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Abstract

In this paper we will characterize the structure of factor rings for Z [ω] where ω =
−1+

√
−3

2
,is a 3rd primitive root of unity. Consequently, we can recognize prime numbers (el-

ements) and their ramifications in Z [ω].
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Introduction

The set of integers, Z = {...,−n, ...,−1, 0, 1, ..., n, ...}, is the most important and simplest

Integral Domain. This ring is Euclidean and thus a Unique Factorization Domain (UFD).

It is also a Principal Ideal Domain (PID), thus all ideals of this ring are principal and are

given by:

〈m〉 = {km | k ∈ Z} , for all m ∈ Z

So the factor rings of Z , are given by Z�mZ = Zm, the ring of integers {0, 1, 2, · · · ,m− 1}
modulo m.

In an attempt to formulate and prove the Reciprocity Theorem, one of the most important

and beautiful Theorems in Number theory arose, Carl Friedrich Gauss realized that he needed

to look beyond the set of integers. For this reason Gauss introduced “Complex Integer

Numbers” [4]. These numbers are now known as Gaussian integers. The Gaussian integers
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are sitting in the field of complex numbers, and by inherited addition and multiplication

operations from the field of complex numbers constitute an integral domain which is a UFD

[2], [6]. In general we can consider some imaginary extensions of the ring of integers as

follows.

Let p ∈ Z, p > 1 be a prime number, and let ξ be a primitive root of the equation

xp + a = 0, where a is an integer; i.e. a number for which ξp = −a but ξq 6= −a for all

q, 0 < q < p. Then

Z [ξ] =
{
a0 + a1ξ + · · ·+ ap−1ξ

p−1 | ai ∈ Z, 0 ≤ i ≤ p− 1
}

with appropriate operations is an extension of Z.

In 1847 Gabriel Lame announced that he had a complete proof of the Last Fermat’s

Theorem. In his proof, he used the identity

xp + yp = (x+ y) (x+ ξy) · · ·
(
x+ ξp−1y

)
where p and ξ are as above, with the assumption that all extensions of Z are UFD. Before

the Lame’s work, Ernst Kummer had already proven that some of these extensions are not

UFD. For example in Z
[√
−5
]

we have:

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√
−5
)

In connection with this observation, Kummer defined his Ideal Numbers. This led di-

rectly to Richard Dedekind’s development of Algebraic Number Theory in 1870s. Dedekind

introduced a form of unique factorization using ideals instead of numbers. Let < be an

integral domain for which there exists a subset P such that every non zero element x of <
can be written, in a unique way as

x = ε
∏
p∈P

pvp(x)

Where ε is a unit element in < and vp (x) are non-negative integers, all but a finitely

many are zero. In the other words the set (<p)p∈Pof principal ideals that coincide with the

set of maximal principal ideals distinct from <, is uniquely determined.

A unique factorization domain has also a very simple geometric interpretation. In ge-

ometry a ring R occurs as a ring of functions defined on some variety V . If n denotes the

dimension of V , then R is a UFD means that every subvariety of dimension n − 1 can be

defined by a single equation.

One of the fundamental differences between Z and its extensions is the structure of their

Factor Rings. As we know the factor rings of Z, are Z�mZ = Zm, which are isomorphic to

the ring {0, 1, 2, · · · ,m− 1} modulo m. Even when m is a composite number like

m = pα1
1 p

α2
2 · · · pαrr
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we can use The Chinese reminder theorem to factor Zm as

Zm = Zpα11

⊕
Zpα22

⊕
· · ·
⊕
Zpαrr .

The structure of factor rings for Z [ξ] is much more complicated. This structure has been

studied for Gaussian integers [3]. In this paper we will characterize the structure of factor

rings for Z [ω] where ω = −1+
√
−3

2
is a primitive 3rd root of unity. Consequently, we can

recognize prime numbers (elements) and their ramifications in Z [ω].

1 Notation and Prerequisites

Let Z be the ring of integers and let ω = −1+
√
−3

2
be a primitive 3rd root of unity; i.e. ω3 = 1,

and ω2 + ω + 1 = 0. Set

Z [ω] = {a+ bω |a, b ∈ Z}

Then Z[ω] with the following operations is an integral domain

(a+ bω) + (c+ dω) = (a+ c) + (b+ d)ω

(a+ bω) (c+ dω) = (ac− bd) + (ad+ bc− bd)ω

for (a+ bω) , (c+ dω) ∈ Z[ω]. For each z = a+ bω ∈ Z[ω], its norm is defined by

ν (z) = (a+ bω)
(
a+ bω2

)
= a2 + b2 − ab

Then by basic ring theory we have:

Theorem 1 Z[ω] with above norm is an Euclidean Domain and so a Unique Factorization

Domain(UFD).

Definition 1 An element z ∈ Z[ω] is called a unit if it has a multiplicative inverse in Z[ω].

Lemma 1 The only unit elements in Z[ω] are {±1,±ω,±ω2}.

Proof. A non zero element z = a+ bω ∈ Z[ω] is unit if and only if ν (z) = a2 + b2− ab = 1.

If ab = 0, then z = ±1 or z = ±ω. If ab 6= 0 then a2 + b2 > 2 and this with a2 + b2 − ab = 1

gives ab > 1. on the other hand from a2 + b2 − ab = 1 we have a2 + b2 − 2ab = 1 − ab so

ab ≤ 1, hence we must have ab = 1 that gives us a = b = ±1, i.e. z = ± (1 + ω) = ∓ω2. �

Definition 2 (Legendre’s Symbols). Let p ∈ Z be a prime number. Then the Legendre’s

symbol, denoted by
(
.
p

)
, for each integer a ∈ Z, is defined by

(
a

p

)
=


1 if there is an integer x ∈ Z such that x2 ≡ a (mod p) ,

−1 if there is no integer x ∈ Z such that x2 ≡ a (mod p) ,

0 if p divides a
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The following two theorems can be found in any standard Number Theory book, for

example [2], [6] and [5].

Theorem 2 Let p ∈ Z be a prime number. The Legendre’s symbol has the following property:

(i).
(
ab
p

)
=
(
a
p

)(
b
p

)
, for all integers a, b ∈ Z.

(ii). a ≡ b (mod p)⇒
(
a
p

)
=
(
b
p

)
.

Theorem 3 (Quadratic Reciprocity Theorem). Let p ∈ Z be a prime number. Then:

(i).
(
−1
p

)
=

{
1 if p ≡ 1(mod 4),

−1 if p ≡ 3(mod 4)

(ii).
(

3
p

)
=

{
1 if p ≡ 1 or 11(mod 12),

−1 if p ≡ 5 or 7(mod 12)

The following lemmas can be proved in a strait manner.

Lemma 2 Let p ∈ Z be a prime integer. Then p ≡ 1 (mod 3) if and only if p ≡ 1 (mod 6) .

Lemma 3 Let p ∈ Z be a prime integer. If p ≡ 1or 7 (mod 12) then p ≡ 1 (mod 6) .

Theorem 4 Let p ∈ Z be a prime integer. Then
(
−3
p

)
= 1 if and only if p ≡ 1 (mod 6) .

Proof. By part (i) of the Theorem 2 we have
(
−3
p

)
=
(
−1
p

)(
3
p

)
.If
(
−3
p

)
= 1 then we must

have
(
−1
p

)
=
(

3
p

)
= 1or

(
−1
p

)
=
(

3
p

)
= −1. In the first case we have p ≡ 1(mod 4) and

p ≡ 1 or 11(mod 12). These conditions lead to p ≡ 1(mod 12), so by the Lemma 3 we get

p ≡ 1 (mod 6). In the second case we have p ≡ 3(mod 4) and p ≡ 5 or 7(mod 12). These

conditions lead to p ≡ 7(mod 12), so by the Lemma 3 we get p ≡ 1 (mod 6) . Now suppose we

have p ≡ 1 (mod 6). So p = 1 + 6k for some integer k ∈ Z. If k is even then p ≡ 1(mod 12),

so by the Theorem 3 we have
(
−1
p

)
=
(

3
p

)
= 1. If k is odd then p ≡ 7(mod 12), so by the

Theorem 3 we have
(
−1
p

)
=
(

3
p

)
= −1. �

Lemma 4 Let p ∈ Z be a prime integer. Then p = α2 + 3β2 for some integers α, β ∈ Z if

and only if p = 3 or p ≡ 1 (mod 6).

Proof. Suppose p = α2 + 3β2 for some integer α, β ∈ Z. If α = 0, then we must have p = 3,

because p is a prime. If α 6= 0, then α ≡ 1 (mod 3) or α ≡ 2 (mod 3). In either case from

p = α2 + 3β2 we get p ≡ 1 (mod 3) so by the Lemma 2 we have p ≡ 1 (mod 6) . Conversely

if p = 3 or p ≡ 1 (mod 6), then for p = 3 we have 3 = 02 + 3 (1)2. For p ≡ 1 (mod 6) by the
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Theorem 4 there is an integer α such that α2 + 3 = pt for some integer t ∈ Z, 0 < t < p.

If t = 1 then p = α2 + 3(1)2. If t 6= 1, then we can choose an integer β ∈ Z such that,

β ≡ α (mod t), and - t
2
< β < t

2
. From here and reflexive property of congruence relation

we get α2 ≡ β2 (mod t) and 3 ≡ 3 (mod t), thus (α2 + 3) ≡ (β2 + 3) ≡ 0 (mod t) . So for

some integer λ ∈ Z, 1 ≤ λ < t, we have β2 + 3 = λt. Since we also have α2 + 3 = pt, by

multiplying these equalities side by side we get (α2 + 3) (β2 + 3) = λpt2. On the other hand

we have (α2 + 3) (β2 + 3) = (αβ + 3)2 + 3 (α− β)2. Thus we have (αβ + 3)2 + 3 (α− β)2 =

λpt2. One can easily show that both (αβ + 3)2 and (α− β)2 are divisible by t2 so we have(
αβ+3
t

)2
+ 3

(
α−β
t

)2
= λp. This equation shows that a smaller multiple of p can be written

as α2 + 3β2. If λ = 1, we are done, if not, we can repeat the above procedure. After a finite

number of steps of repetition we get the result. �

Theorem 5 Let p ∈ Z be a prime integer. Then p = a2 + b2− ab for some integers a, b ∈ Z
if and only if p = 3 or p ≡ 1 (mod 6) .

Proof. Let p = a2 + b2 − ab for some integer a, b ∈ Z, then a and b are relatively prime. so

they are not both even. Suppose one of them, say a is even, then we have

p = a2 + b2 − ab

=
(a

2
− b
)2

+ 3
(a

2

)2
and by the Lemma 4, p = 3 or p ≡ 1 (mod 6) . If both a and b are odd then b − a = 2t for

some t ∈ Z. From here we have b = a+ 2t and

p = a2 + b2 − ab
= a2 + b (b− a)

= a2 + 2t (a+ 2t)

= (a+ t)2 + 3t2

and again by the Lemma 4 we have p = 3 or p ≡ 1 (mod 6). Conversely, if p = 3 or

p ≡ 1 (mod 6), then for p = 3 we have 3 = 22 + 12− 2. If p ≡ 1 (mod 6), then by the Lemma

4 There are integers α, β ∈ Z such that p = α2 + 3β2. Now set a = α+ β and b = 2β. Then

we have

p = α2 + 3β2

=

(
a− b

2

)2

+ 3

(
b

2

)2

= a2 + b2 − ab

�
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Lemma 5 Let m ∈ Z be an integer. Then

Z [ω] / 〈m〉 ' Zm [ω]

Proof. For a ∈ Z, let [a]m denotes the equivalence class modulo m in Z. Now define

f : Z [ω]→ Zm [ω], by f (a+ bω) = [a]m + [b]m ω. One can show that this is a surjective ring

homomorphism with the Kernel equal 〈m〉. �

Lemma 6 The polynomial q (x) = x2 + x + 1 is irreducible in Zp iff and only if p = 2 or

p ≡ 5 (mod 6).

Proof. Let q (x) = x2 +x+1 be irreducible in Zp. If p 6= 2 and p 6= 5 (mod 6), then p = 3 or

p ≡ 1 (mod 6) . If p = 3 then we have q (x) = x2 + x+ 1 = (x+ 2)2 in Z3, this is contrary to

our assumption. If p ≡ 1 (mod 6), then by the Theorem 5, p = a2+b2−ab for some relatively

prime integers a, b ∈ Z. Since a−1 and b−1 exist in Zp and we have a2 + b2 ≡ ab (mod p), so

we have ab−1 + ba−1 ≡ 1 (mod p), Now we have q (x) = x2 + x+ 1 = (x+ ab−1) (x+ ba−1) in

Zp and again this is contrary to our assumption. Conversely, if p = 2, then q (x) = x2 +x+1

doesn’t have any root in Z2 so it is irreducible. Suppose p ≡ 5 (mod 6) and q (x) = x2 +x+1

is not irreducible in Zp, then there is a ∈ Zp such that q (a) = a2 +a+ 1 = 0 in Zp, so by the

Theorem 5 we must have p = 3 or p ≡ 1 (mod 6) which is contrary to our assumption. �

Theorem 6 Let p be a prime integer. Then Zp [ω] is a field if and only if p = 2 or p ≡
5 (mod 6).

Proof. If Zp [ω] is a field and p 6= 2 and p 6= 5 (mod 6), then either p = 3 or p ≡ 1 (mod 6).

If p = 3, then we have (2 + ω)2 = 0 in Z3 [ω]. If p ≡ 1 (mod 6), then by the Lemma 6 there

is a ∈ Zp such that a2 + a + 1 = 0 in Zp, so we have (ω − a) (ω2 − a) = 0 in Zp [ω]. Thus

in either case Zp [ω] is not a field that is contrary to our assumption. Now suppose p = 2 or

p ≡ 5 (mod 6). For p = 2, we have Z2 [ω] ={0, 1, ω, ω2} which is a field. For p ≡ 5 (mod 6)

consider the following ring homomorphism

ϕ : Zp [x]→ Zp [ω] ,

ϕ (x) = ω, ϕ (m) = m, for all m ∈ Zp

Obviously it is a surjective homomorphism. Since ϕ (x2 + x+ 1) = ω2 + ω + 1 = 0, so

〈x2 + x+ 1〉 ⊆ Ker (ϕ). Let a polynomial h (x) ∈ Ker (ϕ), then since all coefficients of

x2 + x + 1 are 1 we have h (x) = (x2 + x+ 1) g (x) + ax + b, for some g (x) ∈ Zp [x] and

a, b ∈ Zp. From here we get ϕ (h (x)) = 0, so a = b = 0 in Zp i.e.〈x2 + x+ 1〉 = Ker (ϕ) and

by the canonical ring Isomorphism Theorem we have Zp [x] / 〈x2 + x+ 1〉 ' Zp [ω]. Since

p ≡ 5 (mod 6) so by the Lemma 6, x2 + x + 1 is irreducible and thus Zp [x] / 〈x2 + x+ 1〉 is

a field. �
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Definition 3 An element π ∈ Z [ω] is a called a prime element if whenever we have π | αβ,

for α, β ∈ Z [ω], then either π | α or π | β .

Corollary 1 A prime integer p ∈ Z, is a prime in Z [ω] if and only if p = 2 or p ≡ 5 (mod 6).

Proof. This is a result of the Theorem 6 because Z [ω] is an Euclidean Domain. �

Theorem 7 If a and b are relatively prime integers, then Z [ω] / 〈a+ bω〉 ' Za2+b2−ab.

Proof. For simplicity, for x ∈ Z, we will denote by[x] , the equivalence class[x]a2+b2−ab. Since

a and b are relatively prime, so [b]−1 exists in Za2+b2−ab. Now define the following mapping:

f : Z [ω]→ Za2+b2−ab
f (x+ yω) = [x]− [a] [b]−1 [y] .

This is a ring homomorphism. To this ends, first note that a2+b2−ab ≡ 0 (mod (a2 + b2 − ab))
so from here we get [a]2 [b]−2 = [a] [b]−1−1. Now for every x+yω, and u+vω ∈ Z [ω] we have

(x+ yω) (u+ vω) = (xu− vy)+(xv + yu− vy)ω and
(
[x]− [a] [b]−1 [y]

) (
[u]− [a] [b]−1 [v]

)
=

[xu− vy]− [a] [b]−1 [xv + yu− vy], so from here we have:

f ((x+ yω) (u+ vω)) = f ((xu− vy) + (xv + yu− vy)ω)

= [xu− vy]− [a] [b]−1 [xv + yu− vy]

=
(
[x]− [a] [b]−1 [y]

) (
[u]− [a] [b]−1 [v]

)
= f ((x+ yω)) f ((u+ vω)) .

Also we have

f ((x+ yω) + (u+ vω)) = f ((x+ u) + (y + v)ω)

= [x+ u]− [a] [b]−1 [y + v]

=
(
[x]− [a] [b]−1 [y]

)
+
(
[u]− [a] [b]−1 [v]

)
= f (x+ yω) + f (u+ vω)

Since f (a+ bω) = [a]− [a] [b]−1 [b] = [0], we have 〈a+ bω〉 ⊆ Ker (f). Now let x+ yω ∈
Ker (f). In Q [ω] we can write

x+ yω = (a+ bω)

((
ax+ by − bx
a2 + b2 − ab

)
+

(
ay − bx

a2 + b2 − ab

)
ω

)
Since f (x+ yω) = [x] − [a] [b]−1 [y] = [0] we have bx − ay = λ (a2 + b2 − ab) for some

λ ∈ Z. On the other hand from bx − ay ≡ 0 (mod (a2 + b2 − ab)) we get ab2x − a2by ≡
0 (mod (a2 + b2 − ab)) which is equivalent to ax − (a2b−2) by ≡ 0 (mod (a2 + b2 − ab)) Since

a2b−2 = ab−1−1 (mod (a2 + b2 − ab)) we obtain ax−ay+by ≡ ax−bx+by ≡ 0 (mod (a2 + b2−
ab)), so we have ax − bx + by = µ (a2 + b2 − ab), for some µ ∈ Z. Thus we have x + yω =

(a+ bω) (µ+ λω). This shows that Ker (f) ⊆ 〈a+ bω〉. So Ker (f) = 〈a+ bω〉 . Since f is

surjective by standard ring Isomorphism Theorem we have Z [ω] / 〈a+ bω〉 ' Za2+b2−ab. �
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Corollary 2 If a and b are relatively prime integers, then z = a + bω is prime in Z [ω] if

and only if a2 + b2 − ab is prime in Z.

Theorem 8 Up to multiplication by a unit, the prime elements in Z [ω] are as follows:

1. Every prime integer p, that is p = 2 or p ≡ 5 (mod 6) .

2. Every element ς = a+ bω such that p = a2 + b2−ab is an integer prime in Z such that

p ≡ 1 (mod 6) .

3. Element z = 1 + 2ω.

Proof. This is an immediate consequence of the Theorems 6, 7 and the Corollaries 1 and

2. . �

Remark 1 The prime, z = 1 + 2ω has Ramification property; the integer prime p = 3 is

not a prime in Z [ω] and we have 3 = − (1 + 2ω)2 . p = 3 is called a ramified prime in Z [ω].

Remark 2 Every element z = x + yω in Z [ω] can be written uniquely (up to order and

multiplication by a unit) as a product of primes as follows:

x+ yω = ε2α

(∏
ς

ςβς

)(
m∏
i=1

pγii

)
(1 + 2ω)n

where ε is a unit element in Z [ω] , α, βς , γi, m and n are non-negative integers, ς = a+bω are

elements in Z [ω] for which p = a2+b2−ab is an integer prime in Z with p ≡ 1 (mod 6), and pi

are integer primes bigger than 3. Since for each prime number p such that p ≡ 1 (mod 6) there

are only two distinct prime elements, ς1 = a+ bω and ς2 = b+ aω such that p = a2 + b2− ab,
(a and b are relatively prime integers), so we can rewrite this factorization as

x+ yω = ε2α

(∏
ς1

ς
βς1
1

)(∏
ς2

ς
βς2
2

)(
m∏
i=1

pγii

)
(1 + 2ω)n

2. Factor rings in Z [ω]and their Decompositions

Theorem 9 Let k ≥ 1 be an integer. Then for n = 2k + 1 we have

Z [ω] / 〈(1 + 2ω)n〉 ' Z [x] /
〈
3kx, 3k+1, x2 + x+ 1

〉
Proof. First note that

(1 + 2ω)n = (1 + 2ω)2k+1

= (1 + 2ω)2k (1 + 2ω)

= (−3)k (1 + 2ω)
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Now define f : Z [x] → Z [ω] / 〈(1 + 2ω)n〉 by f (p (x)) = p (ω − 1) (mod (1 + 2ω)n) This is

an onto ring homomorphism. Now note that

f
(
3kx
)

= 3k (ω − 1)

= (−1)k (1 + ω) (1 + 2ω)n ∈ 〈(1 + 2ω)n〉

So 3k+1x ∈ Ker (f). Also we have

f
(
3k+1

)
= 3k+1

= (−1)k+1 (1 + 2ω) (1 + 2ω)n ∈ 〈(1 + 2ω)n〉

So 3k+1 ∈ Ker (f). Obviously we have x2 + x + 1 ∈ Ker (f) because ω2 + ω + 1 = 0,

thus
〈
3k+1x, 3k+1, x2 + x+ 1

〉
⊆ Ker (f) . Conversely, let q (x) ∈ Ker (f). Then since all

coefficients of x2+x+1 are 1, we have q (x) = p (x) (x2 + x+ 1)+ax+b, for some p (x) ∈ Z [x],

and a, b ∈ Z. From here we get f (q (x)) = a (ω − 1) + b = 0 (mod (1 + 2ω)n), so we must

have a (ω − 1) + b = (c+ dω) (1 + 2ω)n = (−3)k (c+ dω) (1 + 2ω), for some c + dω ∈ Z [ω].

Thus we have

aω + b− a = (−3)k (2c− d)ω + (−3)k (c− 2d)

From here we must have {
a = (−3)k (2c− d) ,

b− a = (−3)k (c− 2d)

These give us b = (−3)k (3c− 3d) = (−1)k (c− d) (3)k+1 and a = (−1)k (2c− d) (3)k, so

q (x) = p (x) (x2 + x+ 1) +
(

(−1)k (2c− d) (3)k
)
x +

(
(−1)k (c− d) (3)k+1

)
∈
〈
3kx, 3k+1,

x2 + x+ 1〉. Now by Fundamental Isomorphism Theorem we have

Z [ω] / 〈(1 + 2ω)n〉 ' Z [x] /
〈
3kx, 3k+1, x2 + x+ 1

〉
.

�

Lemma 7 Let k ≥ 1 be an integer. Then for n = 2k we have

Z [ω] / 〈(1 + 2ω)n〉 ' Z3k [ω] .

Proof. We have (1 + 2ω)n =
(
(1 + 2ω)2

)k
= (−3)k. So 〈(1 + 2ω)n〉 =

〈
3k
〉
. Now apply the

Lemma 5. �

Corollary 3 Let <n = Z [ω] / 〈(1 + 2ω)n〉 . Then we have

<n =


Z3, if n = 3

Z3k [ω] , if n = 2k, k > 1

Z [x] /
〈
3kx, 3k+1, x2 + x+ 1

〉
, if n = 2k + 1, k > 1

Proof. This follows from the Theorems 7 and 9 and the Lemma7. �
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Theorem 10 For each element z = x+ yω in Z [ω] we have

Z [ω] / 〈x+ yω〉 ' Z2α [ω]⊕ Z(c2+d2−cd)βς1 ⊕ Z(c2+d2−cd)βς2 ⊕ Zpγ11 [ω]⊕ · · · ⊕ Zpγmm [ω]⊕<n

where c+ dω =
∏
ς1

ς
βς1
1 , d+ cω =

∏
ς2

ς
βς2
2 and <n = Z [ω] / 〈(1 + 2ω)n〉 .

Proof. First note that, from the Remark 2, for

x+ yω = ε2α

(∏
ς1

ς
βς1
1

)(∏
ς2

ς
βς2
2

)(
m∏
i=1

pγii

)
(1 + 2ω)n

we have

〈x+ yω〉 =

〈
2α

(∏
ς

ς
βς1
1

)(∏
ς

ς
βς2
2

)(
m∏
i=1

pγii

)
(1 + 2ω)n

〉
Now by standard facts in an Euclidean Domain we have

Z [ω] / 〈x+ yω〉 ' Z [ω] / 〈2α〉 ⊕ Z [ω] /

〈∏
ς1

ς
βς1
1

〉
⊕ Z [ω] /

〈∏
ς2

ς
βς2
2

〉
⊕ Z [ω] /

〈
m∏
i=1

pγii

〉
⊕

Z [ω] / 〈(1 + 2ω)n〉.
Now apply the Lemma 5 and the Theorem 7 and this fact that

Z [ω] /

〈
m∏
i=1

pγii

〉
= Z [ω] / 〈pγ11 〉 ⊕ · · · ⊕ Z [ω] / 〈pγmm 〉

�

Example 1 Since 22 + 26ω = −2 (2 + 3ω)2 (1 + 2ω) we have

Z [ω] / 〈22 + 26ω〉 ' Z2 [ω]⊕ Z49 ⊕ Z3

Example 2 For z = 49 (1 + 3ω) we have

Z [ω] / 〈49 (1 + 3ω)〉 ' Z7 [ω]⊕ Z7 ⊕ Z49

because we can rewrite z = 49 (1 + 3ω) = −7 (2 + 3ω) (1 + 3ω)2 which is also isomorphic to

Z49 ⊕ Z343 because z = 49 (1 + 3ω) = − (2 + 3ω)2 (3 + 2ω)3 .
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