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Introduction

One of the main problems in Topology is the classification of topological
spaces up to homotopy. A more tractable approach is to forget torsion in
the homotopy groups. Such an approach has underlying theories which lead
to algebraic models of nilpotent spaces, namely, Sullivan and Quillen theo-
ries [13,14]. Our interest is the determination of the rational homotopy type
of mapping spaces between topological spaces. In this paper, we will study
the connected component of the inclusion in,k : CP n ↪→ CP n+k between
complex projective spaces. We will use Sullivan models and L∞ models,
which we briefly recall and for which details can be found in [4, 7].

We assume that all vector spaces are over the field Q of rational numbers.
The dual of a graded vector space V will be denoted by V #. Let A = ⊕n≥0A

n

be a graded algebra. The degree of a homogeneous element a ∈ An will be
denoted by |a|. A graded algebra is called commutative if ab = (−1)|a||b|ba,
where a and b are homogeneous. A differential graded algebra is a graded
algebra A = ⊕≥0An together with an algebra differential d : An → An+1 such
that d2 = 0. We call (A, d) a cochain algebra. Let V = ⊕≥1V n be a graded
vector space. A Sullivan algebra (∧V, d) is the free graded commutative
algebra generated by V together with a filtration V (0) ⊂ V (1) ⊂ · · · ⊂ V
such that dV (i) ⊂ ∧V (i− 1). It is called minimal if dV ⊂ ∧≥2V . If (A, d) is
a commutative differential graded algebra which is simply connected, that is,
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H0(A, d) = Q and H1(A, d) = 0, then there exists a minimal Sullivan algebra
(∧V, d) together with a quasi-isomorphism (∧V, d)→ (A, d). It is called the
minimal Sullivan model of (A, d) and it is unique up to isomorphism [7, §12].

The minimal Sullivan model (∧V, d) of a simply connected space X is
the minimal Sullivan model of the commutative differential graded algebra
of piecewise linear forms APL(X) on X [14]. Moreover, if X is of finite
type, that is, H i(X,Q) is a finite-dimensional vector space, then V n ∼=
HomZ(πn(X),Q) [7, Theorem 15.11].

Let f : X → Y be a map between simply connected CW-complexes of
finite type. We denote by map(X, Y ; f) the set of continuous mappings from
X to Y which are freely homotopic to f . Sullivan’s model of map(X, Y ; f)
was first given by Haefliger [10], and more recently L∞ models were devel-
oped in [2–5].

We denote by CP n the complex projective space which is the smooth
manifold of lines in Cn+1. Its minimal Sullivan model is given by
(∧(x2, x2n+1), d), where subscripts indicate the degrees with dx2 = 0 and
dx2n+1 = xn+1

2 . Moreover, the projection

(∧(x2, x2n+1), d)→ ∧((x2)/(x
n+1
2 ), 0)

is a quasi-isomorphism.
Consider the natural inclusion in,k : CP n ↪→ CP n+k between complex

projective spaces. An L∞ model of map(CP n,CP n+k; in,k) was described
in [8], from which the following is derived.

Theorem 1 ( [8], Theorem 11) The mapping space map(CP n,CP n+k; in,k)
has the rational homotopy type of CP k × S2k+3 × · · · × S2(n+k)+1.

For k = 0, the theorem agrees with [14, §11] where a model of B aut1CP n

is computed. Here aut1X denotes map(X,X, 1X), the monoid of self homo-
topy equivalences of X.

1 Generalized evaluation subgroups of the

inclusion CP n → CP n+k

Let φ : (A, d) → (B, d) be a map of cochain algebras. A φ-derivation of
degree k is a linear mapping θ : A∗ → B∗−k such that θ(ab) = θ(a)φ(b) +
(−1)k|a|φ(a)θ(b). We denote by Derk(A,B;φ) the vector space of all deriva-
tions of degree k. There is a differential

D : Derk(A,B;φ)→ Derk−1(A,B;φ)

defined by Dθ = dθ − (−1)kθd. Define Der(A,B;φ) = ⊕k≥1 Derk(A,B;φ),
where in degree 1, we restrict to those derivations which are cycles. Hence,
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(Der(A,B;φ), D) is a chain complex. Moreover, if A = (∧V, d) and (B, d)
are commutative differential graded algebras where A is a Sullivan algebra,
then s−1(Der(A,B;φ), D) has an L∞ structure [4, 5].

Let φ : (∧V, d)→ (B, d) be a morphism between commutative differential
graded algebras. For v ∈ V and b ∈ B, we denote by (v, b) the unique φ-
derivation θ such that θ(v) = b and θ vanishes on the remaining generators
of ∧V . Let f : X → Y be a map between pointed CW-complexes of finite
type and ev : map(X, Y ; f) → Y be the evaluation at the base point of
X. The generalized evaluation subgroup G∗(Y,X; f) of f is the image of
π∗(ev) : π∗(map(X, Y ; f)) → π∗(Y ). If Y = X and f is the identity map,
then one gets the usual Gottlieb group of X [9].

If Y has the homotopy type of a finite CW complex and φ : (∧V, d) →
(B, d) is a model of f , then πn(map(X, Y ; f))⊗Q ∼= Hn(Der(∧V,B;φ), D) [6].
Moreover, s−1(Der(∧V,B;φ), D) is an L∞ model of the universal cover of
map(X, Y ; f) [3–5].

In [1], Block and Lazarev showed that the chain complex Der(∧V,B;φ)
computes the André-Quillen cohomology H∗AQ(A;B) whenever there is a
quasi-isomorphism (∧V, d) → (A, d). Therefore, if ϕ : (B, d) → (B, d′) is a
quasi-isomorphism, so is the induced map

ϕ∗ : (Der(∧V,B;φ), D)→ (Der(∧V,B′;ϕ ◦ φ), D)

obtained by post composition with ϕ.
If ρ : Y → YQ is the rationalization of Y , then G∗(YQ, X; ρ ◦ f) can

be computed using Sullivan models. Let φ : (∧V, d) → (B, d) be the min-
imal Sullivan model of f . The post composition with the augmentation
ε : (B, d)→ (Q, 0) yields a map of chain complexes

ε∗ : (Der(∧V,B;φ), D)→ (Der(∧V,Q; ε ◦ φ), 0) = (V #, 0).

The generalized evaluation subgroups of ρ ◦ f are given by imH∗(ε∗) [11].
In short, given v ∈ V n, its dual v# ∈ V #

n represents a generalized Gottlieb
element in πn(Y )⊗Q if there is a φ-derivation θ ∈ Der(∧V,B;φ) such that
θ(v) = 1 and Dθ = 0. In this case, Hn(ε∗)([θ]) = v#.

We assume that k ≥ 1. The inclusion in,k : CP n → CP n+k is modelled
by

φ : (∧(y2, y2n+2k+1), d)→ (∧(x2, x2n+1), d)

where φ(y2) = x2 and φ(y2n+2k+1) = xk2x2n+1. The quasi-isomorphism

ϕ : (∧(x2, x2n+1), d)→ (∧x2/(xn+1
2 ), 0) = B

induces a quasi-isomorphism

ϕ∗ : Der(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ)→ Der(∧(y2, y2n+2k+1), B;ϕ ◦ φ).
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Theorem 2 The generalized Gottlieb group G∗(∧(y2, y2n+2k+1), B;ϕ ◦ φ) is
isomorphic to < y#2 , y

#
2n+2k+1 >

∼= π∗(CP n+k)⊗Q.

Proof. Consider the derivations β2 = (y2, 1) and β2n+2k+1 = (y2n+2k+1, 1) in
Der∗(∧(y2, y2n+2k+1), B;ϕ ◦ φ). The derivation β2n+2k+1 cannot be a bound-
ary for degree reasons. For k ≥ 2, Der3(∧(y2, y2n+2k+1), B;ϕ◦φ) = 0. Hence,
β2 cannot be a boundary. If k = 1, the vector space of derivations of degree
3 is spanned by β3 = (y2n+2k+1, x

n
2 ), which is a cycle. Hence, β2 cannot

be a boundary. Therefore, β2 and β2n+2k+1 represent non-zero cohomology
classes in Der(∧(y2, y2n+2k+1), B;ψ). Moreover,

H∗(ε∗)([β2]) = y#2 ∈ Der(∧(y2, y2n+2k+1),Q) = V #.

In the same way, H∗(ε∗)([β2n+2k+1]) = y#2n+2k+1. �

Corollary 1 The generalized Gottlieb group

G∗(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ)

is isomorphic to < y#2 , y
#
2n+2k+1 >.

Proof. This is a consequence of the above theorem and the quasi-isomor-
phism

ϕ∗ : Der(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ)→ Der(∧(y2, y2n+2k+1), B;ϕ ◦ φ).

However, we will give a separate proof. Consider derivations α2 and α2n+2k+1

in Der∗(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ) defined by α2(y2) = 1, α2(y2n+2k+1) =
(n + k + 1)xk−12 x2n+1 and α2n+2k+1 = (y2n+2k+1, 1). A straightforward com-
putation shows that α2 and α2n+2k+1 are cycles. We show that they cannot
be boundaries. The subspace of derivations of degree 3 is spanned by α3,
where α3(y2) = 0 and α3(y2n+2k+1) = x2n+2k−2

2 . As Dα3 = 0, then α2 is not
a boundary. Moreover,

Deri(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ) = 0 for i > 2n+ 2k + 1.

Hence, α2n+2k+1 cannot be a boundary as well. As H∗(ε∗)([α2]) = y#2 and
H∗(ε∗)([α2n+2k+1]) = y#2n+2k+1, we conclude that

G∗(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ) =< y#2 , y
#
2n+2k+1 >= π∗(CP n+k)⊗Q.

�

Remark 1 The above result corrects Theorem 2.2 in [12], where it is stated
that G2(∧(y2, y2n+2k+1),∧(x2, x2n+1);φ) = 0.
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