0

k̂1,0+N+2
,

we arrive at the system of equations

·
C0S

1
N+1 + . . . +

·
CN+1S

1
0 = 0,

...
... (61)

·
C0S

(N+1mod p)+1

bN+1
p c+N+1

+ · · ·+
·
CN+1S

(N+1mod p)+1

bN+1
p c

= 0.

By the above-stated condition (iiN) (here, q = 1), its determinant ∆N+1 6= 0,

therefore,
·
C0 = · · · =

·
CN+1 = 0.

Note that for a fixed i ∈ Z+, the i-th row of the matrix H consists of

the moments αi,k = S
(imod p)+1

b i
pc+k

, k = 0, 1, . . . We set i = N + 2 and apply

(58) and (25) to the first N + 2 elements of the (N + 2)-th row. First, take
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αN+2,0 = Sm1
k1

. Differentiating with respect to t both sides of the relation

Sm1
k1

=
∑N+1

v=0 DvS
m̂1,v

k̂1,v
and applying (25), we get

·
Sm1
k1

=
N+1∑
v=0

Dv(S
m̂1,v

k̂1,v+p+1
− S1

p+1S
m̂1,v

k̂1,v
) +

N+1∑
v=0

·
DvS

m̂1,v

k̂1,v
=

= Sm1
k1+p+1 − S

1
p+1S

m1
k1

+
N+1∑
v=0

·
DvS

m̂v

k̂v
=

·
Sm1
k1

+
N+1∑
v=0

·
DvS

m̂1,v

k̂1,v
,

and we find that
∑N+1

v=0

·
DvS

m̂1,v

k̂1,v
= 0 (here, S

m̂1,N+1

k̂1,N+1
= S1

0). Then applying

this procedure to the remaining N + 1 elements (αN+2,1, . . . , αN+2,N+1) =
(Sm1

k1+1, . . . S
m1
k1+N+1), we obtain the system

·
D0S

m̂1,0

k̂1,0
+ . . . +

·
DN+1S

1
0 = 0

...
...

·
D0S

m̂1,0

k̂1,0+N+1
+ . . . +

·
DN+1S

1
N+1 = 0.

Again, its determinant ∆N+1 6= 0, and
·
D0 = · · · =

·
DN+1 = 0 as well.

Further on, consider the sequence S̃N(t) and the corresponding matrix
H = H(t). By (14), for a fixed i the i-th row of H consists of the moments

αi,k = S̃
(kmod p)+1

b kpc+i
, k = 0, 1, . . . Set i to be N + p + 1 and take its first p

elements: S̃lN+p+1, l = 1, . . . , p. Acting as above and using (59) and (29), we
obtain

·
S̃lN+p+1 =

N+p∑
v=0

·
C̃v S̃

l
N+p−v +

N+p∑
v=0

·
C̃vS̃

l
N+p−v =

=

N+p∑
v=0

C̃v(S̃
l
N+p−v+p+1 − S̃ l

p+1S̃
l
N+p−v) +

N+p∑
v=0

·
C̃vS̃

l
N+p−v =

= S̃ l
N+2p+2 − S̃ l

p+1S̃
l
N+p+1 +

N+p∑
v=0

·
C̃vS̃

l
N+1−v =

·
S̃ l

N+p+1 +

N+p∑
v=0

·
C̃vS̃

l
N+p−v.

Therefore,
∑N+p

v=0

·
C̃vS̃

l
N+p−v = 0 for l = 1, . . . , p. After repeating this proce-

dure N + 1 times for the elements αN+p+1,p, . . . , αN+p+1,N+p, we obtain the

linear homogenous system similar to (61) for the unknowns
·
C̃0, . . . ,

·
C̃N+p

with the determinant ∆̃N+p 6= 0, and we immediately find that

·
C̃0 = · · · =

·
C̃N+p = 0.

�



MIURA TRANSFORMS OF BOGOYAVLENSKY LATTICES AND INVERSE PROBLEMS 21

Note that an analogues result was obtained in [14] and [22], where a sim-
ilar approach based upon an inverse problem method was applied to integra-
tion of finite Volterra and Toda lattices and discrete modified Korteweg–de
Vries equation in the finite case. In these works H is a Hankel matrix of a
finite rank.

Remark. Unlike the case of D, the above arguments are not applicable
to D̃ := {D̃0, . . . , D̃N+p} due to the different structure of equations (25)
and (29) (see the note before Theorem 2). As we will see below, the latter,
generally speaking, are not the first integrals of (53).

It can be easily verified (see e.g. [4]) that if a finite dynamical system
satisfies the Lax equation, then the coefficients of characteristic polynomial
of the corresponding L matrix (and, therefore, its eigenvalues) are the first
integrals of the system. Below we establish the relations between the above
introduced FRC and these coefficients.

Proposition 1 The FRC C and C̃ defined in Theorem 4 coincide up to
the sign with the coefficients (except for the leading ones) of characteristic
polynomials of the matrices L1N and L2N , respectively.

Proof. First, consider the matrix L1N and its characteristic polynomial

PL1N (λ) := det(λI − L1N) = λN+2 + c0λ
N+1 + · · ·+ cN+1,

where I is identity matrix. As follows from the Cayley-Hamilton theorem,

L1N+2+k′

N + c0L1N+1+k′

N + · · ·+ cN+1L1k
′

N = O, k′ ∈ Z+ (62)

(here O is a zero N + 2×N + 2 matrix). According to the definition, Slk =
(L1 kN)l−1,0, l = 0, . . . , p, k ∈ Z+. Using equation (62) for k′ = 0, . . . , bN+1

p
c =

k̂1,0, we construct the system of N + 2 equations

S1
N+2 = −c0S1

N+1 − . . . − cN+1S
1
0 ,

S2
N+2 = −c0S2

N+1 − . . . − cN+1S
2
0 ,

...
... (63)

S
m̂1,0

k̂1,0+N+2
= −c0S

m̂1,0

k̂1,0+N+1
− · · · − cN+1S

m̂1,0

k̂1,0
;

its determinant ∆N+1 6= 0 . Comparing (63) with (57), one can find that
C0 = −c0, . . . , CN+1 = −cN+1. The case of C̃0, . . . , C̃N+p and L2N is consid-
ered similarly. �

In view of the above, C0, . . . , CN+1 and C̃0, . . . , C̃N+p may be regarded
as “standard” first integrals of the finite systems (52) and (53) respectively,
whereas D0, . . . , DN+1 as nonstandard first integrals of (52). Note that
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for non-Abelian finite Bogoyavlensky lattices (e.g. lattices with matrix el-
ements), it can be also shown that the corresponding (matrix) finite rank
coefficients C0, . . . , CN+1 and C̃0, . . . , C̃N+p are their first integrals (in [14], a
similar result was established for non-Abelian discrete modified KdV equa-
tion in the finite case) and they are not directly linked with the characteris-
tic polynomials of the corresponding Lax matrices (the existence of possible
links between these objects is, to our knowledge, an open issue).

At the end of this section, consider the Miura transformation between
(52) and (53). To define it correctly, see (34), we set N to be equal to n0

for system (53) and N = n0 + p − 1 for certain n0 ≥ 2p − 1 for (52). All
findings of the previous section, including the analog of Theorem 3 for the
sequences SN and S̃N , hold unaltered. To prove the latter, one should take
the determinants ∆k with k ranging from 0 to n0 + p, rather then k ∈ Z+ as
in the semi-infinite case. It is of interest to study the behavior of the first
integrals of these systems in relation to the Miura transformation. For the
finite Volterra and Toda lattices this issue was considered in [22]. As already
mentioned, for both such lattices the corresponding moment matrix H is a
Hankel matrix of a finite rank. It was shown that the finite rank coefficients
of both moment matrices, as in the above Proposition, are coincide with
the coefficients of characteristic polynomials of their (finite) Lax matrices L.
These coefficients are transformable into each other by Miura-like mapping
between Volterra and Toda lattices considered in [22], and that is all the
information about the first integrals we can get from studying such mapping.
In what follows, we will show that the situation is more promising in the
case of finite Bogoyavlensky lattices.

4 Example

Consider, as an example, for p = 2 system (52) with N = 4:

·
a0 = a0a1a2,
·
a1 = a1a2a3,
·
a2 = a2a3a4 − a2a1a0,
·
a3 = −a3a2a1,
·
a4 = −a4a3a2;

(64)

and, respectively, system (53) with N = 3:

·
b0 = b0(b1 + b2),
·
b1 = b1(b2 + b3 − b1),
·
b2 = b2(b3 − b1 − b0),
·
b3 = b3(−b2 − b1).

(65)



MIURA TRANSFORMS OF BOGOYAVLENSKY LATTICES AND INVERSE PROBLEMS 23

Let SN and S̃N be the corresponding moment sequences which consist of the
elements defined by (17)–(18) with the matrices L14 and L23, respectively.
According to (42), S1

k = S̃1
k = 0, (k mod 3) 6= 0, S2

k = S̃2
k = 0, (k mod 3) 6=

1. Then, the rank of matrix H defined by (15) equals to 6 for the both
systems (64) and (65) as well as the order of the matrices L14 and L23. For
the elements of SN , it can be checked (e.g. by solving two 6 × 6 systems
composed of the equations (57) and (58), respectively, in the unknowns Cv
and Dv) that in accordance with (57)–(58),

Slk = (a0a1 + a1a2 + a2a3 + a3a4)S
l
k−3 − (a0a1a3a4)S

l
k−6, k ≥ 6,

Sml
kl+k

= (a1 + a3)S
m̂l,2

k̂l,2+k
− (a0a3)S

m̂l,5

k̂l,5+k
, l = 1, 2;

where, as found from (58) k1 = 3, m1 = 1, k̂1,2 = 1, m̂1,2 = 2, k̂1,5 = 0,

m̂1,5 = 1, k2 = 3, m2 = 2, k̂2,2 = 2, m̂2,2 = 1, k̂2,5 = 0, m̂2,5 = 2. In
particular,

S1
3 = (a1 + a3)S

2
1 − (a0a3)S

1
0 . (66)

Thus, for the matrix L14, the nonzero elements in the FRC sets C and
D defined in Theorem 4 are {a0a1 + a1a2 + a2a3 + a3a4, −a0a1a3a4} and
{a1 + a3,−a0a3}, respectively, and all of them are the first integrals of (64).
As follows from Proposition 1, the coefficients of characteristic polynomial
of the matrix L14 coincide with the set −C, and the polynomial itself is
written as

PL14(λ) = λ6 − (a0a1 + a1a2 + a2a3 + a3a4)λ
3 + a0a1a3a4.

Note that
∑3

i=0 aiai+1 = Tr(L3)/3 for L = L14.
We now turn to the system (65) and to the Miura transformations be-

tween (64) and (65). Since S1
0 = 1, we find from (43) that S̃1

k = S1
k . Then,

using the first of the equations (59) (for l = 1), we find that for the ma-
trix L23 with the elements bi defined from Miura mapping (34), the set C̃
(Theorem 4) coincides with C, namely,

C̃ = {a0a1+a1a2+a2a3+a3a4, −a0a1a3a4} = {b0+b1+b2+b3,−b0b3} (67)

and gives the “standard” (see previous section) first integrals of the cor-
responding system (65); we denote them as {I1, I2}. Moreover, since the
elements of C̃ defined in (67) can be expressed entirely via {bi}, these are
the first integrals for the general case of (65). Using (67) and Proposition
1, we also find the characteristic polynomial of L23 without its direct calcu-
lation:

PL23(λ) = λ6 − (b0 + b1 + b2 + b3)λ
3 + b0b3.

Now consider the pair {J1, J2} := {a1+a3,−a0a3} of the first integrals of
(64) from the set D. Obviously, they are also the first integrals of the system
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(65) with the elements b0, . . . , b3 defined according to (34). As follows from
the latter, J2 = −a0a3 = −b0b2/b1, and J2 = J2(b0, b1, b2) is the first integral
of (65) in the general case of this system. To find the expression of J1 via
{bi}, we first consider the mapping S4 → S̃3, which is equivalent to (34), and
the resulting sequence S̃3. As follows from (60) and (42), for the element
S̃ñ1

k̃1
= S̃1

3 of the latter, we have

S̃1
3 = D̃2S̃

2
1 + D̃5S̃

1
0 ,

and, as in the general case of (65), D̃2 and D̃5 can be expressed in terms
of {bi}. Comparing the latter expression with (66) and using Theorem 3
(formula (43)) we find that D̃5 = J2 = −b0b2/b1 and

D̃2 = a0J1 = a0a1 + a0a3 = b0 +
b0b2
b1

= b0 − J2.

In particular, from the latter formula follows that D̃2 is not the first integral
of (65), see the remark after Theorem 4. Thus, J1 = b0(b1 + b2)/b1a0, and
applying formula (40) for the inverse Miura transformation, we finally get
the expression for J1 via {bi}:

J1 =
b0(b1 + b2)

b1a0(0)e

∫ t

0

b1(τ)dτ

for certain a0(0) ∈ C\0.

Thus, we have found that system (65) in the general case has four in-
tegrals of motion {I1, I2, J1, J2} such that first two of them are the coeffi-
cients of characteristic polynomial of the Lax matrix corresponding to (65),
whereas J1 and J2 are the “nonstandard” integrals related to the system
(64).

5 Concluding remarks and open issues

In view of the above, we can conclude that the description of Miura trans-
formation between Volterra and Toda lattices via the inverse spectral data
of the corresponding Lax operators, obtained in [22]- [23], can be extended
to the case of Bogoyavlensky lattices (1)–(2). The latter, like the former,
are systems with a rich Hamiltonian structure, see [29], Chapter 17 and [32].
For example, the finite system (52) can be written as

·
ai = {Ha

2 , ai}a2, i = 0, . . . , N,

with the Hamiltonian Ha
2 :=

∑
i aiai+1 and the quadratic Poisson bracket

{·, ·}a2 defined in the coordinates {ai} as follows:

{ai, aj}a2 = −{aj, ai}a2 = πijaiaj, i ≥ j,
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where

πij =


0, i− j = 0, 1;

1, i− j = 2, 4, . . . , 2
⌊
N
2

⌋
;

−1, i− j = 3, 5, . . . , 2
⌊
N−1
2

⌋
+ 1;

and the system (53) admits the following Hamiltonian representation:

·
b1 = {Hb

1, bi}b2,

whith Hb
1 :=

∑
i bi and Poisson bracket {·, ·}b2 with nonvanishing elements:

{bi+1, bi}b2 = bi+1bi, {bi+2, bi}b2 = bi+2bi.

It should be noted that {·, ·}b2 is a local bracket (i.e., {·, bi}b2 depends only on
the neighboring coordinates bi+2, bi+1, bi−1, bi−2,) while {·, ·}a2 is a nonlocal
one. Obviously, the Miura mapping (34) transforms Ha

2 to Hb
1 and {·, ·}a2

to {·, ·}b2, so it may be useful to apply the above results to the study of
Hamiltonian properties of Bogoyavlensky lattices.

Also, as we have seen, equations (25) and (29) are equivalent, in a certain
sense, to the original systems (1)–(2). It may be of interest to consider (25)
and (29) from the point of view of the theory of integrable systems.

As known [8,29,32], alongside with (1)–(2), the family of Bogoyavlensky
lattices contains the system

·
ci = c2i

(
r∏
j=1

ci+j −
r∏
j=1

ci−j

)
. (68)

The operator L, which appears in the Lax representation for (68), differs
sufficiently from the above operators L1, L2 and M , and the inverse spectral
problems for such operators are less studied. Some recent results in this area
are contained in [27]. The Miura transformation between (68) and (2)

bi = cici+1 · · · ci+r

was obtained by Bogoyavlensky [8], and its description in terms of the inverse
spectral data is another interesting task.

All the above issues can be addressed for future work.
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and interpretation of some integrable systems via multiple orthogonal
polynomials. Journ. Math. An. Appl., 361 (2010), no. 2, pp. 358–370.
https://doi.org/10.1016/j.jmaa.2009.07.025

[6] B. Beckermann and V. Kaliaguine, The diagonal of the Padé ta-
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