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Optimality of the Least Sum of Logarithms

in the Problem of Matching Map Recovery

in the Presence of Noise and Outliers

T. Galstyan and A. Minasyan

Abstract. We consider the problem of estimating the matching
map between two sets of feature-vectors observed in a noisy en-
vironment and contaminated by outliers. It was already known
in the literature that in the outlier-free setting, the least sum of
squares (LSS) and the least sum of logarithms (LSL) are both
minimax-rate-optimal. It has been recently proved that the opti-
mality properties of the LSS continue to hold in the case the data
sets contain outliers. In this work, we show that the same is true
for the LSL as well. Therefore, LSL has the same desirable prop-
erties as the LSS, and, in addition, it is minimax-rate-optimal in
the outlier-free setting with heteroscedastic noise.
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1 Introduction

The problem of detecting a one-to-one matching between two related datasets
(e.g., keypoint descriptors from different pictures of the same scene, single-
cell RNA sequencing data collected at different times, vector representation
of texts, etc.) has been recently extensively studied [1, 2, 3, 5]. When only
one dataset contains outliers, the optimality of the matching procedures
was thoroughly studied in [3, 4] from a minimax statistical viewpoint. The
main procedures that were shown to enjoy the optimality properties are the
Least Sum of Logarithms (LSL) and the Least Sum of Squares (LSS). In the
case of the LSS, Minasyan et al. [5] developed extensions to the setting in
which both datasets may contain outliers, and the number of these outliers
is unknown.
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In practice, however, it might be more suitable to use the LSL estimator,
since it is known to be less sensitive to the heteroscedasticity of the noise,
see [3] for details. Indeed, since there is no simple way of checking whether
the noise is homoscedastic or not, LSL might be preferred to LSS.

The goal of the present work is to examine the properties of LSL as
a solution to the problem of estimating the matching map between two
point clouds, i.e., sets of observation vectors, in the presence of outliers. In
particular, we investigate LSL through the lens of the minimax separation
rate for detecting the matching map. Our main contribution shows that LSL
can optimally handle outliers. More precisely, we prove that the separation
rate for LSL is of order (d log n)1/4∨(log n)1/2, which is known to be minimax
optimal (see [5]).

2 Problem formulation and notations

In this section, we formally state the problem and define some key quantities.
Initially, we have two sets of observations X = (X1, . . . , Xn) and X# =
(X#

1 , . . . , X
#
m) that we want to match, given an underlying structure of the

problem. Formally, we assume that{
Xi = θi + σξi,

X#
j = θ#j + σ#ξ#j ,

i ∈ [n] and j ∈ [m],

where [n] = {1, ..., n}, σ, σ# > 0 are noise magnitudes, θ = (θ1, . . . , θn) and
θ# = (θ#1, . . . , θ

#
m) are sets of deterministic vectors with real coordinates, also

known as feature-vectors, and ξ1, . . . , ξn, ξ
#
1 , . . . , ξ

#
m

i.i.d.∼ N (0, Id) are i.i.d.
standard normal vectors. Notice that we only observe the noisy feature-
vector sets X and X#. The goal is to recover the matching between original
feature-vectors.

It is assumed that for some set S∗ ⊂ [n] of cardinality k∗, there exists an
injective mapping π∗ : S∗ → [m] such that θi = θ#π∗(i) is true for all i ∈ S∗.
We define the signal-to-noise ratio κ̄all, which plays a central role in the
detection problem, by

κi,j , ‖θi − θ#j‖2/(σ2 + σ#2)1/2 , κ̄all , min
i∈[n]

min
j∈[m]\{π∗(i)}

κi,j.

Here κi,j is the signal-to-noise ratio of the difference of the noisy features
Xi and X#

j . Note that for a pair i, j with j = π∗(i), we have κi,j = 0 as
θi = θ#π∗(i).

Let Pk be the set of all injective mappings of size k from S ⊂ [n] to [m]

Pk :=

{
π : S → [m] such, that

S ⊂ [n], |S| = k,
π is injective

}
.
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We are now ready to define the LSL estimator π̂LSL
k as follows:

π̂LSL
k ∈ arg min

π∈Pk

∑
i∈Sπ

log ‖Xi −X#
π(i)‖22. (1)

Here and subsequently, by Sπ we denote the support of the mapping π. We
will denote by Φ̂(k) the error of π̂LSL

k , that is,

Φ̂(k) = min
π∈Pk

∑
i∈Sπ

log ‖Xi −X#
π(i)‖22.

In the next section, we formulate and prove the main results of the
present work. First, we show that for k ≤ k∗, the estimator π̂LSL

k recov-
ers a subset S∗ of size k, and functions π̂LSL

k and π∗ coincide on S∗ .

3 Quality of LSL for k ≤ k∗

In the next theorem, we establish the quality of the π̂LSL
k estimator for k ≤ k∗.

Theorem 1 Let Ŝ = supp(π̂) for π̂ = π̂LSL
k defined by (1), α ∈ (0, 1) and

λn,d,α = 4
((
d log(4n2/α)

)1/4 ∨ (8 log(4n2/α)
)1/2)

. (2)

If k ≤ k∗ and the signal-to-noise ratio satisfies the condition κ̄all ≥ λn,d,α,
then, with probability at least 1−α, the support of the estimator π̂ is included
in S∗ and π̂ coincides with π∗ on the set Ŝ, that is,

P
(
Ŝ ⊂ S∗ and π̂(i) = π∗(i) for all i ∈ Ŝ

)
≥ 1− α.

Let us define some additional specific quantities used in the proofs. For
any matching map π, we define its normalized LSL error as follows

LLSL(π) =
∑
i∈Sπ

log
‖Xi −X#

π(i)‖22
σ2 + σ#2

.

We also define ηij and its associated quantities:

ηij =
σξi − σ#ξ#j√
σ2 + σ#2

, ζ1 , max
i 6=j

|(θi − θ#j )>ηij|
‖θi − θ#j‖2

, ζ2 , d−1/2 max
i,j

∣∣‖ηij‖22 − d∣∣. (3)

We start with upper and lower bounds on the squared norm of the quantity
ηi,j. Using the standard concentration inequalities for χ2

d distribution, it is
straightforward to check that for any i ∈ [n], the following holds:

d−
√
dζ2 ≤ ‖ηi,π(i)‖22 ≤ d+

√
dζ2.

Next, we state auxiliary lemmas that we use for the proof of our main results.
The first lemma states that the difference of normalized LSL error is bound
from below for any π that cannot be obtained as a restriction of π∗.
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Lemma 1 Let π be any matching map that cannot be obtained as a restric-
tion of π∗ on a subset of [n]. Let S0 ⊂ S∗ be an arbitrary set satisfying
|S0| ≤ |Sπ| and {i ∈ Sπ ∩ S∗ : π(i) = π∗(i)} ⊂ S0, and let π0 be the re-
striction of π∗ to S0. On the event Ω0 = {8ζ1 ≤ κ̄all; 4

√
d ζ2 ≤ κ̄2all}, we

have

LLSL(π)− LLSL(π0) ≥ log
(

1 +
κ̄2all

κ̄2all + 4d

)
+ (|Sπ| − |S0|) log

( κ̄2all
2

+ d
)
.

Proof. Let S+
π , {i ∈ Sπ ∩ Sπ∗ : π(i) = π∗(i)} and S−π , Sπ \ S+

π , S
−
0 ,

S0 \ S+
π . Without loss of generality, we enumerate the index sets S−π =

{t1, t2, . . . , tk} and S−0 = {p1, p2, . . . , pr}, where k = |S−π | ≥ |S−0 | = r. Let

Li(π) ,
‖Xi −X#

π(i)‖22
σ2 + σ#2

.

On the event Ω0, for any t ∈ S−π , we have

Lt(π) =
‖Xt −X#

π(t)‖22
σ2 + σ#2

=
‖θt − θ#π(t)‖22
σ2 + σ#2

+ 2
(θt − θ#π(t))>ηt,π(t)√

σ2 + σ#2
+ ‖ηt,π(t)‖22

≥
‖θt − θ#π(t)‖22
σ2 + σ#2

− 2ζ1
‖θt − θ#π(t)‖2√
σ2 + σ#2

+ ‖ηt,π(t)‖22

= κ2t,π(t) − 2ζ1κt,π(t) + ‖ηt,π(t)‖22
≥ κ2t,π(t) − 2ζ1κt,π(t) + d−

√
dζ2

≥ d+ κ̄2all/2. (4)

On the same event, we have

Lp(π0) = ‖ηp,π0(p)‖22 ≤ d+
√
dζ2 ≤ d+ κ̄2all/4

as π0 is a restriction of π∗. Combining this with equation (4), on the event
Ω0, for any t ∈ S−π and p ∈ S−0 , we obtain

Lt(π)− Lp(π0) ≥ d+ κ̄2all/2− d− κ̄2all/4 ≥ κ̄2all/4.

For any t ∈ S−π and p ∈ S−0 , on the event Ω0, direct computations lead to
the following relation

log(Lt(π))− log(Lp(π0)) ≥ log
Lp(π0) + κ̄2all/4

Lp(π0)

= log
(

1 +
κ̄2all/4

Lp(π0)

)
≥ log

(
1 +

κ̄2all
4d+ κ̄2all

)
.
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Putting things together, we take the corresponding sums over Sπ and S0,
and combining with the inequality from the last display, we have

LLSL(π)− LLSL(π0) =
∑
i∈Sπ

logLi(π)−
∑
i∈S0

logLi(π0)

=
∑
t∈S−

π

logLt(π)−
∑
p∈S−

0

logLp(π0)

=
∑
1≤i≤r

(
logLti(π)− logLpi(π0)

)
+

∑
r+1≤i≤k

logLti(π)

≥
∑
1≤i≤r

log
(

1 +
κ̄2all

4d+ κ̄2all

)
+

∑
r+1≤i≤k

log(κ̄2all/2 + d)

≥ log
(

1 +
κ̄2all

κ̄2all + 4d

)
+ (|Sπ| − |S0|) log(κ̄2all/2 + d).

on Ω0, which concludes the proof of the lemma. �

For the proof of Theorem 1, we also use Lemma 2 of [5] which is restated
below.

Lemma 2 [Galstyan et al. [5], Lemma 2] Let Ω0,x = {8ζ1 ≤ x}∩{4
√
dζ2 ≤

x2} with ζ1, ζ2 defined as in (3). Then for every x > 0, P(Ω{0,x) is upper
bounded by

2n2
(

exp
{
− x2

128

}
+ exp

{
− x2

128d

(
x2 ∧ 4d

)})
. (5)

We are now ready to prove Theorem 1.

Proof of Theorem 1 Let π̂ be a matching map that cannot be obtained
as a restriction of π∗. Using Lemma 1 on Ω0, we have LLSL(π̂)−LLSL(π0) ≥
log(κ̄2all/2 + d) > 0 for some π0 which is a restriction of π∗. Therefore, π̂

cannot be a minimizer of Φ̂(k), hence a minimizer of LLSL(·) over Pk must

be a restriction of π∗, and consequentially, Ŝ ⊂ S∗. According to Lemma 2,
a sufficient condition for P(Ω0) ≥ 1− α to hold can be the following:2n2 exp {−κ̄2all/128} ≤ α/2,

2n2 exp

{
− (κ̄all/16)2

d

(
2κ̄2all ∧ 8d

)}
≤ α/2.

This system is equivalent to

κ̄all ≥ 8
(

2 log
4n2

α

)1/2
and κ̄all ≥ 4

(d
2

log
4n2

α

)1/4
.

Therefore, if the κ̄all ratio satisfies

κ̄all ≥ 4
((
d log(4n2/α)

)1/4 ∨ (8 log(4n2/α)
)1/2)

,

we have P(Ω0) ≥ 1− α. �
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4 Estimation of the number of inliers k∗

In this section, we assume that the noise magnitudes σ, σ# are known, while
no information about k∗ is available. Throughout this section, it will become
clear that it is not necessary to know individual noise magnitudes σ and σ#.
On the downside, we need to know σ2

0 = σ2 + σ#2.
The estimator for unknown parameter k∗ is defined as follows:

k̂ = 1 + max
{
k ∈ {0, . . . , n− 1} : Φ̂(k + 1)− Φ̂(k) ≤ σ2

0 log(d+ λ2n,d,α/4)
}

with λn,d,α as in (2). Notice that in this matching size estimation procedure,
the quantity σ2

0 exposes, and some additional care is necessary to deal with
the case of unknown σ2

0. For this reason, and for simplicity of presentation,
we assume that σ2

0 is known. We are now ready to formulate our second
main result.

Theorem 2 Let α ∈ (0, 1). If κ̄all > λn,d,α, then

P
(
k̂ = k∗ and π̂k̂ = π∗

)
≥ 1− α.

In other words, Theorem 2 states that λn,d,α is an upper bound on the sep-
aration distance in the case of unknown k∗. We begin with two auxiliary lem-
mas. Let us define the minimum possible error as L̂(k) = minπ∈Pk L

LSL(π).

Lemma 3 On event Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2all}, we have

L̂(k∗ + 1)− L̂(k∗) ≥ log
(

1 +
κ̄2all

4d+ κ̄2all

)
+ log

(
d+

κ̄2all
2

)
.

Proof. We have already seen in the proof of Theorem 1 that π̂k∗ = π∗ on
Ω0. Therefore,

L̂(k∗ + 1)− L̂(k∗) = LLSL(π̂k∗+1)− LLSL(π∗).

Applying the proof of Lemma 1 to π = π̂k∗+1, π0 = π∗, we have

L̂(k∗ + 1)− L̂(k∗) = LLSL(π̂k∗+1)− LLSL(π∗)

≥ log
(

1 +
κ̄2all

4d+ κ̄2all

)
+ (|Sπ̂k∗+1

| − |S0|) log
(
d+

κ̄2all
2

)
= log

(
1 +

κ̄2all
4d+ κ̄2all

)
+ log

(
d+

κ̄2all
2

)
,

which concludes the proof. �

Lemma 4 On the event Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2all}, for every k < k∗,

we have L̂(k + 1)− L̂(k) ≤ log(d+
√
d ζ2).
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Proof. Let π̂k be a matching map from Pk minimizing L(·), i.e., such that

L(π̂k) = L̂(k). According to Lemma 1, we have π̂k(i) = π∗(i) for every

i ∈ Ŝk , Sπ̂k . One easily checks that there exists a set Ŝk+1 ⊂ S∗ of

cardinality k+ 1 such that Ŝk ⊂ Ŝk+1 and L̂(k+ 1) = L(π̂k+1), where π̂k+1 is

the restriction of π∗ to Ŝk+1. Indeed, if π is any element of Pk+1 minimizing
L(·), it is defined as a restriction of π∗ on some set S of cardinality k+ 1. If

we replace arbitrary k elements of S by those of Ŝk and modify π accordingly,
we will get a new mapping from Pk+1 for which the value of L(·) is less than
or equal to L(π). Therefore, we have found a matching map that minimizes
L(·) over Pk+1 and has a support that is obtained by adding one point to

Ŝk. This implies that

L̂(k + 1)− L̂(k) = L(π̂k+1)− L(π̂k)

=
∑
i∈Ŝk+1

log ‖ηi,π∗(i)‖22 −
∑
i∈Ŝk

log ‖ηi,π∗(i)‖22

=
∑

i∈Ŝk+1\Ŝk

log ‖ηi,π∗(i)‖22 ≤ log(d+
√
d ζ2).

�

Now we will prove Theorem 2.

Proof of Theorem2 Lemma 2 implies that the event Ω1 = {8ζ1 ≤ λn,d,α;

4
√
d ζ2 ≤ λ2n,d,α} has probability at least 1 − α. Since Ω1 is included in Ω0,

in view of Lemma 4, on Ω1, we have L̂(k + 1)− L̂(k) ≤ log(d+ λ2n,d,α/4) for
any k < k∗. On the other hand, in view of Lemma 3, on the same event, we
have

L̂(k∗ + 1)− L̂(k∗) ≥ log
(

1 +
κ̄2all

(κ̄2all + 4d)

)
+ log

(
d+

κ̄2all
2

)
> log

(
d+ λ2n,d,α/4

)
.

This implies k̂ = k∗, and, therefore, π̂k̂ = π̂k∗ . Due to Theorem 1, on the
same event Ω1, we have π̂k∗ = π∗. �

5 Conclusion

In this work, we showed that the LSL estimator yields the minimax separa-
tion distance rate in the case when we allow outliers to be present in both
datasets. It is worth noting that the minimax rate coincides with the one
obtained in [4], and the statistical complexity of the problem is the same as
in the case of outliers on one side or no outliers at all. The latter is proved
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in [3]. From the computational perspective, the complexity of computing
π̂LSL
k is the same as that of πLSS

k . The problem reduces to the minimum-
cost-flow problem and can be solved efficiently. It would be interesting to
investigate the case of anisotropic noise, i.e., considering general covariance
Σ instead of σ2Id.
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