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Abstract

The objective of this paper is to an obtain an upper bound to the second Hankel deter-

minant |a2a4 − a2
3| for the function f , belonging to a certain subclass of analytic functions,

using Toeplitz determinants.

Key Words: Analytic function, upper bound, second Hankel determinant, positive real func-

tion, Toeplitz determinants.

Mathematics Subject Classification 2000: 30C45; 30C50.

Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1)
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in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of univalent

functions.

In 1976, Noonan and Thomas [13] defined the qth Hankel determinant of f for q ≥ 1 and

n ≥ 1 as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (2)

This determinant has been considered by several authors. For example, Noor [14] determined

the rate of growth of Hq(n) as n → ∞ for the functions in S with bounded boundary.

Ehrenborg [4] studied the Hankel determinant of exponential polynomials. The Hankel

transform of an integer sequence and some of its properties were discussed by Layman in [9].

One can easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then further

generalized the estimate |a3 − µa2
2| with µ real and f ∈ S. Ali [2] found sharp bounds on

the first four coefficients and sharp estimate for the Fekete-Szegö functional |γ3− tγ2
2 |, where

t is real, for the inverse function of f defined as f−1(w) = w +
∑∞

n=2 γnw
n to the class of

strongly starlike functions of order α(0 < α ≤ 1) denoted by S̃T (α). For our discussion in

this paper, we consider the Hankel determinant in the case of q = 2 and n = 2, known as

the second Hankel determinant

a2 a3

a3 a4

= |a2a4 − a2
3|. (3)

Janteng, Halim and Darus [8] have considered the functional |a2a4−a2
3| and found a sharp

bound for the function f in the subclass RT of S, consisting of functions whose derivative has

a positive real part studied by Mac Gregor [10]. In their work, they have shown that if f ∈
RT then |a2a4−a2

3| ≤ 4
9
. These authors [7] also obtained the second Hankel determinant and

sharp bounds for the familiar subclasses of S, namely, starlike and convex functions denoted

by ST and CV and shown that |a2a4 − a2
3| ≤ 1 and |a2a4 − a2

3| ≤ 1
8

respectively. Mishra

and Gochhayat [11] have obtained the sharp bound to the non- linear functional |a2a4 − a2
3|

for the class of analytic functions denoted by Rλ(α, ρ)(0 ≤ ρ ≤ 1, 0 ≤ λ < 1, |α| < π
2
),

defined as Re
{
eiαΩλz f(z)

z

}
> ρ cosα, using the fractional differential operator denoted by

Ωλ
z , defined by Owa and Srivastava [15]. These authors have shown that, if f ∈ Rλ(α, ρ)

then |a2a4 − a2
3| ≤

{
(1−ρ)2(2−λ)2(3−λ)2cos2α

9

}
. Similarly, the same coefficient inequality was

calculated for certain subclasses of analytic functions by many authors ([1], [3], [12]).

Motivated by the above mentioned results obtained by different authors in this direction, in

this paper, we consider a certain subclass of analytic functions and obtain an upper bound

to the functional |a2a4 − a2
3| for the function f belonging to this class , defined as follows.

Definition1.1.A function f(z) ∈ A is said to be in the class Q(α, β, γ) with α , β > 0 and
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0 ≤ γ < α + β ≤ 1, if it satisfies the condition that

Re

{
α
f(z)

z
+ βf ′(z)

}
≥ γ, ∀z ∈ E (4)

This class was considered and studied by Zhi- Gang Wang, Chun-yi gao and Shao-Mou yuan

[17].

We first state some preliminary Lemmas required for proving our result.

1 Preliminary Results

Let P denote the class of functions p analytic in E for which Re{p(z)} > 0,

p(z) = (1 + c1z + c2z
2 + c3z

3 + ...) =

[
1 +

∞∑
n=1

cnz
n

]
, ∀z ∈ E. (5)

Lemma 1 ([16]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1.

Lemma 2 ([5]) The power series for p given in (5) converges in the unit disc E to a function

in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

...
...

...
...

...

c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
∑m

k=1 ρkp0(exp(itk)z),

ρk > 0, tk real and tk 6= tj, for k 6= j; in this case Dn > 0 for n < (m− 1) and Dn
.
= 0 for

n ≥ m. This necessary and sufficient condition is due to Caratheodory and Toeplitz, can be

found in [5].

We may assume without restriction that c1 > 0. On using Lemma 2.2, for n = 2 and n = 3

respectively, we get

D2 =

2 c1 c2

c1 2 c1

c2 c1 2

= [8 + 2Re{c2
1c2} − 2 | c2 |2 − 4c2

1] ≥ 0,

which is equivalent to

2c2 = {c2
1 + x(4− c2

1)}, for some x, |x| ≤ 1. (6)

D3 =

2 c1 c2 c3

c1 2 c1 c2

c2 c1 2 c1

c3 c2 c1 2

.
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Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c3
1)(4− c2

1) + c1(2c2 − c2
1)2 ≤ 2(4− c2

1)2 − 2|(2c2 − c2
1)|2. (7)

From the relations (6) and (7), after simplifying, we get

4c3 = {c3
1 + 2c1(4− c2

1)x− c1(4− c2
1)x2 + 2(4− c2

1)(1− |x|2)z}
for some real value of z,with |z| ≤ 1. (8)

2 Main Result

Theorem 1 If f(z) = z +
∑∞

n=2 anz
n ∈ Q(α, β, γ), (α, β > 0 and 0 ≤ γ < α + β ≤ 1)

then

|a2a4 − a2
3| ≤

[
4(α + β − γ)2

(α + 3β)2

]
.

Proof. Since f(z) = z +
∑∞

n=2 anz
n ∈ Q(α, β, γ), from the definition 1.1, there exists an

analytic function p ∈ P in the unit disc E with p(0) = 1 and Re{p(z)} > 0 such that{
α
f(z)

z
+ βf ′(z)− γ

}
= p(z)⇒

{
αf(z) + βzf ′(z)− γz

(α + β − γ)z

}
= p(z) (9)

Replacing f(z), f ′(z) and p(z) with their equivalent series expressions in the relation (9), we

have[
α

{
z +

∞∑
n=2

anz
n

}
+ βz

{
1 +

∞∑
n=2

nanz
n−1

}
− γz

]
= (α + β − γ)z

[{
1 +

∞∑
n=1

cnz
n

}]
Upon simplification, we obtain[

(α + 2β)a2 + (α + 3β)a3z + (α + 4β)a4z
2 + ...

]
= (α + β − γ)

[
c1 + c2z + c3z

2 + ...
]
. (10)

Equating the coefficients of like powers of z0, z1 and z2 respectively on both sides of (10),

we get

[a2 =
(α + β − γ)

(α + 2β)
c1; a3 =

(α + β − γ)

(α + 3β)
c2; a4 =

(α + β − γ)

(α + 4β)
c3] (11)

Considering the second Hankel functional |a2a4 − a2
3| for the function f ∈ Q(α, β, γ) and

substituting the values of a2, a3 and a4 from the relation (11), we have

|a2a4 − a2
3| =

∣∣∣∣(α + β − γ)

(α + 2β)
c1 ×

(α + β − γ)

(α + 4β)
c3 −

(α + β − γ)2

(α + 3β)2
c2

2

∣∣∣∣
Upon simplification, we obtain

|a2a4 − a2
3| =

(α + β − γ)2

(α + 2β)(α + 3β)2(α + 4β)
× |(α + 3β)2c1c3 − (α + 2β)(α + 4β)c2

2| (12)
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The expression (12) is equivalent to

|a2a4 − a2
3| =

(α + β − γ)2

(α + 2β)(α + 3β)2(α + 4β)
×
∣∣d1c1c3 + d2c

2
2

∣∣ . (13)

Where

{d1 = (α + 3β)2; d2 = −(α + 2β)(α + 4β)} (14)

Substituting the values of c2 and c3 from (6) and (8) respectively from Lemma 2 in

the right hand side of (13), we have

∣∣d1c1c3 + d2c
2
2

∣∣ = |d1c1 ×
1

4
{c3

1 + 2c1(4− c2
1)x− c1(4− c2

1)x2 + 2(4− c2
1)(1− |x|2)z}+

d2 ×
1

4
{c2

1 + x(4− c2
1)}2|.

Using the facts that |z| < 1 and |xa + yb| ≤ |x||a| + |y||b|, where x, y, a and b are real

numbers, after simplifying, we get

4
∣∣d1c1c3 + d2c

2
2

∣∣ ≤ |(d1 + d2)c4
1 + 2d1c1(4− c2

1) + 2(d1 + d2)c2
1(4− c2

1)|x|−{
(d1 + d2)c2

1 + 2d1c1 − 4d2

}
(4− c2

1)|x|2|. (15)

Using the values of d1, d2, d3 and d4 from the relation (14), upon simplification, we obtain

{(d1 + d2) = β2; d1 = (α + 3β)2}; (16){
(d1 + d2)c2

1 + 2d1c1 − 4d2

}
=
{
β2c2

1 + 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}
. (17)

Consider{
β2c2

1 + 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}

= β2

{
c2

1 +
2(α + 3β)2

β2
c1 +

4(α + 2β)(α + 4β)

β2

}
.

= β2

[{
c1 +

(α + 3β)2

β2

}2

− (α + 3β)4

β4
+

4(α + 2β)(α + 4β)

β2

]
.

= β2

[{
c1 +

(α + 3β)2

β2

}2

−

√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

]
.

After simplifying, the above expression reduces to{
β2c2

1 + 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}

= β2

[
c1 +

{
(α + 3β)2

β2
+

√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

}]
×[

c1 +

{
(α + 3β)2

β2
−

√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

}]
. (18)
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Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0 in the

right hand side of (18), upon simplification, we obtain{
β2c2

1 + 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}

≥
{
β2c2

1 − 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}

(19)

From the relations (17) and (19), we get

−
{

(d1 + d2)c2
1 + 2d1c1 − 4d2

}
≤ −

{
β2c2

1 − 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}
. (20)

Substituting the calculated values from (16) and (20) in the right hand side of (15), we

obtain

4|d1c1c3 + d2c
2
2| ≤ |β2c4

1 + 2(α + 3β)2c1(4− c2
1) + 2β2c2

1(4− c2
1)|x|

−
{
β2c2

1 − 2(α + 3β)2c1 + 4(α + 2β)(α + 4β)
}

(4− c2
1)|x|2|.

Choosing c1 = c ∈ [0, 2], applying Triangle inequality and replacing | x | by µ in the right

hand side of the above inequality, it reduces to

4|d1c1c3 + d2c
2
2| ≤ [β2c4 + 2(α + 3β)2c(4− c2) + 2β2c2(4− c2)µ

+
{
β2c2 − 2(α + 3β)2c+ 4(α + 2β)(α + 4β)

}
(4− c2)µ2].

= F (c, µ), for 0 ≤ µ = |x| ≤ 1. (21)

Where

F (c, µ) = [β2c4 + 2(α + 3β)2c(4− c2) + 2β2c2(4− c2)µ

+
{
β2c2 − 2(α + 3β)2c+ 4(α + 2β)(α + 4β)

}
(4− c2)µ2]. (22)

We next maximize the function F (c, µ) on the closed square [0, 2] × [0, 1]. Differentiating

F (c, µ) in (22) partially with respect to µ, we get

∂F

∂µ
= [2β2c2(4 − c2) + 2

{
β2c2 − 2(α + 3β)2c+ 4(α + 2β)(α + 4β)

}
(4 − c2)µ]. (23)

For 0 < µ < 1 , for fixed c with 0 < c < 2 and α, β > 0, from (23), we observe that ∂F
∂µ

> 0.

Consequently, F (c, µ) is an increasing function of µ and hence it cannot have a maximum

value at any point in the interior of the closed square [0, 2] × [0, 1]. Further, for a fixed

c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say). (24)

From the relations (22) and (24), upon simplification, we obtain

G(c) = F (c, 1) =
{
−2β2c4 − 4β(α2 + 5β2 + 6αβ)c2 + 16(α + 2β)(α + 4β)

}
. (25)
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G′(c) =
{
−8β2c3 − 8β(α2 + 5β2 + 6αβ)c

}
. (26)

G′′(c) =
{
−24β2c2 − 8β(α2 + 5β2 + 6αβ)

}
. (27)

From the expression (26), we observe that G′(c) ≤ 0, for all values of c ∈ [0, 2] and for fixed

values of α, β > 0, where (0 < α + β ≤ 1).Therefore, G(c) is a monotonically decreasing

function of c in 0 ≤ c ≤ 2, attains its maximum value at c = 0. From the expression (25),

we have G-maximum value at c = 0 is given by

max
0≤c≤2

G(c) = G(0) = 16(α + 2β)(α + 4β). (28)

Considering, only the maximum value of G(c) at c = 0, from the relations (21) and (28),

after simplifying, we get

|d1c1c3 + d2c
2
2| ≤ 4(α + 2β)(α + 4β). (29)

From the expressions (13) and (29), upon simplification, we obtain

|a2a4 − a2
3| ≤

[
4(α + β − γ)2

(α + 3β)2

]
. (30)

This completes the proof of our Theorem. �

Remark. For the choice of α = (1− σ). β = σ and γ = 0, we get(α, β, γ) = ((1− σ), σ, 0),

for which, from (30), upon simplification, we obtain |a2a4 − a2
3| ≤

[
4

(1+2σ)2

]
, for 0 ≤ σ ≤ 1.

This result is a special case to that of Murugusundaramoorthy and Magesh [12].
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