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Abstract

The objective of this paper is to an obtain an upper bound to the second Hankel deter-
minant |ayas — a3 for the function f, belonging to a certain subclass of analytic functions,

using Toeplitz determinants.
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Introduction

Let A denote the class of functions f of the form
f(z)=z+ Z 2" (1)
n=2
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in the open unit disc F = {z : |z| < 1}. Let S be the subclass of A consisting of univalent
functions.
In 1976, Noonan and Thomas [13] defined the ¢ Hankel determinant of f for ¢ > 1 and

n>1 as

Qnp, (27NN I Qp4g-1
Any1 Apy2 Antq
Anyg—1 Qnyq - Ong2q-2

This determinant has been considered by several authors. For example, Noor [14] determined
the rate of growth of Hy(n) as n — oo for the functions in S with bounded boundary.
Ehrenborg [4] studied the Hankel determinant of exponential polynomials. The Hankel
transform of an integer sequence and some of its properties were discussed by Layman in [9].
One can easily observe that the Fekete-Szego functional is Hy(1). Fekete-Szego then further
generalized the estimate |az — pa3| with p real and f € S. Ali [2] found sharp bounds on
the first four coefficients and sharp estimate for the Fekete-Szego functional |3 — ty2|, where
t is real, for the inverse function of f defined as f~*(w) = w+ > >7, y,w" to the class of
strongly starlike functions of order (0 < a < 1) denoted by ST(a). For our discussion in
this paper, we consider the Hankel determinant in the case of ¢ = 2 and n = 2, known as
the second Hankel determinant

2 as

= |asas — aj). (3)
as a4

Janteng, Halim and Darus [8] have considered the functional |asa, —a3| and found a sharp
bound for the function f in the subclass RT of S, consisting of functions whose derivative has
a positive real part studied by Mac Gregor [10]. In their work, they have shown that if f €
RT then |asas —a3| < 3. These authors [7] also obtained the second Hankel determinant and
sharp bounds for the familiar subclasses of S, namely, starlike and convex functions denoted
by ST and CV and shown that |asas — a3| < 1 and |asas — a3| < £ respectively. Mishra
and Gochhayat [11] have obtained the sharp bound to the non- linear functional |agay — a3
for the class of analytic functions denoted by Ry(a,p)(0 < p < 1,0 < A < 1,|af < F),
defined as Re {em%} > pcosa, using the fractional differential operator denoted by

0, defined by Owa and Srivastava [15]. These authors have shown that, if f € Ry(a, p)
(1-p)2(2—X)2(3—)\)%cosa
9

calculated for certain subclasses of analytic functions by many authors ([1], [3], [12]).

Similarly, the same coefficient inequality was

then |agay — a3| < {

Motivated by the above mentioned results obtained by different authors in this direction, in
this paper, we consider a certain subclass of analytic functions and obtain an upper bound
to the functional |asa, — a2| for the function f belonging to this class , defined as follows.

Definition1.1.A function f(z) € A is said to be in the class Q(a, 3,7) with a , > 0 and
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0<~vy<a+ p <1, if it satisfies the condition that
Re {a@ - Bf’(z)} > 7, VzeFE (4)

This class was considered and studied by Zhi- Gang Wang, Chun-yi gao and Shao-Mou yuan
[17].

We first state some preliminary Lemmas required for proving our result.

1 Preliminary Results

Let P denote the class of functions p analytic in E for which Re{p(2)} > 0,

p(z) = (1+ciz + o2t 32 + )=

1+chz”] ,Vz e E. (5)
n=1

Lemma 1 ([16]) If p € P, then |cx| < 2, for each k > 1.

Lemma 2 ([5]) The power series for p given in (5) converges in the unit disc E to a function

in P if and only if the Toeplitz determinants

2 c1 Co N
C_1 2 C1 crr Cp—1
D,=| , , " n=1,23....
Cn Copny1 Cony2 - 2

and c_y, = ¢, are all non-negative. They are strictly positive except for p(z) = >, prpo(exp(ity)z),
pr > 0, ty, real and ty, # t;, for k # j; in this case D, > 0 for n < (m — 1) and D,, =0 for

n > m. This necessary and sufficient condition is due to Caratheodory and Toeplitz, can be
found in [5].

We may assume without restriction that ¢y > 0. On using Lemma 2.2, forn =2 andn =3

respectively, we get

2 C1 Co
Dy=|¢ 2 ¢ |=[8+2Re{cico} —2|cy|?—4ci] >0,
Cy ¢ 2
which is equivalent to
20 = {3+ (4},  for some x,|z| < 1. (6)
2 Ci1 Cy C3
D3 _ El 2 C1 Co

62 51 2 (5]

Ty Ty 7 2



Then D3 > 0 is equivalent to
|(4es — dejeg 4+ E3) (4 — ) 4 c1(2c0 — 2)? < 2(4 — 2)? — 2|(2¢, — )% (7)
From the relations (6) and (7), after simplifying, we get

des ={A +2c1(4— D)z —c1(4 — cD)a* +2(4 — &) (1 — |z[})z}

for some real value of z,with |z] <1. (8)

2 Main Result

Theorem 1 If f(2) = 2 + 30, 4,2" € Q(a, ,7), (0,8 >0 and 0<y<a+p8<1)

then
Ao+ B —7)?
(o +3p3)2

Proof. Since f(z) = 2+ Y ", a,2" € Q(e, 5,7), from the definition 1.1, there exists an
analytic function p € P in the unit disc E with p(0) = 1 and Re{p(z)} > 0 such that

{ozf(;) +6f'(2) = 7} =p(z) = {af(z(?f;jj(j; 72} =p(z) (9)

Replacing f(z), f'(z) and p(z) with their equivalent series expressions in the relation (9), we

{1 + icnz"}]
[(a+28)as + (o + 3B)agz + (a + 48)asz? + ..
=(a+B—7)[a+cz+a?+..]. (10)

asas — a2 < [

have

[04 {z—l—Zanz"} —i—ﬁz{l—l—Znanz"l} —’yz] =(a+8-7)z

n=2

Upon simplification, we obtain

1

Equating the coefficients of like powers of 2%, z! and 2? respectively on both sides of (10),

we get
(a+58—19) (a+5—-19) (a+p—19)

(a +25) s = WCQ; a4 = Wczﬂ (11)

Considering the second Hankel functional |agay — a3| for the function f € Q(«,3,7v) and

[ay =

substituting the values of ay,a3 and a4 from the relation (11), we have

(a+B—7) (a+8—7) (a+B—7)7°,

2 _ _ RV
lazas = a5l =\ O s A TG4 T @+ 3
Upon simplification, we obtain
A2
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The expression (12) is equivalent to

+ 58 —7)?
lasay — a3| = T 2ﬁ<;éoz - 3@?(@ 15 x |dicies + dac) - (13)
Where
{dy = (a+3B)*dy = —(a+28)(a + 48)} (14)

Substituting the values of ¢ and ¢z from (6) and (8) respectively from Lemma 2 in
the right hand side of (13), we have

1
‘dlclcg + d2c§\ = |dyc1 X Z{ci’ +201(4—A)r —c1(4— D) +2(4 — A)(1 — |z]*) 2} +
1
dy X ZL{C% +2(4 - ).

Using the facts that |z| < 1 and |za + yb| < |z||a|] + |y||b], where x, y, a and b are real
numbers, after simplifying, we get

4|dyercs + dacs| < |(dy + da)et + 2dica (4 — ) + 2(dy + do)cF (4 — )| x| -
{(di + do)ci + 2dyc1 — 4da} (4 — ¢F)|z[*|. (15)
Using the values of dy,dy,d3 and dy from the relation (14), upon simplification, we obtain
{(dy +do) = 8% dy = ( + 308)"}; (16)
{(dy + do)@ + 2dyey — 4dy} = {7 +2(a + 38)%c1 +4(a+28)(a +48)} . (17)

Consider

{826+ 2(a + 38)%c1 + 4(a + 2B)(a + 48) }
_ g2 {c? N 2(a+ 303) - 4(a+20)(a+4P) } .

gz 32
23 2 4
e {cﬁ(“ﬁj@ } (a3 | e 2Pt 4P

B2 B

After simplifying, the above expression reduces to

_ [{Cl Lot 36)2} \/a4 + 4984 + 500262 + 84085 + 12a35]

{62 +2(a +38)%¢, +4(a+26)(a+46)}

_ 32 o+ {(a ;236)2 N \/a4 + 49534 + 5Oa2i;+ 84a33 + 12a35}] y
- { (a ;235)2 - \/a4 + 49434 + 50042%24+ 84038 + 12030 }] )
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Since ¢; € [0,2], using the result (¢; + a)(c1 +b) > (¢1 — a)(cy — b), where a,b > 0 in the
right hand side of (18), upon simplification, we obtain

{5ch + 2(a + 38)%c; + 4(a +28) (a + 45)}
> {B%F —2(a+3B)c + 4(a+28)(a+48)} (19)

From the relations (17) and (19), we get

— {(di +da)ci +2dicr —dda} < —{B%c] — 2(a+ 3B)*cr + 4(a +26) (e +46) } . (20)

Substituting the calculated values from (16) and (20) in the right hand side of (15), we

obtain

dldicics + dacs| < B2} + 2(a + 38)%c1(4 — o) + 2871 (4 — )|z
—{B%c = 2(a+38)%c1 + 4(a +28)(a + 48) } (4 — ¢f)|«]|-

Choosing ¢; = ¢ € [0, 2], applying Triangle inequality and replacing | x | by p in the right

hand side of the above inequality, it reduces to

4ldicics + doch| < [B2ct + 2(a + 36)2%c(4 — ) + 282 (4 — A
+ {8 = 2(a+3B)°c+ 4(a+28)(a+48)} (4 — )]
=F(e,p), for 0<pu=|z|<1. (21)

Where

F(e,p) = [2c¢" 4 2(a + 30)%c(4 — ¢*) + 262 (4 — )
+{B° = 2(a+3B)°c+4(a+28)(a+4B)} (4 — )’ (22)

We next maximize the function F(c, p) on the closed square [0,2] x [0, 1]. Differentiating
F(c, ) in (22) partially with respect to u, we get

G = 2P = &)+ 2{FE - Aa k39 e+ A+ 2 1)} (4 - il (29
For 0 < pu < 1, for fixed ¢ with 0 < ¢ < 2 and «a, f > 0, from (23), we observe that > 0.
Consequently, F'(c, 1) is an increasing function of p and hence it cannot have a maximum
value at any point in the interior of the closed square [0,2] x [0,1]. Further, for a fixed
c € [0,2], we have

max F'(c, ) = F(c,1) = G(c)(say). (24)

0<pu<1

From the relations (22) and (24), upon simplification, we obtain
G(c) = F(c,1) = {=258%c" — 48(a” + 5 + 6a83)c® + 16(cr + 28) (a + 48) } . (25)
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G'(c) = {-88°c* — 88(a® + 58 + 6af)c} . (26)
G"(c) = {245 — 88(a” +55° + 6a) } . (27)

From the expression (26), we observe that G'(c¢) < 0, for all values of ¢ € [0, 2] and for fixed
values of a, f > 0, where (0 < a + < 1).Therefore, G(c) is a monotonically decreasing
function of ¢ in 0 < ¢ < 2, attains its maximum value at ¢ = 0. From the expression (25),
we have G-maximum value at ¢ = 0 is given by

ax G(c) = G(0) = 16(a + 28)(a + 4P). (28)
Considering, only the maximum value of G(c) at ¢ = 0, from the relations (21) and (28),

after simplifying, we get
|dicrcs + dacy| < 4(a+28)(a +48). (29)

From the expressions (13) and (29), upon simplification, we obtain

4(a+6—v)2] .

_ 42 <
s = i < [ A0 57

This completes the proof of our Theorem. [

Remark. For the choice of « = (1 —0). f =0 and 7 =0, we get(a, 8,7) = ((1 — 0),0,0),
for which, from (30), upon simplification, we obtain |asay — a2| < @#)2], for0 <o < 1.
This result is a special case to that of Murugusundaramoorthy and Magesh [12].
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