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Abstract

This paper deals with the relationships between two classes of infinite matroids–the

classes of matroids of arbitrary cardinality and of independence spaces primarily with the

help of hyperplane set approach and sometimes of closure operator approach.
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1 Introduction and Preliminaries

Oxley said in [3] that there is no single class of structures that one calls infinite matroids.

Rather, various authors with differing motivations have studied a variety of class of matroid-

like structures on infinite sets. Several of these classes differ quite markedly in the properties

possessed by their members and, in some cases, the precise relationship between particular

classes is still not known. The purpose of this paper is to indicate the links between two of

the more frequently studied classes of infinite matroids–the classes of matroids of arbitrary

cardinality(cf.[1]) and of independence spaces(cf.[2, 3]). It will discuss primarily with the

hyperplane set approach. Some details of the closure operator approach will also be needed.

1Granted by NSF of China(11101115,61202178,61073121) and NSF of Hebei Province(A2013201119,
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We firstly provides the hyperplane axioms for a matroid of arbitrary cardinality in this paper.

Afterwards, it will discuss the relationships between matroids of arbitrary cardinality and

independence spaces.

[9] presents independent axioms of matroids of arbitrary cardinality; [2, 3] tells us the

definition of independence spaces by the way of independent sets. Comparing the two results

above in [9] and [2, 3], we get that a matroid of arbitrary cardinality is an independence space,

but not pledge to the converse. It seems that this paper is not valuable to be done. Actually,

we know that finite matroid theory is essential to the study on combinatorics and discrete

mathematics, one of the important reasons is that there are many equivalent axioms for finite

matroids. As a main part of matroid theory, infinite matroids are also hoped to obtain many

equivalent axioms as finite matroids have. In this way, it could generalize the applicable

ranges of infinite matroid theory. We find out that [2] gives the closure operator axioms

for independence spaces. In my knowledge fields, no man had found out the hyperplane

axioms for matroids of arbitrary cardinality, though [1] presents the definition of matroids

of arbitrary cardinality by the way of closure sets. On the other hand, the importance of

hyperplanes of matroids of arbitrary cardinality has been exposed in [1]. We believe that the

hyperplane axioms will be contributory to the future work on infinite matroids especially

matroids of arbitrary cardinality. Based on these motivations, we do this paper.

In what follows, we assume that E is some arbitrary–possibly infinite–set.

Definition 1 [1] Assume m ∈ N0 and F ⊆ P(E). Then the pair M := (E,F) is called

a matroid of rank m with F as its closed sets, if the following axioms hold:

(F1) E ∈ F ;

(F2) If F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;

(F3) Assume F0 ∈ F and x1, x2 ∈ E \ F0. Then one has either

{F ∈ F|F0 ∪ {x1} ⊆ F} = {F ∈ F|F0 ∪ {x2} ⊆ F} or

F1 ∩ F2 = F0 for certain F1, F2 ∈ F containing F0 ∪ {x1} or F0 ∪ {x2}, respectively;

(F4) m = max{n ∈ N0| there exist F0, F1, ..., Fn ∈ F with F0 ⊂ F1 ⊂ ... ⊂ Fn = E}.
The set of hyperplanes of M consists exactly of the maximal closed sets in M(with respect

to inclusion) different from E. The closure operator σ = σM : P(E)→ F of M is defined by

σ(A) = σM(A) :=
⋂
F∈F
A⊆F

F . The rank function ρ = ρM : P(E)→ {0, 1, . . . ,m} of M is defined

by ρ(A) := max{k ∈ N0| there exist F0, F1, . . . , Fk ∈ F with F0 ⊂ F1 ⊂ . . . ⊂ Fk = σ(A)}.
F 3 F2 covers F1 ∈ F if F1 ⊂ F2 and there does not exist some F ∈ F with F1 ⊂ F ⊂ F2.

Assume F, F ′ ∈ F satisfy F ⊆ F ′. A chain F = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F ′ where

Fi ∈ F(i = 0, 1, . . . , n) is called a maximal chain between F and F ′, if each Fj, 1 ≤ j ≤ n,

covers Fj−1, n is called the length of the given chain.

Sometimes one calls M = (E,F) given in Definition 1 a matroid of arbitrary cardinality
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and simply denotes it by M .

Lemma 1 [1] Assume M := (E,F) is a matroid of arbitrary cardinality with σM as its

closure operator. Then

(1) For any family (Fi)i∈I of closed sets in M , one has also F :=
⋂
i∈I
Fi ∈ F .

(2) For any A ⊆ E, the set σM(A) is the smallest set in F containing A. In particular,

one has σM(A) = A if and only if A ∈ F . Moreover, σM satisfies the following conditions:

A ⊆ σM(A) = σM(σM(A)) for all A ⊆ E; for A ⊆ B ⊆ E, one has σM(A) ⊆ σM(B).

Furthermore, σM satisfies the following exchange condition:

For A ⊆ E and x, y ∈ E\σM(A), one has y ∈ σM(A∪{x}) if and only if x ∈ σM(A∪{y}).
(3) For F1, F2 ∈ F with F1 ⊂ F2, the following statements (i)-(iii) are equivalent:

(i) F2 covers F1. (ii) For all x ∈ F2 \ F1, one has σM(F1 ∪ {x}) = F2.

(iii) There exists some x ∈ F2 \ F1 with σM(F1 ∪ {x}) = F2.

(4) Suppose F ⊆ F ′ and F, F ′ ∈ F . Then all the maximal chains of closed sets between

F and F ′ have the same length.

(5) If F 3 F ′ covers F ∈ F , then ρ(F ′) = ρ(F ) + 1, where ρ is the rank function of M .

Definition 2 ([2, pp.385-387 & 3,p.74]) An independence space MP (E) is a set E

together with a collection I of subsets of E(called independent sets) such that

(i1) I 6= ∅;
(i2) If A ∈ I and B ⊆ A, then B ∈ I;

(i3) If A,B ∈ I and |A|, |B| <∞ with |A| = |B|+ 1, then ∃a ∈ A \B fits B ∪ {a} ∈ I;

(i4) If A ⊆ E and every finite subset of A is a member of I, then A ∈ I.

A subset of E is dependent if it is not independent. Every maximal independent subset

of MP (E) is a base. A hyperplane of MP (E) is a maximal set not containing any base and a

circuit to be a minimal dependent. The closure operator σ of MP (E) is defined by x ∈ σ(A)

if x ∈ A or there exists a circuit C with x ∈ C ⊆ A ∪ {x}. A set X is closed if σ(X) = X.

Lemma 2([2, pp.387-389&3,p.75]) A function σ : P(E)→ P(E) is the closure oper-

ator of an independence space on E if and only if for X, Y subsets of E, and x, y ∈ E:

(s1) X ⊆ σ(X);

(s2) Y ⊆ X ⇒ σ(Y ) ⊆ σ(X);

(s3) σ(X) = σ(σ(X));

(s4) y ∈ σ(X ∪ {x}) \ σ(X)⇒ x ∈ σ(X ∪ {y});
(s5) a ∈ σ(X)⇒ a ∈ σ(Xf ) for some finite subset Xf of X.

Lemma 3 [6] Let M = (E,F) be a matroid defined as in Definition 1. Then

L(M) = (F ,⊆) is a geometric lattice with finite length.
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In [6], for a matroid of arbitrary cardinality M = (E,F), it discusses the relations be-

tween M and L(M) (i.e. (F ,⊆)). For the detail about the relations between M and L(M),

we refer to [6]. [7, 8] tells us that an interval of a geometric lattice is geometric. For more

knowledge of lattice theory are cf.[7, 8].

On the behalf of convenience for the sequel, we provide some definitions as follows.

Definition 3 Let H = {Hτ ⊆ E : τ ∈ T } be a subset of P(E) satisfying H1 * H2

for H1, H2 ∈ H and E ⊇ X ⊆ Hα for Hα ∈ H, (α ∈ A ⊆ T ), where A = {i ∈ T : X ⊆
Hi and Hi ∈ H}. One defines σH : P(E)→ P(E) as a map satisfies:

(i) If A 6= ∅, then one defines σH(X) =
⋂
α∈A

Hα.

(ii) If A = ∅, i.e., E ⊇ X * H for any H ∈ H, then one defines σH(X) = E.

Let X, Y ⊆ E. “σH(Y ) covers σH(X)” means that σH(X) ⊆ σH(Y ) and none of σH(Z)

for Z ⊆ E satisfies σH(X) ⊂ σH(Z) ⊂ σH(Y ).

Set Xj ⊆ E, j = 0, 1, . . . , k. If a chain σH(X0) ⊂ σH(X1) ⊂ . . . ⊂ σH(Xk) satisfies that

each σH(Xj) covers σH(Xj−1), (1 ≤ j ≤ k), then k is called the length of the given chain.

It is obvious that in Definition 3, if k <∞, the length is finite, otherwise infinite.

It is not difficult to obtain from the above Definition 3 the following result:

Corollary 1 (1) For any H ∈ H, σH(H) exists and σH(H) = H.

(2) Let X, Y ⊆ E. Then X ⊆ σH(X); X ⊆ Y ⇒ σH(X) ⊆ σH(Y ); σH(σH(Y )) = σH(Y ).

2 Hyperplane axioms

The many different axiom systems such as hyperplane axioms for finite matroids are given in

[2, 4, 5], but according to my knowledge, none of researchers studied on hyperplane axioms

for matroids of arbitrary cardinality. This section will set up the hyperplane axioms for

matroids of arbitrary cardinality.

Theorem 1 (Hyperplane axioms) A collection H of subsets of E is the set of hyper-

planes of a matroid of arbitrary cardinality on E if and only if the conditions (H1)–(H4)

hold.

(H1) If H1, H2 ∈ H with H1 6= H2, then H1 * H2;

(H2) Let X ⊆ E. Then σH(X) exists;

(H3) Let F ⊆ E and x, y ∈ E. Then y ∈ σH(F ∪ {x})⇒ x ∈ σH(F ∪ {y});
(H4) Let X, Y ⊆ E. Then max{t ∈ N0| there exist Xj, j = 1, . . . , t such that Y = Xt and

σH(X) ⊂ σH(X1) ⊂ . . . ⊂ σH(Xt)} <∞.

29



Proof (=⇒) Let H = {Ht : t ∈ T } be the set of hyperplanes of a matroid M = (E,F)

of arbitrary cardinality of rank m with σM , ρ as its closure operator and rank function

respectively. Let H1, H2 ∈ H and H1 6= H2. By the maximality of H1 and H2, (H1) holds.

Furthermore, (H2) holds.

Before proceeding, we firstly prove that for X ⊆ E, σH(X) = σM(X) is right. Let

A = {t ∈ T : X ⊆ Ht}.
When X * H for any H ∈ H. Then σM(X) = E holds by Definition 1 and at the same

time, σH(X) = E is correct. Thus, σH(X) = σM(X) is true.

When X ⊆ Hα ∈ H (α ∈ A ⊆ T with |A| 6= 0), where A ⊆ T satisfies X ⊆ Hα (α ∈ A)

and X * H if H ∈ H \ {Hα : α ∈ A}. Next by induction on m = ρ(E) to prove

σH(X) = σM(X). Obviously, ρ(σM(X)) ≤ ρ(Hα) = m − 1, (∀α ∈ A). Distinguishing two

cases for discussion.

Case 1: m = 1, σH(X) = σM(X) is obvious.

Case 2: 2 ≤ m. Let F = σM(X).

In the status of ρ(F ) = m − 1, F ∈ H is evident. In addition, under this status, by

(H1), Lemma 1 and Corollary 1, F 3 σH(X) ⊆ σH(σM(X)) = σM(X) is correct. Because of

X ⊆ σH(X) and Lemma 1, σM(X) ⊆ σM(σH(X)) = σH(X) holds. Thus σM(X) = σH(X).

Assume that for any Y ⊆ E, if k ≤ ρ(D) ≤ m − 1, then σH(Y ) = σM(Y ) holds, where

D = σM(Y ). Now let ρ(F ) = k − 1 ≥ 0.

Let {Fj ∈ F : j ∈ J } be the set of the members that covers F in M . Then by Lemma

1(5) and Lemma 3, ρ(Fj) = ρ(F ) + 1 = k (j ∈ J ) and F =
⋂
j∈J

Fj. Besides, by the

assumption and Lemma 1, σH(Fj) = σM(Fj) = Fj (j ∈ J ).

In addition, for H ∈ H and Fi ∈ {Fj ∈ F : j ∈ J }, if Fi ⊂ H, then it is evidently

H ∈ {Hα : α ∈ A} in light of F ⊂ Fi.

On the other hand, when k = m − 1, it is obviously ρ(F ) = m − 2, besides, for any

H ∈ {Hα : α ∈ A}, H covers F . Hence {Hα : α ∈ A} = {Fj ∈ F : j ∈ J }. When

k < m− 1. Suppose there exists H ∈ {Hα : α ∈ A} such that Fj * H (∀j ∈ J ). By Lemma

3, one obtains that the interval [F,H] in L(M) is still a geometric lattice with finite length,

and hence there is Ft ∈ [F,H] such that Ft covers F in L(M), and further by the definition

of L(M), Ft covers F in M , and hence Ft ∈ {Fj ∈ F : j ∈ J }. However, by the supposition,

Ft /∈ {Fj ∈ F : j ∈ J }, a contradiction. That is to say, for any H ∈ {Hα : α ∈ A}, there

exists Fi ∈ {Fj ∈ F : j ∈ J } satisfying Fi ⊂ H.

The above two hands shows us
⋂
j∈J

Fj ⊆
⋂
α∈A

Hα.

Furthermore, if |J | = 1, then the interval [F,E] in L(M) is not geometric, a contradiction

to Lemma 3 and the properties of geometric lattices. Thus |J | > 1. By the (3) and

(4) in Lemma 1, for F1, F2 ∈ {Fj : j ∈ J }, one has F1 * F2. This implies
⋂
j∈J

Fj ⊂

Fj =
⋂

αj∈Aj⊆A
Hαj∈H

Hαj (j ∈ J ), where Aj = {i : Fj ⊆ Hi ∈ {Hα : α ∈ A}} (j ∈ J ). We
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notice that by the above two hands,
⋂
j∈J

(
⋂

αj∈Aj⊆A
Hαj∈H

Hαj) =
⋂
α∈A

Hα. Of course, by Lemma 1,

F 3
⋂
j∈J

(
⋂

αj∈Aj⊆A
Hαj∈H

Hαj). Besides, F ⊆
⋂
j∈J

(
⋂

αj∈Aj⊆A
Hαj∈H

Hαj) ⊂ Fj and ρ(Fj) = ρ(F ) + 1 taken

together follows ρ(F ) = ρ(
⋂
j∈J

(
⋂

αj∈Aj⊆A
Hαj∈H

Hαj) =
⋂
α∈A

Hα), and so
⋂
j∈J

Fj =
⋂
α∈A

Hα. Hence

σH(X) =
⋂
α∈A

Hα =
⋂
j∈J

Fj = F = σM(X).

Summing up, by Definition 1 and Lemma 1, one gets that H satisfies (H3)and (H4).

(⇐=) Suppose the collection H satisfies (H1)-(H4). Let F = {X ⊆ E |X = σH(X)}. We

prove that (E,F) is a matroid of arbitrary cardinality. E ∈ F is evident, i.e. (F1) holds for

(E,F).

Let F1, F2 ∈ F . According to (H2) and Corollary 1, one has F1∩F2 = σH(F1)∩σH(F2) ⊆
σH(F1∩F2) ⊆ σH(Fj), (j = 1, 2), further, F1∩F2 ⊆ σH(F1∩F2) ⊆ σH(F1)∩σH(F2) = F1∩F2.

Thus F1 ∩ F2 = σH(F1 ∩ F2), and so, F1 ∩ F2 ∈ F . Hence (F2) holds for (E,F).

Let F0 ∈ F , x1, x2 ∈ E \ F0. One sees easily that {F ∈ F|F0 ∪ {x1} ⊆ F} = {F ∈
F|F0 ∪ {x2} ⊆ F} ⇔ σH(F0 ∪ {x1}) = σH(F0 ∪ {x2}). Suppose {F ∈ F|F0 ∪ {x1} ⊆ F} 6=
{F ∈ F|F0∪{x2} ⊆ F} and Fj = σH(F0∪{xj}), (j = 1, 2). By (F2), (F1∩F2) ∈ F , besides,

F0 ⊆ (F1∩F2). If F0 ⊂ (F1∩F2). Let y ∈ (F1∩F2) \F0. Then y ∈ F1 = σH(F0∪{x1}), and

so by (H3), x1 ∈ σH(F0 ∪ {y}). Similarly, y ∈ F2 ⇒ x2 ∈ σH(F0 ∪ {y}). In addition, F0 ⊆
σH(F0∪{y}). Hence F0∪{xj} ⊆ σH(F0∪{y}), (j = 1, 2), so that Fj ⊆ σH(F0∪{y}), (j = 1, 2),

and furthermore, F1 ∩ F2 ⊆ Fj ⊆ σH(F0 ∪ {y}) ⊆ F1 ∩ F2, (j = 1, 2). Say, F1 ∩ F2 = F1 =

F2 = σH(F0∪{y}). This result follows {F ∈ F|F0∪{x1} ⊆ F} = {F ∈ F|F0∪{x2} ⊆ F}, a

contradiction. Equivalently to say, (F1 ∩F2) \F0 = ∅. So, F0 = F1 ∩F2, i.e. (F3) is satisfied

by (E,F).

Let H ′ ∈ H, ∅ = X0, and σH(X0) ⊂ . . . ⊂ σH(Xj−1) ⊂ σH(Xj) ⊂ . . . ⊂ H ′ = σH(XA)

be a chain from σH(X0) to H ′ such that σH(Xj) covers σH(Xj−1), (1 ≤ j ≤ A). Then by

(H4), |A| ≤ max{t ∈ N0|∃Yj ⊆ E, (j = 1, . . . , t) with σH(X0) ⊂ σH(Y1) ⊂ σH(Y2) ⊂ . . . ⊂
H ′ = σH(Yt)} < ∞. Considering with the definition of σH follows that H ′ is covered by

σH(E). Hence the length of the chain σH(X0) ⊂ . . . ⊂ σH(Xj) ⊂ . . . ⊂ H ′ ⊂ σH(E) = E is

finite. Further, with the arbitrariness of H ′ and the above discussion, one obtains max{k ∈
N0|∃F0, F1, . . . , Fk ∈ F with F0 ⊂ F1 ⊂ . . . ⊂ Fk = E} <∞, i.e. (F4) holds for (E,F).

Next to prove that H is the set of hyperplanes of (E,F).

Let HF be the set of hyperplanes of (E,F). For any H ∈ H, by the definition of σH,

one has σH(H) = H. Say H ∈ F , and further H ⊆ HF for some HF ∈ HF . If H ⊂ HF ,

then by (H1), one gets σH(HF ) = E, a contradiction with the definition of F that tells us

σH(HF ) = HF 6= E. Thus H = HF , and further, H ⊆ HF . Conversely, for ∀HF ∈ HF ,

because HF ⊆ F \ {E}, σH(HF ) = HF ,H ⊆ F and the definition of σH, one obtains that

there exists H ∈ H satisfying HF ⊆ H, and so HF = H by the maximality of HF . Thus

HF ⊆ H.
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Corollary 2 Let Mi = (E,Fi) be a matroid of arbitrary cardinality with Hi as its set

of hyperplanes (i = 1, 2). Then H1 = H2 if and only if σH1(X) = σH2(X) for any X ⊆ E, in

notation σH1 = σH2 .

Furthermore, a matroid M of arbitrary cardinality is determined by σH uniquely. In

addition, σH = σM , where H is the set of hyperplanes of M and σM is the closure operator

of M .

Proof Routine verification from the proof of Theorem 1.

3 Relations

This section will discuss the relations between a matroid of arbitrary cardinality and an

independence space.

Lemma 4 Let M = (E,F) be a matroid of arbitrary cardinality of rank m with H as its

collection of hyperplanes. Then σH satisfies (s1)-(s5). Furthermore, M is an independence

space on E.

Proof By Theorem 1, σH is the closure operator of M . Therefore σH satisfies (s1)-(s4)

by Lemma 1. One only needs to prove the correctness of (s5) for σH.

Firstly, one proves σH(X ∪ {y}) = σH(σH(X) ∪ {y}) for X ⊆ E and y ∈ E. By (s1)

and (s2), σH(X ∪ {y}) ⊆ σH(σH(X) ∪ {y}). However, X ⊆ X ∪ {y} and (s2) together tells

us σH(X) ⊆ σH(X ∪ {y}), and further, σH(X) ∪ {y} ⊆ σH(X ∪ {y}). Considering with

(s2) and (s3), one has σH(σH(X) ∪ {y}) ⊆ σH(σH(X ∪ {y})) = σH(X ∪ {y}). Therefore

σH(X ∪ {y}) = σH(σH(X) ∪ {y}).
The following is to prove that σH satisfies (s5). Suppose X ⊆ E and |X| =∞, a ∈ σH(X)

satisfy that for all Xf ⊆ X with |Xf | <∞, a /∈ σH(Xf ) holds.

Let x1 ∈ X and X1 = {x1}. It is easy to see a /∈ σH(X1). Since x1 ∈ X follows X ∩
σH(X1) 6= ∅. If X \σH(X1) = ∅, then X ⊆ σH(X1), further σH(X) ⊆ σH(σH(X1)) = σH(X1),

a contradiction with a ∈ σH(X) \ σH(X1). Hence X \ σH(X1) 6= ∅. Put x2 ∈ X \ σH(X1).

Let X2 = {x1, x2}. Then σH(σH(X1) ∪ {x2}) = σH(X1 ∪ {x2}) = σH({x1} ∪ {x2}) =

σH(X2) ⊃ σH(X1) and a /∈ σH(X2). Besides, X \σH(X2) 6= ∅, otherwise X ⊆ σH(X2) follows

a ∈ σH(X) ⊆ σH(X2), a contradiction. Repeated application of this augmentation yields that

for all m ∈ N0, there exists a set {Xj = {x1, x2, . . . , xj} ⊆ X : j = 1, 2, . . . ,m,m+1} (where

xj+1 ∈ Xj+1 \ Xj, (j = 1, . . . ,m,m + 1)) satisfying X1 ⊂ X2 ⊂ . . . ⊂ Xj ⊂ Xj+1 ⊂ . . . ⊂
Xm ⊂ Xm+1 ⊂ X ⊆ E and σH(X1) ⊂ σH(X2) ⊂ . . . ⊂ σH(Xm) ⊂ σH(Xm+1) ⊂ σH(X) ⊆ E,

a contradiction with (F4). So σH satisfies (s5).

Moreover, by Lemma 2 and Corollary 2, M is an independence space MP (E) and the

closure operator of MP (E) is just σH.
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The following counter example shows that not every independence space is a matroid of

arbitrary cardinality.

Example 1 Let |E = {x0, x1, x2, x3, . . .}| = ∞ and I = 2E. It is easy to check

that I satisfies (i1)-(i4). That is to say, (E, I) = MP (E) is an independence space. In

addition, evidently, the set of bases of MP (E) is exactly {E}. Therefore, the set H of hy-

perplanes of MP (E) is {H ⊆ E | H = E \ {h}, for h ∈ E}. However |E| = ∞ follows

|H| =∞ (∀H ∈ H). Let H2j = (E = {xt : t = 0, 1, 2, . . .}) \ {x2j}, (j = 0, 1, 2, . . .) and X =

{x1, x3, x5, . . . , x2k+1, . . .}. Then X ⊂ H2j ∈ H, (j = 0, 1, 2, . . .), and
∞⋂
j=0

H2j = X. Besides,(
∅ =

⋂
H∈H

H
)
⊂
(
{x1} =

⋂
x1∈H∈H

H
)
⊂
(
{x1, x3} =

⋂
{x1,x3}⊆H∈H

H
)
⊂ . . . ⊂

( ∞⋂
j=0

H2j =

X = σH(X)
)

and ∅ = σH(∅), {x1} = σH({x1}), {x1, x3} = σH({x1, x3}), . . . , X = σH(X).

Hence σH(∅) ⊂ σH({x1}) ⊂ σH({x1, x3}) ⊂ . . . ⊂ σH(X) is not a chain with finite length.

Consequently, for ∅, X ⊆ E, (H4) does not hold. Thus by Theorem 1, (E, I) = Mp(E) is

not a matroid of arbitrary cardinality.

Combining with the results in Lemma 4 and Example 1, one gets the following

Theorem 2 Every matroid of arbitrary cardinality on E is an independence space on

E, but not vice versa.
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