ARMENIAN JOURNAL OF MATHEMATICS Volume 15, Number 9, 2023, 1–6 https://doi.org/10.52737/18291163-2023.15.9-1-6

Generalized Rational Evaluation Subgroups of the Inclusion between Complex Projective Spaces

J.-B. Gatsinzi

Abstract. We use a model of mapping spaces to compute the generalized rational Gottlieb groups of the inclusion $i_{n,k}$: $\mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n+k}$ between complex projective spaces.

Key Words: Mapping Space, L_{∞} Algebra, Gottlieb Groups Mathematics Subject Classification 2020: 55P62, 54C35

Introduction

One of the main problems in Topology is the classification of topological spaces up to homotopy. A more tractable approach is to forget torsion in the homotopy groups. Such an approach has underlying theories which lead to algebraic models of nilpotent spaces, namely, Sullivan and Quillen theories [13,14]. Our interest is the determination of the rational homotopy type of mapping spaces between topological spaces. In this paper, we will study the connected component of the inclusion $i_{n,k} : \mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n+k}$ between complex projective spaces. We will use Sullivan models and L_{∞} models, which we briefly recall and for which details can be found in [4,7].

We assume that all vector spaces are over the field \mathbb{Q} of rational numbers. The dual of a graded vector space V will be denoted by $V^{\#}$. Let $A = \bigoplus_{n \ge 0} A^n$ be a graded algebra. The degree of a homogeneous element $a \in A^n$ will be denoted by |a|. A graded algebra is called commutative if $ab = (-1)^{|a||b|}ba$, where a and b are homogeneous. A differential graded algebra is a graded algebra $A = \bigoplus_{\ge 0} A^n$ together with an algebra differential $d : A^n \to A^{n+1}$ such that $d^2 = 0$. We call (A, d) a cochain algebra. Let $V = \bigoplus_{\ge 1} V^n$ be a graded vector space. A Sullivan algebra $(\wedge V, d)$ is the free graded commutative algebra generated by V together with a filtration $V(0) \subset V(1) \subset \cdots \subset V$ such that $dV(i) \subset \wedge V(i-1)$. It is called minimal if $dV \subset \wedge^{\ge 2}V$. If (A, d) is a commutative differential graded algebra which is simply connected, that is, J.-B. GATSINZI

 $H^0(A, d) = \mathbb{Q}$ and $H^1(A, d) = 0$, then there exists a minimal Sullivan algebra $(\wedge V, d)$ together with a quasi-isomorphism $(\wedge V, d) \to (A, d)$. It is called the minimal Sullivan model of (A, d) and it is unique up to isomorphism [7, §12].

The minimal Sullivan model $(\wedge V, d)$ of a simply connected space X is the minimal Sullivan model of the commutative differential graded algebra of piecewise linear forms $A_{PL}(X)$ on X [14]. Moreover, if X is of finite type, that is, $H^i(X, \mathbb{Q})$ is a finite-dimensional vector space, then $V^n \cong$ $\operatorname{Hom}_{\mathbb{Z}}(\pi_n(X), \mathbb{Q})$ [7, Theorem 15.11].

Let $f: X \to Y$ be a map between simply connected CW-complexes of finite type. We denote by $\operatorname{map}(X, Y; f)$ the set of continuous mappings from X to Y which are freely homotopic to f. Sullivan's model of $\operatorname{map}(X, Y; f)$ was first given by Haefliger [10], and more recently L_{∞} models were developed in [2–5].

We denote by $\mathbb{C}P^n$ the complex projective space which is the smooth manifold of lines in \mathbb{C}^{n+1} . Its minimal Sullivan model is given by $(\wedge(x_2, x_{2n+1}), d)$, where subscripts indicate the degrees with $dx_2 = 0$ and $dx_{2n+1} = x_2^{n+1}$. Moreover, the projection

$$(\wedge(x_2, x_{2n+1}), d) \to \wedge((x_2)/(x_2^{n+1}), 0)$$

is a quasi-isomorphism.

Consider the natural inclusion $i_{n,k} : \mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n+k}$ between complex projective spaces. An L_{∞} model of $\operatorname{map}(\mathbb{C}P^n, \mathbb{C}P^{n+k}; i_{n,k})$ was described in [8], from which the following is derived.

Theorem 1 ([8], Theorem 11) The mapping space $\operatorname{map}(\mathbb{C}P^n, \mathbb{C}P^{n+k}; i_{n,k})$ has the rational homotopy type of $\mathbb{C}P^k \times S^{2k+3} \times \cdots \times S^{2(n+k)+1}$.

For k = 0, the theorem agrees with [14, §11] where a model of $B \operatorname{aut}_1 \mathbb{C}P^n$ is computed. Here $\operatorname{aut}_1 X$ denotes $\operatorname{map}(X, X, 1_X)$, the monoid of self homotopy equivalences of X.

1 Generalized evaluation subgroups of the inclusion $\mathbb{C}P^n \to \mathbb{C}P^{n+k}$

Let $\phi : (A, d) \to (B, d)$ be a map of cochain algebras. A ϕ -derivation of degree k is a linear mapping $\theta : A^* \to B^{*-k}$ such that $\theta(ab) = \theta(a)\phi(b) + (-1)^{k|a|}\phi(a)\theta(b)$. We denote by $\operatorname{Der}_k(A, B; \phi)$ the vector space of all derivations of degree k. There is a differential

$$D : \operatorname{Der}_k(A, B; \phi) \to \operatorname{Der}_{k-1}(A, B; \phi)$$

defined by $D\theta = d\theta - (-1)^k \theta d$. Define $\text{Der}(A, B; \phi) = \bigoplus_{k \ge 1} \text{Der}_k(A, B; \phi)$, where in degree 1, we restrict to those derivations which are cycles. Hence, $(\text{Der}(A, B; \phi), D)$ is a chain complex. Moreover, if $A = (\wedge V, d)$ and (B, d) are commutative differential graded algebras where A is a Sullivan algebra, then $s^{-1}(\text{Der}(A, B; \phi), D)$ has an L_{∞} structure [4,5].

Let $\phi : (\wedge V, d) \to (B, d)$ be a morphism between commutative differential graded algebras. For $v \in V$ and $b \in B$, we denote by (v, b) the unique ϕ derivation θ such that $\theta(v) = b$ and θ vanishes on the remaining generators of $\wedge V$. Let $f : X \to Y$ be a map between pointed CW-complexes of finite type and ev : map $(X, Y; f) \to Y$ be the evaluation at the base point of X. The generalized evaluation subgroup $G_*(Y, X; f)$ of f is the image of $\pi_*(\text{ev}) : \pi_*(\text{map}(X, Y; f)) \to \pi_*(Y)$. If Y = X and f is the identity map, then one gets the usual Gottlieb group of X [9].

If Y has the homotopy type of a finite CW complex and $\phi : (\wedge V, d) \rightarrow (B, d)$ is a model of f, then $\pi_n(\max(X, Y; f)) \otimes \mathbb{Q} \cong H_n(\operatorname{Der}(\wedge V, B; \phi), D)$ [6]. Moreover, $s^{-1}(\operatorname{Der}(\wedge V, B; \phi), D)$ is an L_{∞} model of the universal cover of $\max(X, Y; f)$ [3–5].

In [1], Block and Lazarev showed that the chain complex $\text{Der}(\wedge V, B; \phi)$ computes the André-Quillen cohomology $H^*_{AQ}(A; B)$ whenever there is a quasi-isomorphism $(\wedge V, d) \to (A, d)$. Therefore, if $\varphi : (B, d) \to (B, d')$ is a quasi-isomorphism, so is the induced map

$$\varphi_* : (\operatorname{Der}(\wedge V, B; \phi), D) \to (\operatorname{Der}(\wedge V, B'; \varphi \circ \phi), D)$$

obtained by post composition with φ .

If $\rho : Y \to Y_{\mathbb{Q}}$ is the rationalization of Y, then $G_*(Y_{\mathbb{Q}}, X; \rho \circ f)$ can be computed using Sullivan models. Let $\phi : (\wedge V, d) \to (B, d)$ be the minimal Sullivan model of f. The post composition with the augmentation $\epsilon : (B, d) \to (\mathbb{Q}, 0)$ yields a map of chain complexes

$$\epsilon_* : (\operatorname{Der}(\wedge V, B; \phi), D) \to (\operatorname{Der}(\wedge V, \mathbb{Q}; \epsilon \circ \phi), 0) = (V^{\#}, 0)$$

The generalized evaluation subgroups of $\rho \circ f$ are given by im $H_*(\epsilon_*)$ [11]. In short, given $v \in V^n$, its dual $v^{\#} \in V_n^{\#}$ represents a generalized Gottlieb element in $\pi_n(Y) \otimes \mathbb{Q}$ if there is a ϕ -derivation $\theta \in \text{Der}(\wedge V, B; \phi)$ such that $\theta(v) = 1$ and $D\theta = 0$. In this case, $H_n(\epsilon_*)([\theta]) = v^{\#}$.

We assume that $k \geq 1$. The inclusion $i_{n,k} : \mathbb{C}P^n \to \mathbb{C}P^{n+k}$ is modelled by

$$\phi: (\wedge(y_2, y_{2n+2k+1}), d) \to (\wedge(x_2, x_{2n+1}), d)$$

where $\phi(y_2) = x_2$ and $\phi(y_{2n+2k+1}) = x_2^k x_{2n+1}$. The quasi-isomorphism

$$\varphi: (\wedge(x_2, x_{2n+1}), d) \to (\wedge x_2/(x_2^{n+1}), 0) = B$$

induces a quasi-isomorphism

$$\varphi_* : \operatorname{Der}(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi) \to \operatorname{Der}(\wedge(y_2, y_{2n+2k+1}), B; \varphi \circ \phi).$$

Theorem 2 The generalized Gottlieb group $G_*(\land(y_2, y_{2n+2k+1}), B; \varphi \circ \phi)$ is isomorphic to $\langle y_2^{\#}, y_{2n+2k+1}^{\#} \rangle \cong \pi_*(\mathbb{C}P^{n+k}) \otimes \mathbb{Q}.$

Proof. Consider the derivations $\beta_2 = (y_2, 1)$ and $\beta_{2n+2k+1} = (y_{2n+2k+1}, 1)$ in $\text{Der}_*(\wedge(y_2, y_{2n+2k+1}), B; \varphi \circ \phi)$. The derivation $\beta_{2n+2k+1}$ cannot be a boundary for degree reasons. For $k \ge 2$, $\text{Der}_3(\wedge(y_2, y_{2n+2k+1}), B; \varphi \circ \phi) = 0$. Hence, β_2 cannot be a boundary. If k = 1, the vector space of derivations of degree 3 is spanned by $\beta_3 = (y_{2n+2k+1}, x_2^n)$, which is a cycle. Hence, β_2 cannot be a boundary. Therefore, β_2 and $\beta_{2n+2k+1}$ represent non-zero cohomology classes in $\text{Der}(\wedge(y_2, y_{2n+2k+1}), B; \psi)$. Moreover,

$$H_*(\epsilon_*)([\beta_2]) = y_2^{\#} \in \operatorname{Der}(\wedge(y_2, y_{2n+2k+1}), \mathbb{Q}) = V^{\#}.$$

In the same way, $H_*(\epsilon_*)([\beta_{2n+2k+1}]) = y_{2n+2k+1}^{\#}$. \Box

Corollary 1 The generalized Gottlieb group

 $G_*(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi)$

is isomorphic to $< y_2^{\#}, y_{2n+2k+1}^{\#} >$.

Proof. This is a consequence of the above theorem and the quasi-isomorphism

$$\varphi_* : \operatorname{Der}(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi) \to \operatorname{Der}(\wedge(y_2, y_{2n+2k+1}), B; \varphi \circ \phi).$$

However, we will give a separate proof. Consider derivations α_2 and $\alpha_{2n+2k+1}$ in $\operatorname{Der}_*(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi)$ defined by $\alpha_2(y_2) = 1$, $\alpha_2(y_{2n+2k+1}) = (n+k+1)x_2^{k-1}x_{2n+1}$ and $\alpha_{2n+2k+1} = (y_{2n+2k+1}, 1)$. A straightforward computation shows that α_2 and $\alpha_{2n+2k+1}$ are cycles. We show that they cannot be boundaries. The subspace of derivations of degree 3 is spanned by α_3 , where $\alpha_3(y_2) = 0$ and $\alpha_3(y_{2n+2k+1}) = x_2^{2n+2k-2}$. As $D\alpha_3 = 0$, then α_2 is not a boundary. Moreover,

$$Der_i(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi) = 0 \text{ for } i > 2n+2k+1$$

Hence, $\alpha_{2n+2k+1}$ cannot be a boundary as well. As $H_*(\epsilon_*)([\alpha_2]) = y_2^{\#}$ and $H_*(\epsilon_*)([\alpha_{2n+2k+1}]) = y_{2n+2k+1}^{\#}$, we conclude that

$$G_*(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi) = \langle y_2^{\#}, y_{2n+2k+1}^{\#} \rangle = \pi_*(\mathbb{C}P^{n+k}) \otimes \mathbb{Q}.$$

Remark 1 The above result corrects Theorem 2.2 in [12], where it is stated that $G_2(\wedge(y_2, y_{2n+2k+1}), \wedge(x_2, x_{2n+1}); \phi) = 0.$

References

- J. Block and A. Lazarev, André-Quillen cohomology and rational homotopy of function spaces. Adv. Math., 193 (2005), no. 1, pp. 18–39. https://doi.org/10.1016/j.aim.2004.04.014
- [2] E. Brown Jr. and R. Szczarba, On the rational homotopy of function spaces. Trans. Amer. Math. Soc., **349** (1997), no. 12, pp. 4931–4951. https://doi.org/10.1090/s0002-9947-97-01871-0
- U. Buijs, Y. Félix and A. Murillo, Lie models for the components of sections of a nilpotent fibration. Trans. Amer. Math. Soc., 361 (2009), no. 10, pp.5601–5614. https://doi.org/10.1090/s0002-9947-09-04870-3
- [4] U. Buijs, Y. Félix and A. Murillo, L_{∞} models of based mapping spaces. J. Math. Soc. Japan, **63** (2011), no. 2, pp. 503–524. https://doi.org/10.2969/jmsj/06320503
- [5] U. Buijs, Y. Félix and A. Murillo, L_{∞} rational homotopy of mapping spaces. Rev. Mat. Complut., **26** (2013), no. 2, pp.573–588. https://doi.org/10.1007/s13163-012-0105-z
- [6] U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces. Comment. Math. Helv., 83 (2008), no. 4, pp. 723–739. https://doi.org/10.4171/cmh/141
- Y. Félix, S. Halperin and J.-C. Thomas, *Rational Homotopy Theory*. Graduate Texts in Mathematics, 205. Springer-Verlag, New-York, 2001. https://doi.org/10.1007/978-1-4613-0105-9
- [8] J.-B. Gatsinzi, Rational homotopy type of mapping spaces between complex projective spaces and their evaluation subgroups. Commun. Korean Math. Soc., 37 (2022), pp. 259–267.
- [9] D.H. Gottlieb, Evaluation subgroups of homotopy groups. Amer. J. of Math., 91 (1969), pp. 729–756.
- [10] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle. Trans. Amer. Math. Soc., 273 (1982), no. 2, pp. 609–620. https://doi.org/10.1090/s0002-9947-1982-0667163-8
- [11] G. Lupton and S.B. Smith, Rationalized evaluation subgroups of a map I: Sullivan models, derivations and G-sequences.
 J. Pure Appl. Algebra, **209** (2007), no. 1, pp. 159–171. https://doi.org/10.1016/j.jpaa.2006.05.018

- [12] O. Maphane, Evaluation subgroups of a map and the rationalized G-sequence. Armen. J. Math., **14** (2022), no. 2, pp. 1–10. https://doi.org/10.52737/18291163-2022.14.2-1-10
- [13] D. Quillen, Homotopical algebra. Lecture Notes in Mathematics, 43, Springer-Verlag, Berlin, 1967.
- [14] D. Sullivan, Infinitesimal computations in topology. Publ. I.H.E.S., 47 (1977), pp. 269–331.

Jean-Baptiste Gatsinzi Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16 Palapye, Botswana gatsinzij@biust.ac.bw

Please, cite to this paper as published in

Armen. J. Math., V. **15**, N. 9(2023), pp. 1–6 https://doi.org/10.52737/18291163-2023.15.9-1-6