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Abstract

We investigate convergence of the rational-trigonometric-polynomial interpolations which

perform convergence acceleration of the classical trigonometric interpolation by sequential

application of polynomial and rational corrections. Rational corrections contain unknown

parameters which determination outlines the behavior of the interpolations in different frame-

works. We consider approach for determination of the unknown parameters by minimization

of the constants of the asymptotic errors. We perform theoretical and numerical analysis of

such optimal interpolations.
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Introduction

We continue investigations started in [12], [13] and [14] where we considered convergence

acceleration of the classical trigonometric interpolation

IN(f ;x) =
N∑

n=−N

f̌ne
iπnx, f̌n =

1

2N + 1

N∑
k=−N

f(xk)e
−iπnxk , xk =

2k

2N + 1

via sequential application of polynomial and rational correction functions. Polynomial cor-

rection was representing the discontinuities in the function and some of its first q derivatives

(”jumps”). The resultant interpolation IN,q(f) was known as the Krylov-Lanczos (KL-)

interpolation (see [1], [3]-[8], and [10] with references therein). Additional acceleration of
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the KL-interpolation was achieved by application of rational (by eiπx) correction functions

along the ideas of the Fourier-Pade approximations ([2]). This interpolation IpN,q(f) was

known as the rational-trigonometric-polynomial (RTP-) interpolation where p is the order

of denominator in rational correction (see [12]-[14]).

Rational corrections contain unknown parameters θk which determination is a crucial

issue for realization of the RTP-interpolations. In [12] and [13] it is assumed that

θk = θ−k = 1− τk
N
, k = 1, . . . , p, (1)

where the new parameters τk can be determined differently and are independent of N .

Papers [12] and [13] investigate the pointwise convergence of the RTP-interpolations in the

regions away from the endpoints x = ±1 and in the numerical experiments consider the case

when τk are the roots of the associated Laguerre polynomials. In this paper we continue

investigations of the RTP-interpolations with parameters θk as in (1). We derive exact

constants of the asymptotic errors and determine the parameters τk to be optimal in the

sense of the considered frameworks: pointwise convergence in the regions away from the

endpoints and L2-convergence on the entire interval. This RTP-interpolations we call as

pointwise-minimal and L2-minimal RTP-interpolations. Theoretical and numerical analysis

outline the properties of such interpolations.

1 The Krylov-Lanczos interpolation

First we recap some details from [10] concerning the polynomial corrections.

Let f ∈ Cq−1[−1, 1]. By Ak(f) denote the jumps of f at the end points of the interval

Ak(f) = f (k)(1)− f (k)(−1), k = 0, . . . , q − 1.

The polynomial correction method is based on the following representation of the inter-

polated function

f(x) =

q−1∑
k=0

Ak(f)Bk(x) + F (x), (2)

where Bk are 2-periodic Bernoulli polynomials

B0(x) =
x

2
, Bk(x) =

∫
Bk−1(x)dx, x ∈ [−1, 1],

∫ 1

−1
Bk(x)dx = 0

with the Fourier coefficients

Bn(k) =
(−1)n+1

2(iπn)k+1
, n 6= 0, B0(k) = 0.

Function F is a 2-periodic and relatively smooth function on the real line (F ∈ Cq−1(R))

with the discrete Fourier coefficients

F̌n = f̌n −
q−1∑
k=0

Ak(f)B̌n(k).
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Approximation of F in (2) by the classical trigonometric interpolation leads to the Krylov-

Lanczos (KL-) interpolation

IN,q(f ;x) =

q−1∑
k=0

Ak(f)Bk(x) + IN(F, x)

with the error

rN,q(f ;x) = f(x)− IN,q(f ;x).

We need some theoretical and numerical analysis for further comparisons. The next

theorem reveals asymptotic behavior of the KL-interpolation in the framework of the L2-

norm.

Theorem 1. [10] Let f ∈ Cq[−1, 1] and f (q) ∈ AC[−1, 1] for some q ≥ 1. Then the following

estimate holds

lim
N→∞

N q+ 1
2‖rN,q(f)‖L2 = |Aq(f)|c(q),

where

c(q) =
1√

2πq+1

 2

2q + 1
+

∫ 1

−1

∣∣∣∣∣∑
s 6=0

(−1)s

(2s+ x)q+1

∣∣∣∣∣
2

dx

1/2

.

Table 1 presents the values of c(q).

q q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

c(q) 0.084 0.019 0.0055 0.0015 4.4 · 10−4 1.3 · 10−4 3.8 · 10−5

Table 1: Numerical values of c(q) from Theorem 1.

Theorems 2 and 3 describe the pointwise convergence of the KL-interpolation in the

regions away from the endpoints x = ±1.

Denote

φm =
∞∑

s=−∞

(−1)s

(2s+ 1)m
.

Theorem 2. [10] Let q ≥ 2 be even, f ∈ Cq+1[−1, 1] and f (q+1) ∈ AC[−1, 1]. Then the

following estimate holds for |x| < 1

rN,q(f ;x) = Aq(f)
(−1)N+ q

2

2πq+1N q+1

sin πx
2

(2N + 1)

cos πx
2

φq+1 + o(N−q−1), N →∞.

Theorem 3. [10] Let q ≥ 1 be odd, f ∈ Cq+2[−1, 1] and f (q+2) ∈ AC[−1, 1]. Then the

following estimate holds for |x| < 1

rN,q(f ;x) = Aq(f)
(−1)N+ q+1

2
+1(q + 1)

4πq+1N q+2

sin πx
2

sin πx
2

(2N + 1)

cos2 πx
2

φq+2

+ Aq+1(f)
(−1)N+ q+1

2

2πq+2N q+2

sin πx
2

(2N + 1)

cos πx
2

φq+2 + o(N−q−2), N →∞.
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Now consider the following simple testing function that we use for numerical analysis

f(x) = sin(x− 1). (3)

As we see from Theorems 2 and 3 the behavior of the KL-interpolation (and also the

behavior of the RTP-interpolations as we will show below) is different for even and odd q

and in numerical examples we show the results for both cases. Figures 1 and 2 show the

behavior of |rN,q(f ;x)| on the interval [−0.7, 0.7] (left figures) and at the point x = 1 (right

figures) for N = 2048 and q = 3 and q = 4, respectively.
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5. ´ 10-19

1. ´ 10-18

1.5 ´ 10-18
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1. ´ 10-12

Figure 1: Graphs of |r2048,3(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for the

function (3).
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Figure 2: Graphs of |r2048,4(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for the

function (3).

We calculated also the L2-norms of the errors

‖r2048,3(f)‖L2 = 2.0 · 10−14, ‖r2048,4(f)‖L2 = 1.7 · 10−18. (4)

2 Rational-trigonometric-polynomial interpolation

In this section we investigate the method of additional acceleration of convergence of the

KL-interpolation by rational correction functions and recap the main ideas from [12] and
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[13].

Consider a finite sequence of complex numbers θ = {θk}p|k|=1 and denote

δ0n(θ, cn) = cn,

δkn(θ, cn) = δk−1n (θ, cn) + θ−kδ
k−1
n−1(θ, cn) + θk

(
δk−1n+1(θ, cn) + θ−kδ

k−1
n (θ, cn)

)
for some sequence cn. By δkn(cn) we denote the sequence that corresponds to the choice

θ ≡ 1. It is easy to check that

δkn(cn) = ∆2k
n+k(cn),

where ∆k
n(cn) are the classical backward finite differences defined by the recurrence relation

∆0
n(cn) = cn,

∆k
n(cn) = ∆k−1

n (cn) + ∆k−1
n−1(cn).

We can write according to expansion (2)

rN,q(f ;x) =
N∑

n=−N

(Fn − F̌n)eiπnx +
∞∑

n=N+1

Fne
iπnx +

−N−1∑
n=−∞

Fne
iπnx,

where Fn is the n-th Fourier coefficient of F

Fn =
1

2

∫ 1

−1
F (x)e−iπnxdx.

Now, we proceed by sequential applications of the Abel transformations and get

rN,q(f ;x) = (e−iπNx − eiπ(N+1)x)

p∑
k=1

θ−kδ
k−1
N (θ, F̌n)∏k

s=1(1 + θ−seiπx)(1 + θse−iπx)

+(eiπNx − e−iπ(N+1)x)

p∑
k=1

θkδ
k−1
−N (θ, F̌n)∏k

s=1(1 + θ−seiπx)(1 + θse−iπx)

+
1∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

∞∑
|n|=N+1

δpn(θ, Fn)eiπnx

+
1∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

N∑
n=−N

δpn(θ, Fn − F̌n)eiπnx,

which leads to the following rational-trigonometric-polynomial (RTP-) interpolation

IpN,q(f ;x) = IN,q(f ;x) + (e−iπNx − eiπ(N+1)x)

p∑
k=1

θ−kδ
k−1
N (θ, F̌n)∏k

s=1(1 + θ−seiπx)(1 + θse−iπx)

+ (eiπNx − e−iπ(N+1)x)

p∑
k=1

θkδ
k−1
−N (θ, F̌n)∏k

s=1(1 + θ−seiπx)(1 + θse−iπx)
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with the error

rpN,q(f ;x) =
1∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

∞∑
|n|=N+1

δpn(θ, Fn)eiπnx

+
1∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

N∑
n=−N

δpn(θ, Fn − F̌n)eiπnx. (5)

Throughout the paper we suppose that parameters θk are chosen as in (1). Determina-

tion of the new parameters τk will be discussed later. Let γk(τ) be the coefficients of the

polynomial
p∏
s=1

(1 + τsx) =

p∑
s=0

γs(τ)xs. (6)

Now, we investigate the convergence of the RTP-interpolation IpN,q(f) in different frame-

works. First we display some results from [13] where pointwise convergence in the regions

away from the endpoints was explored. Then we consider L2-convergence of the RTP-

interpolations.

Denote

ψm,p =

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)(2p− k − s+m)!φ2p−k−s+m+1.

Theorem 4. [13] Let q ≥ 2 be even and f ∈ Cq+2p+1[−1, 1] with f (q+2p+1) ∈ AC[−1, 1] for

some p ≥ 1. Let parameters θk be chosen as in (1). Then the following estimate holds for

|x| < 1

rpN,q(f ;x) = Aq(f)
(−1)N+p+ q

2

22p+1πq+1q!N2p+q+1

sin πx
2

(2N + 1)

cos2p+1 πx
2

ψq,p + o(N−2p−q−1), N →∞.

Theorem 5. [13] Let q ≥ 1 be odd and f ∈ Cq+2p+2[−1, 1] with f (q+2p+2) ∈ AC[−1, 1] for

some p ≥ 1. Let parameters θk be chosen as in (1). Then the following estimate holds for

|x| < 1

rpN,q(f ;x) = Aq(f)
(−1)N+p+ q+1

2
+1

22p+2πq+1q!N2p+q+2

sin πx
2

sin πx
2

(2N + 1)

cos2p+2 πx
2

ψq+1,p

+ Aq+1(f)
(−1)N+p+ q+1

2

22p+1πq+2(q + 1)!N2p+q+2

sin πx
2

(2N + 1)

cos2p+1 πx
2

ψq+1,p

+ o(N−2p−q−2), N →∞.

Comparison with Theorems 2 and 3 shows that for smooth functions RTP-interpolations

with θ as in (1) are asymptotically more precise than the KL-interpolation and improvement

in precision is by the factor O(N2p) as N → ∞. Also worth noting that interpolation by

odd q has more accuracy although its asymptotic depends not only on Aq(f) but also on

Aq+1(f).
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Next theorem describes the asymptotic behavior of the error of the RTP-interpolations

in the L2-norm.

Theorem 6. Let f ∈ Cq+2p[−1, 1] with f (q+2p) ∈ AC[−1, 1] for some p, q ≥ 1. Let

θk = θ−k = 1− τk
N
, τk > 0, τi 6= τj, i 6= j.

Then the following estimate holds

lim
N→∞

N q+ 1
2‖rpN,q(f)‖L2 = |Aq(f)|cp(q),

where

cp(q) =
1

2πq+1q!

×

(
1

2

∫ 1

−1

∣∣∣∣∫ ∞
1

(a(x− t) + (−1)q+1a(t+ x))Ω(x)dx

−
∫ 1

t

a(x− t)Υ(x)dx−
∫ t

−1
a(t− x)Υ(x)dx

∣∣∣∣2dt
+

∫ ∞
1

∣∣∣∣∫ t

1

(a(t− x) + (−1)q+1a(t+ x))Ω(x)dx

+

∫ ∞
t

(a(x− t) + (−1)q+1a(t+ x))Ω(x)dx

−
∫ 1

−1
a(t− x)Υ(x)dx

∣∣∣∣2dt
) 1

2

,

and

Ω(x) =
1

xq+2p+1

p∑
s=0

(−1)sγs(τ)xs
p∑

k=0

γk(τ)xk(2p− k − s+ q)!,

Υ(x) =

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)(2p− k − s+ q)!
∑
r 6=0

(−1)r

(2r + x)2p−k−s+q+1
,

a(x) =

p∑
s=1

e−τsx

τs

p∏
r=1
r 6=s

(τ 2r − τ 2s )

.

Proof. We use (5) and proceed by estimation of the following fraction

1∏p
s=1(1 + θseiπx)(1 + θse−iπx)

=

p∑
s=1

βs
(1 + θseiπx)(1 + θse−iπx)

,

where

βm =
1

p∏
r=1
r 6=m

(1− θrθm)

(
1− θr

θm

) =
θp−1m

p∏
r=1
r 6=m

(1− θrθm)(θm − θr)
.
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Taking into account that parameters θk are chosen as in (1) we derive

βm =

(
1− τm

N

)p−1
N2p−2

p∏
r=1
r 6=m

(τr − τm)
(
τr + τm −

τrτm
N

)

and hence
1

N2p−2 lim
N→∞

βm =
1

p∏
r=1
r 6=m

(τ 2r − τ 2m)

. (7)

Then, as |θk| < 1, however for sufficient large N , we can write

p∑
s=1

βs
(1 + θseiπx)(1 + θse−iπx)

=

p∑
s=1

βs

∞∑
n=0

(−1)nθns e
iπnx

∞∑
m=0

(−1)mθms e
−iπmx

=

p∑
s=1

βs

−1∑
`=−∞

(−1)`eiπ`xθ−`s

∞∑
n=0

θ2ns +

p∑
s=1

βs

∞∑
`=0

(−1)`eiπ`xθ`s

∞∑
n=0

θ2ns

=

p∑
s=1

βs
1− θ2s

[ −1∑
`=−∞

(−1)`eiπ`xθ−`s +
∞∑
`=0

(−1)`eiπ`xθ`s

]
, (8)

where according to (7) and (1)

1

N2p−1 lim
N→∞

βs
1− θ2s

=
1

2τs

p∏
r=1
r 6=s

(τ 2r − τ 2s )

. (9)

Substituting (8) into (5), after simple manipulations we obtain

rpN,q(f) = I1 + I2 + I3,

where

I1 =
∞∑

t=N+1

eiπtx
p∑
s=1

βs
1− θ2s

(
t∑

n=N+1

(−1)t+nθt−ns δpn(θ, Fn)

+
∞∑

n=t+1

(−1)t+nθn−ts δpn(θ, Fn) +
−N−1∑
n=−∞

(−1)t+nθt−ns δpn(θ, Fn)

+
N∑

n=−N

(−1)t+nθt−ns δpn(θ, Fn − F̌n)

)
,
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then

I2 =
N∑

t=−N

eiπtx
p∑
s=1

βs
1− θ2s

(
∞∑

n=N+1

(−1)t+nθn−ts δpn(θ, Fn)

+
−N−1∑
n=−∞

(−1)t+nθt−ns δpn(θ, Fn) +
N∑

n=t+1

(−1)t+nθn−ts δpn(θ, Fn − F̌n)

+
t∑

n=−N

(−1)t+nθt−ns δpn(θ, Fn − F̌n)

)
,

and

I3 =
−N−1∑
t=−∞

eiπtx
p∑
s=1

βs
1− θ2s

(
∞∑

n=N+1

(−1)t+nθn−ts δpn(θ, Fn)

+
−N−1∑
n=t+1

(−1)t+nθn−ts δpn(θ, Fn) +
t∑

n=−∞

(−1)t+nθt−ns δpn(θ, Fn)

+
N∑

n=−N

(−1)t+nθn−ts δpn(θ, Fn − F̌n)

)
.

Hence

‖rpN,q(f)‖2L2
= ‖I1‖2L2

+ ‖I2‖2L2
+ ‖I3‖2L2

, (10)

where

‖I1‖2L2
= 2

∞∑
t=N+1

∣∣∣∣∣
p∑
s=1

βs
1− θ2s

t∑
n=N+1

(−1)t+nθt−ns δpn(θ, Fn)

+
∞∑

n=t+1

(−1)t+nθn−ts δpn(θ, Fn) +
−N−1∑
n=−∞

(−1)t+nθt−ns δpn(θ, Fn)

+
N∑

n=−N

(−1)t+nθt−ns δpn(θ, Fn − F̌n)

∣∣∣∣∣
2

and similar formulas we have for ‖I2‖2L2
and ‖I3‖2L2

.

Now we estimate δpn(θ, Fn) and δpn(θ, F̌n−Fn). According to smoothness of f and expan-

sion (2) we write

Fn =

q+2p∑
m=q

Am(f)Bn(m) + o(n−2p−q−1)

and

δpn(θ, Fn) =

q+2p∑
m=q

Am(f)δpn(θ, Bn(m)) + o(n−q−2p−1).
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Application of Lemma 1 leads to the following estimate

δpn(θ, Fn) = Aq(f)
(−1)n+p+1

2(iπn)q+1n2pq!

p∑
s=0

(−1)s
γs(τ)

N sn−s

p∑
k=0

γk(τ)

Nkn−k
(2p− k − s+ q)!

+
1

N2p
o(n−q−1), n ≥ N + 1, N →∞.

Then, again according to expansion (2) and smoothness of f we have

δpn(θ, F̌n − Fn) =

q+2p∑
m=q

Am(f)δpn(θ, B̌n(m)−Bn(m)) + o(N−2p−q−1).

Now application of Lemma 2 leads to the following estimate

δpn(θ, F̌n − Fn) = Aq(f)
(−1)n+p+1

2(iπN)q+1N2pq!

p∑
s=0

(−1)s
γs(τ)

N s

p∑
k=0

γk(τ)

Nk
(2p− k − s+ q)!

×
∑
r 6=0

(−1)r(
2r + n

N

)2p−k−s+q+1
+ o(N−2p−q−1), |n| ≤ N, N →∞.

These complete the proof by tending N to infinity in (10) and by replacing the sums by the

corresponding integrals and by taking into account (9).

Theorems 4, 5, 6 are valid nonetheless parameters τk are still undefined. Papers [12] and

[13] consider parameters τk which are the roots of the associated Laguerre polynomials Lqp(x)

Lqp(τk) = 0, k = 1, . . . , p.

It is well-known that the roots are distinct and positive. Associated Laguerre polynomials

have well-known representation

Lqp(x) =

p∑
k=0

(−1)k
(p+ q)!

k!(p− k)!(q + k)!
xk.

It allows calculation of parameters τk explicitly for p = 1, 2, 3. For other values of p the

values of τk can be calculated numerically with any required precision.

Table 2 displays the values of cp(q) when τk are the roots of the associated Laguerre

polynomials Lqp(x).

The ratio c(q)/cp(q) shows the efficiency of the RTP-interpolation compared to the KL-

interpolation. We see that as higher are the values of p and q as more efficient is the

RTP-interpolation (in general).

One thing that worth to notice is that Theorems 4, 5 and 6 put additional smoothness

requirements on the interpolated function compared to Theorems 1, 2 and 3 so in comparisons

this fact must be taken into account.
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q 1 2 3 4 5

c1(q) 0.020 0.0031 0.00092 0.00016 0.000047

c(q)/c1(q) 4.1 6.2 6.1 9.5 9.4

c2(q) 0.0091 0.0014 0.00027 0.000038 0.000012

c(q)/c2(q) 9.2 13.7 20.6 39.8 36.0

c3(q) 0.0064 0.0007 0.00009 0.000017 3.9 · 10−6

c(q)/c3(q) 13.1 27.3 61.8 91.5 115.2

c4(q) 0.0046 0.00038 0.000045 8.0 · 10−6 1.3 · 10−6

c(q)/c4(q) 18.3 50.0 123.3 190.9 351.9

Table 2: Numerical values of cp(q) and c(q)/cp(q) when parameters τk are the roots of Lqp(x).
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Figure 3: Graphs of |r22048,3(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for the

function (3) when parameters τk are the roots of L3
2(x).

Figures 3 and 4 show the behavior of |rpN,q(f ;x)| on the interval [−0.7, 0.7] (left figures)

and at the point x = 1 (right figures) for p = 2, N = 2048 and q = 3 and q = 4, respectively,

when parameters τk are the roots of Lqp(x).

We have the following L2-errors

‖r22048,3(f)‖L2 = 9.7 · 10−16, ‖r22048,3(f)‖L2 = 4.4 · 10−20. (11)

Comparison with Figures 1, 2 and (4) shows tremendous improvement in accuracy both by

L2 and pointwise convergence.

3 Optimal RTP-interpolations

As was mentioned above in Theorems 4, 5 and 6 parameters τk are undetermined and this

gives opportunity to achieve additional accuracy in different frameworks by minimization

of the constants in the asymptotic errors. Minimization of cp(q) in Theorem 6 leads to L2-
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Figure 4: Graphs of |r22048,4(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for the

function (3) when parameters τk are the roots of L4
2(x).

minimal RTP-interpolation and minimization of ψq,p and ψq+1,p in Theorems 4 and 5 leads

to pointwise (P-) minimal RTP-interpolation.

3.1 L2-minimal RTP-interpolations

The idea of determination of parameters τk by minimization of the constant cp(q) in the

estimate of the L2-error was realized in [9] for RTP-approximations. For interpolations this

idea was realized in [11] only for p = 1. Method described there was not allowing to get

parameters for other values of p while estimate of Theorem 6 is giving such possibility. Thus,

we determine parameters τk from the condition

cp(q)→ minimum. (12)

Tables 3 and 4 show the values of τk that solve the problem (12) for p = 1 and p = 2,

respectively.

q 1 2 3 4 5

τ1 1.8081 2.4581 3.7303 4.3705 5.7525

c1(q) 0.015 0.0022 0.00070 0.000084 0.000038

c(q)/c1(q) 5.5 8.8 7.9 18.1 11.8

Table 3: Numerical values of τ1, c1(q) for the L2-minimal RTP-interpolation.

As it was expected the L2-minimal RTP-interpolation is more accurate not only compared

to the KL-interpolation but also compared to the RTP-interpolation by the roots of the

associated Laguerre polynomials. For example, when p = 2 and q = 5 the L2-minimal

RTP-interpolation is 105 times more accurate (asymptotically) in the L2-norm than the KL-

interpolation while RTP-interpolation by the roots of the Laguerre polynomial is only 36

times more accurate.
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q 1 2 3 4 5

τ1 0.7737 1.3199 2.2877 2.6571 3.7031

τ2 3.8711 4.5984 6.5213 6.9081 8.7884

c2(q) 0.0051 0.00041 0.000096 0.000015 4.2 · 10−6

c(q)/c2(q) 16.6 46.0 57.5 102.8 104.6

Table 4: Numerical values of τ1, τ2 and c2(q) for the L2-minimal RTP-interpolation.

Figures 5 and 6 show the behavior of the L2-minimal RTP-interpolation |rpN,q(f ;x)| on

the interval [−0.7, 0.7] (left figures) and at the point x = 1 (right figures) for p = 2, N = 2048

and q = 3 and q = 4, respectively.
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Figure 5: Graphs of |rp2048,q(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) when

function (3) is interpolated by the L2-minimal interpolation with p = 2 and q = 3.

Comparison with Figures 3 and 4 shows that the L2-minimal interpolation is more precise

on the entire interval by the L2 and uniform norms (compare also (13) with (11)) but less

accurate in the regions away from the endpoints.

However, while applying the L2-minimal interpolation we have serious limitation - optimal

values can be calculated only for limited values of p and q as minimization of cp(q) is not an

easy problem while calculation of the roots of the Laguerre polynomials can be performed

actually for rather large values of p and q with actually any required precision.

We have the following L2-errors for the L2-minimal interpolations

‖r22048,3(f)‖L2 = 3.6 · 10−16, ‖r22048,3(f)‖L2 = 1.7 · 10−20. (13)

3.2 Pointwise minimal RTP-interpolations

In this subsection we investigate determination of parameters τk that leads to RTP-interpola-

tions with more accuracy in the regions away from the endpoints than RTP-interpolations

introduced above. The resultant RTP-interpolation we call as pointwise (P-) minimal RTP-

interpolation.
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Figure 6: Graphs of |rp2048,q(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) when

function (3) is interpolated by the L2-minimal interpolation with p = 2 and q = 4.

Let us consider the error of the RTP-interpolation given by (5). We derive by sequential

applications of the Abel transformations the following expansion of the error when |x| < 1

rpN,q(f ;x) =
e−iπNx − eiπ(N+1)x∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

p−1∑
w=0

δwN(δpn(θ, F̌n))

(1 + eiπx)w+1(1 + e−iπx)w+1

+
eiπNx − e−iπ(N+1)x∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

p−1∑
w=0

δw−N(δpn(θ, F̌n))

(1 + eiπx)w+1(1 + e−iπx)w+1

+
1

(2 + 2 cosπx)p
∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

∞∑
|n|=N+1

δpn(δpn(θ, Fn))eiπnx

+
1

(2 + 2 cosπx)p
∏p

s=1(1 + θ−seiπx)(1 + θse−iπx)

N∑
n=−N

δpn(δpn(θ, Fn − F̌n))eiπnx.

From here it turns out that for better accuracy in the regions away from the endpoints

x = ±1 parameters τk must be determined from the conditions

δwN(δpn(θ, F̌n)) = δw−N(δpn(θ, F̌n)) = 0, w = 0, . . . , p− 1

and taking into account the asymptotic expansions for δw±N(δpn(θ, B̌n(m))) in Lemmas 3 and

4 we get the following system of equations for determination of γk and hence from (6) for

determination of τk

ψq+w,p = 0, w = 0, . . . , p− 1 (14)

for even values of q, and

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)(2w + 2p− k − s+m+ 1)!
∞∑

r=−∞

(−1)rr

(2r + 1)2w+2p−k−s+m+2
= 0,

w = 0, . . . , p− 1

for odd q. The latest is equivalent to the following system of equations

ψq+w+1,p = 0, w = 0, . . . , p− 1. (15)
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Now, estimates of Theorems 4 and 5 imply.

Theorem 7. Let q ≥ 2 be even and f ∈ Cq+2p+1[−1, 1] with f (q+2p+1) ∈ AC[−1, 1] for some

p ≥ 1. Let parameters θk be chosen as in (1) where coefficients γk(τ) in (6) satisfy the

system (14). Then the following estimate holds for |x| < 1

rpN,q(f ;x) = o(N−2p−q−1), N →∞.

Theorem 8. Let q ≥ 1 be odd and f ∈ Cq+2p+2[−1, 1] with f (q+2p+2) ∈ AC[−1, 1] for some

p ≥ 1. Let parameters θk be chosen as in (1) where coefficients γk(τ) in (6) satisfy the

system (15). Then the following estimate holds for |x| < 1

rpN,q(f ;x) = o(N−2p−q−2), N →∞.

Tables 5 and 6 displays the values of τk calculated from systems (14) and (15) together

with the values cp(q) and c(q)/cp(q). Table 5 shows the values for p = 1 and Table 6 the

values for p = 2. Similarly other values of p can be investigated. Comparison with the above

similar tables for other RTP-interpolations shows that P-minimal RTP-interpolation has the

worst accuracy in the L2-norm.

q 1 2 3 4 5

τ1 3.5124 3.5124 5.4866 5.4866 7.4848

c1(q) 0.059 0.0044 0.0027 0.00024 0.000016

c(q)/c1(q) 1.4 4.3 2.1 6.3 2.8

Table 5: Numerical values of τ1, c1(q) and c(q)/c1(q) for the P-minimal RTP-interpolation.

q 1 2 3 4 5

τ1 2.8699 2.8699 4.4990 4.4990 6.1829

τ2 8.1108 8.1108 10.4512 10.4512 12.7675

c2(q) 0.050 0.0030 0.0019 0.00012 0.000093

c(q)/c2(q) 1.67 6.2 2.9 12.3 4.8

Table 6: Numerical values of τ1, τ2, c2(q) and c(q)/c2(q) for the P-minimal RTP-interpolation.

Figures 7 and 8 show the behavior of the P-minimal RTP-interpolation |rpN,q(f ;x)| on the

interval [−0.7, 0.7] (left figures) and at the point x = 1 (right figures) for p = 2, N = 2048

and q = 3 and q = 4, respectively. Comparison with the figures presented above shows the

worst L2 and uniform accuracy on the entire interval but the best pointwise accuracy in the

regions away from the endpoints (compare also (16) with the above norms of the L2-errors).

We have the following L2-errors for the P-minimal interpolations

‖r22048,3(f)‖L2 = 6.9 · 10−15, ‖r22048,3(f)‖L2 = 1.4 · 10−19. (16)
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Figure 7: Graphs of |rp2048,q(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for function

(3) when parameters τk are determined from (15) with p = 2 and q = 3.
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Figure 8: Graphs of |rp2048,q(f ;x)| on the interval [−0.7, 0.7] (left) and at the point x = 1 (right) for function

(3) when parameters τk are determined from (14) with p = 2 and q = 4.

Appendix

Here we present some lemmas concerning the properties of the generalized finite differences.

Lemma 1. [13] The following estimate holds for p > 0 and m ≥ 0

δpn(θ, Bn(m)) =
(−1)n+p+1

2(iπn)m+1n2pm!

p∑
s=0

(−1)s
γs(τ)

N sn−s

p∑
k=0

γk(τ)

Nkn−k

× (2p− k − s+m)! +
1

N2p
O(n−m−2), |n| ≥ N + 1, N →∞.

Lemma 2. [13] The following estimate holds for p > 0 and m ≥ 0

δpn(θ, B̌n(m) − Bn(m)) =
(−1)n+p+1

2(iπN)m+1N2pm!

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)

× (2p− k − s+m)!
∑
r 6=0

(−1)r(
2r + n

N

)2p−k−s+m+1

+ O(N−2p−m−2), N →∞, |n| ≤ N.
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Lemma 3. [13] Let m be even. Then the following estimate holds for p, w,m ≥ 0 as N →∞,

where θk are chosen as in (1)

δw±N(δpn(θ, B̌n(m))) =
(−1)N+p+w+1

2(iπN)m+1N2w+2pm!

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)

× (2w + 2p− k − s+m)!
∞∑

r=−∞

(−1)r

(2r ± 1)2w+2p−k−s+m+1

+ O(N−2w−2p−m−2).

Lemma 4. [13] Let m be odd. Then the following estimate holds for p, w ≥ 0 and m ≥ 1 as

N →∞, where θk are chosen as in (1)

δw±N(δpn(θ, B̌n(m))) =
(−1)N+p+w

2(iπN)m+1N2w+2p+1m!

p∑
s=0

(−1)sγs(τ)

p∑
k=0

γk(τ)

× (2w + 2p− k − s+m+ 1)!
∞∑

r=−∞

(−1)rr

(2r ± 1)2w+2p−k−s+m+2

+ O(N−2w−2p−m−3).
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