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Abstract

In current work we discuss the issue of the analytic continuation of a power series along

a logarithmic spiral outside of the convergence disc. A necessary and sufficient condition in

terms of the interpolating entire function is obtained. Moreover, the relation in between the

possibility of analytic continuation and the density of the lacunas of a power series is studied.
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1 Introduction

In the theory of analytic continuation of analytic functions the notion of an analytic element

(shortly: element or power series, series) plays a central role. An analytic element with a

center a ∈ C is the power series

f(z) =
∞∑
n=0

fn(z − a)n, (1)

which converges in some open disc Dr(a) = {w ∈ C | |w − a| < r} which is called the

convergence disc. An analytic element with center a =∞ is a series of the form (1), where

the term (z − a) is replaced by a term z−1. An element with center z = ∞ converges
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in a complement of some closed disc i.e. Dr(∞) = C \ Dr(0). Denote by Ha the set of

elements with center a ∈ C. An element is called normalized if it has a center 0 and radius

of convergence equal to 1, i.e. an element of the form

f(z) =
∞∑
n=0

fnz
n, lim sup

n→∞
|fn|1/n = 1. (2)

An element (f1, D1) (i.e. an element f1, which has a convergence disc D1) is called analytic

continuation of the element (f0, D0) if D0 ∩D1 6= ∅ and f0 = f1 on the intersection D0 ∩D1.

If so, we write (f0, D0) ∼ (f1, D1). If we have a sequence of analytic elements ( an analytic

chain)

(f0, D0) ∼ (f1, D1) ∼ · · · ∼ (fn, Dn), (3)

then (fn, Dn) is called analytic continuation of the element (f0, D0) along a chain. Some of

the important issues of theory of analytic continuations are the following:

• Find a criterion for an element f ∈ Ha, which ensures that f can be analytically

continued to a domain Ω ⊂ C, which contains a. Or more generally, characterize the

analyticity domain of the element f .

• Recover the analytic continuation of the element f ∈ Ha in the domain Ω ⊂ C, already

knowing that the continuation exists.

• Localize the singularities of the element f ∈ Ha on the boundary of the convergence

disc and outside of it.

These problems can be considered as subparts of a more global one: characterize global

properties of a complete analytic function using only its local data.

Let us mention some classical results in this direction, which can be found in books by

Dienes [6] and Tsuji [8].

1. L. Kronecker’s criterion for the element (1) to be a rational function.

2. J. Hadamard’s criterion for the element (2) to be a meromorphic function.

3. G. Eisenstein obtained a necessary condition on the coefficients of the element (1)

for f being an algebraic function.

4. I. Schur’s theorem on boundedness of the element (2) on the unit disc.

5. L. de Branges’ proof of the Bieberbach conjecture, which is a necessary condition for

the element (2) to be a one-to-one map on the unit disc.

In current work we consider the possibility of analytic continuation of a normalized power

series along a segment γρ, ρ > 1 (see (9)) of an logarithmic α-spiral outside of the convergence
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domain. We obtain a criterion that is a generalization of a result by N. Arakelian [3], where

he considers the case α = 0, i.e. when analytic element (2) is continued along a segment

(−ρ,−1].

We also discuss the localization of the singularities of an element of a form (2). More

precisely: is it possible to find the first singularity of the element (2) along an α-spiral in

terms of its coefficients? In other words we inquire if it is possible to find the biggest ρ > 1

in terms of {fn} such that the series (2) continue analytically along γρ.

We give a partial answer to this question by showing that one of the classical tools

to characterize the singularities of an analytic element: the density of the zero set of its

coefficients (or so called lacunas), do not give an answer in this case. To do this, we fix any

density 0 ≤ ∆ < 1 and any number ρ > 1 and construct an element (2) that has lacunas of

density ∆ and continues analytically along γρ.

At the end we discuss the balance in between the growth of an entire function at the

infinity and the density of its natural zeros (zeros that are natural numbers).

More precisely, in Theorem 1 we obtain that an analytic element (2) has an analytic

continuation along γρ, ρ > 1 if and only if there exists an entire function ϕ that interpolates

the coefficients of (2) and satisfies the growth conditions (11), (12). Hence, natural zeros of

ϕ are the lacunas of the element (2). Motivated by this, we discuss the density of natural

zeros of an entire function that has the growth (11), (12) and prove that such a function

cannot have zeros of density 1.

This can be seen as a complementary statement to the one asserting existence of elements

with any given density 0 ≤ ∆ < 1, which can be continued analytically along γρ for some

ρ > 1.

In what follows we introduce the notation used in the work.

N0 = N ∪ {0},

R = R ∪ {−∞,∞}, C = C ∪ {∞},

R+ = {x ∈ R | x ≥ 0}, R− = {x ∈ R : x ≤ 0}.

For a domain Ω ∈ C the set H(Ω) is the set of holomorphic functions on Ω. For a set E ⊂ C
denote by

E0 the interior, E the closure and by ∂E the boundary of E,

E∗ = {z | z ∈ E} the conjugate set of E,

E−1 = {z−1 | z ∈ E}, if 0∈E.

For E1, E2 ⊂ C and z ∈ C

E1 + E2 = {ζ1 + ζ2 | ζ1 ∈ E1, ζ2 ∈ E2},
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E1E2 = {ζ1ζ2 | ζ1 ∈ E1, ζ2 ∈ E2},

E + z = E + {z}, zE = {z}E.

Furthermore,

∆(α, β) = {reiθ | r ≥ 0, θ ∈ [α, β]} - angular sector,

Π = ∆(−π
2
, π

2
) = R+ × R - right halfplane

Πα = eiαΠ, α ∈ R - closed halfplane.

Moreover,

1. For a set E ⊂ C define its support function

KE(t) = sup
ζ∈E
{R(ζe−it)}, t ∈ R. (4)

2. Let ∆ ⊂ C be an angular sector. Then for a function ϕ ∈ H(∆) define its exponential

type as

σϕ = lim sup
z→∞

log |ϕ(z)|
|z|

. (5)

3. For a function ϕ ∈ H(∆) its inner exponential type is the number

σϕ,∆ = sup
Λ⊂∆0∪{0}

σ(Λ). (6)

If σϕ,∆ <∞ we write ϕ ∈ B(∆).

For a sector ∆ = ∆(α, β) the function

hϕ(θ) = lim sup
r→∞

log |ϕ(reiθ)|
r

, θ ∈ (α, β), (7)

is called the indicator function of ϕ. The set

Iϕ =
⋃

θ∈(α,β)

{ζ ∈ C | R(ζe−iθ) ≤ hϕ(θ)} (8)

is called the indicator diagram of ϕ.

2 Analytic continuation criterion

Here we state and prove a criterion for an element of a form (2) to be analytically continued

along a logarithmic α-spiral.

For α ∈ R let Lα = {0} ∪ {t1+iα = exp(iα log t)| t ∈ (0,∞)} be the logarithmic α-spiral.

For any a ∈ C the set aLα is a α-spiral passing through the point a.
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Consider a normalized element (2) and a ”segment”

γρ = {−t1+iα = exp(iα log t+ iπ) | t ∈ [1, ρ)}, ρ > 1, (9)

of a α-spiral passing through the point −1. Then, the following result holds:

Theorem 1. For the analytic element (2) to be continued along γρ, for some ρ > 1, it is

necessary and sufficient that there exists a function ϕ ∈ B(Π−β) such that

ϕ(n) = fn, ∀n ∈ N0, (10)

and

lim inf
θ→π/2−β

π cos β − hϕ(θ)

π/2− |θ + β|
≥ π sin β +

log ρ

cos β
, (11)

lim inf
θ→−π/2−β

π cos β − hϕ(θ)

π/2− |θ + β|
≥ −π sin β +

log ρ

cos β
, (12)

where β = arctanα.

To prove this theorem we need a general criterion on analytic continuation of an element.

A compact set E ⊂ C is called logarithmic convex (or log-convex ) if

E = exp(L) ∪ {0,∞}, (13)

for some L ⊂ C closed, convex set. If L is the smallest set with these properties, then

L = L(E) is called the logarithmic diagram of E.

Note that L(E) does not contain vertical segments of length greater than 2π and if 0 ∈ ∂E
or ∞ ∈ ∂E, then it does not contain vertical segments of length 2π.

The set L(E) is bounded if and only if 0,∞∈E. Also, note that for every m ∈ Z,

L(E) + 2πmi is also a logarithmic diagram for E. If 0 ∈ ∂E or ∞ ∈ ∂E, these are all

possible logarithmic diagrams of E.

Furthermore, if 0 ∈ E, then L(E) is unbounded to the left and there exists an angle

β ∈ (−π/2, π/2), such that L(E) contains parallel rays, which form an angle β with the

semiaxis (−∞, 0]. We call this angle the direction of the set L(E) and denote by β = β(E).

If ∞ ∈ E and 0∈E, then β(E) = β(E−1).

Now let us formulate the aforementioned general result on analytic continuation of a

power series.

Theorem 2 ([1]). Let E be a log-convex compact subset of C such that 0 ∈ E and the set

C \ E is connected. Furthermore, let L(E) be the logarithmic diagram of E and β be its

direction. Then the power series

∞∑
n=0

z−n−1fn, n ∈ N0 (14)
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converges in the neighborhood of the ∞ and defines a holomorphic function f ∈ H(C \E) if

and only if there exists a function ϕ ∈ H(C) of order ≤ 1 and of finite exponential type on

Π−β (on C, if 0 ∈ E0) such that

ϕ(n) = fn, ∀n ∈ N0. (15)

Additionally, Iϕ ⊂ L∗(E) or equivalently

hϕ(θ) ≤ KL(E)(−θ), |θ + β| < π

2
. (16)

Remark 1. a) In the sufficiency part of the Theorem 2 one can relax the conditions on

ϕ by just requiring ϕ ∈ B(Π−β) and that equations (10), (16) hold.

b) To reformulate Theorem 2 for the elements with center a = 0, assume that E is a

log-convex set in C \ {0} with connected complement. Then, to obtain necessary and

sufficient conditions for f to be holomorphic in C \ E, one needs to replace L(E) by

−L(E) = L(E−1) in the statement of the theorem, i.e.

Iϕ ⊂ −L∗(E). (17)

Now let us prove the Theorem 1.

Proof of the Theorem 1. Without loss of generality we can assume that α ≥ 0.

Necessity. Suppose that element (2) has an analytic continuation along γρ. This means

that f ∈ H(G), for some domain G ⊃ D1(0) ∪ γρ. Then, it is not difficult to see that there

exists a function ε : [1, ρ]→ R+ such that

a) ε ∈ C([1, ρ]),

b) ε is strictly decreasing on [1, ρ],

c) ε(t) > 0, t ∈ [1, ρ),

d) ε(ρ) = 0,

e) D1(0) ∪ {t exp i(α log t+ π + θ) ||θ| ≤ ε(t), t ∈ [1, ρ)} ⊂ G.

Now consider the function

γ(t) =
2

(ρ− 1)2

∫ ρ

t

ε(τ) log
τ

t
dτ, t ∈ [1, ρ]. (18)

Lemma 1. The function γ defined by the formula (18) has following properties

a) γ ∈ C2([1, ρ]),

b) 0 < γ(t) ≤ ε(t), t ∈ [1, ρ),
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c) γ(ρ) = γ′(ρ) = γ′′(ρ) = 0,

d) tγ′(t) is strictly increasing on the interval [1, ρ].

Proof of the Lemma 1. a) From (18) we have that

γ′(t) = − 2

t(ρ− 1)2

∫ ρ

t

ε(τ)dτ (19)

and

γ′′(t) =
2

t2(ρ− 1)2

∫ ρ

t

ε(τ)dτ +
2ε(t)

t(ρ− 1)2
, (20)

therefore, since ε ∈ C([1, ρ]) we deduce that γ ∈ C2([1, ρ]).

b) Note that the integrand in the equation (18) is positive, therefore γ(t) > 0. Now let

us show that γ(t) ≤ ε(t). The function ε is strictly decreasing, hence

γ(t) =
2

(ρ− 1)2

∫ ρ

t

ε(τ) log
τ

t
dτ ≤ 2ε(t)

(ρ− 1)2

∫ ρ

t

log
τ

t
dτ

≤ 2ε(t)

(ρ− 1)2

∫ ρ

t

(τ
t
− 1
)
dτ

=
2ε(t)

(ρ− 1)2

(ρ− t)2

2t

≤ 2ε(t)

(ρ− 1)2

(ρ− 1)2

2
= ε(t).

c) To prove this item just plug in t = ρ in the formulas obtained in the item a).

d) We have that

(tγ′(t))′ = γ′(t) + tγ′′(t) =
2ε(t)

(ρ− 1)2
> 0, t ∈ [1, ρ)

therefore, the function tγ′(t) is strictly increasing.

The lemma is proven.

Consider following set

E = C \ (D1(0) ∪ {t exp i(α log t+ π + θ) | |θ| < γ(t), t ∈ [1, ρ)}) . (21)

Note that E ⊂ C \ {0} is a compact set. Furthermore, by the Lemma 1 we have that

γ(t) ≤ ε(t), hence

C \ E = D1(0) ∪ {t exp i(α log t+ π + θ) | |θ| < γ(t), t ∈ [1, ρ)}
⊂ D1(0) ∪ {t exp i(α log t+ π + θ) | |θ| ≤ ε(t), t ∈ [1, ρ)}.

On the other hand

D1(0) ∪ {t exp i(α log t+ π + θ) | |θ| ≤ ε(t), t ∈ [1, ρ)} ⊂ G,
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thus C \ E ⊂ G, therefore f ∈ H(C \ E).

Let us now check that E is a log-convex set. Introduce a functionγ̃(t) = γ(et), t ∈ [0, log ρ],

γ̃(t) = 0, t ∈ (log ρ,∞).
(22)

Lemma 2. The function γ̃ has following properties

a) γ̃ ∈ C2(R+),

b) γ̃ is convex.

Proof of the Lemma 2. From the items a) and c) of the Lemma 1 we have that γ̃ ∈ C2(R+).

Furthermore, γ̃′(t) = etγ(et), t ∈ [0, log ρ),

γ̃′(t) = 0, t ∈ [log ρ,∞),
(23)

therefore, from the properties c) and d) of γ (see Lemma 1) we obtain that γ̃′(t) is a nonde-

creasing function, hence γ̃ is convex.

Remark 2. From the property c) of the function γ (Lemma 1) we have that γ̃′ is strictly

increasing on the interval [0, log ρ].

Consider following functionsz1(t) = t+ i(αt+ π − γ̃),

z2(t) = t+ i(αt− π + γ̃), t ∈ R+.
(24)

Furthermore, let

γ1 = z1(R+), γ2 = z2(R+), I = {ζ ∈ C | Rζ = 0, |Iζ| ≤ π − γ̃(0)}. (25)

Now let L be the following set

L = {t+ is | αt− π + γ̃(t) ≤ s ≤ αt+ π − γ̃(t), t ∈ R+}. (26)

Note that L = L(E) is the logarithmic diagram of the set E. Furthermore, the direction of

L(E) is β(E) = arctanα.

Now applying Theorem 2 to the function f ∈ H(C \E) and to the set E, we obtain that

there exists a function ϕ ∈ H(C) of an order ≤ 1 and of a finite exponential type on the

halfplane Π−β such that

ϕ(n) = fn, n ∈ N0 (27)

and

hϕ(θ) ≤ K−L(E)(−θ), |θ + β| < π

2
. (28)
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Consequently, to finish the proof of the necessity part of the Theorem 1, it suffices to show

that

lim inf
θ→π/2−β

π cos β −K−L(E)(−θ)
π/2− |θ + β|

≥ π sin β +
log ρ

cos β
(29)

and

lim inf
θ→−π/2−β

π cos β −K−L(E)(−θ)
π/2− |θ + β|

≥ −π sin β +
log ρ

cos β
. (30)

We prove only the first inequality as the second can be proven in a same way.

Note that

K−L(E)(−θ) = KL(E)(π − θ), KL(E)(π − (π/2− β)) = π cos β. (31)

Furthermore, if 0 < π/2− β − θ < η, for sufficiently small η, then

KL(E)(π − θ) = sup
t∈[0,log ρ]

R(z1(t)ei(θ−π)) = max
t∈[0,log ρ]

(−t cos θ + (αt+ π − γ̃) sin θ). (32)

But

max
t∈[0,log ρ]

(−t cos θ + (αt+ π − γ̃) sin θ) = −tθ cos θ + (αtθ + π − γ̃θ) sin θ, (33)

where tθ is the only solution of the equation

(−t cos θ + (αt+ π − γ̃) sin θ)′ = − cos θ + α sin θ − γ̃′(t) sin θ = 0.

So we have that

γ̃′(tθ) = − cot θ + α. (34)

Since the function γ̃′ is continuous, invertible and

lim
θ→π/2−β

γ̃′(tθ) = lim
θ→π/2−β

(− cot θ + α) = 0 = γ̃(log ρ),

we obtain that

lim
θ→π/2−β

tθ = log ρ. (35)

Summarizing the inequalities above, we obtain

lim inf
θ→π

2
−β

π cos β −K−L(E)(−θ)
π
2
− β − θ

= lim inf
θ→π

2
−β

π cos β − (−tθ cos θ + (αtθ + π − γ̃(tθ)) sin θ)
π
2
− β − θ

= lim
θ→π

2
−β

π sin (π
2
− β)− π sin θ

π
2
− β − θ

− lim
θ→π

2
−β
tθ sin θ

cot (π
2
− β)− cot θ

π
2
− β − θ

+ lim
θ→π

2
−β

γ̃(tθ) sin θ
π
2
− β − θ

= π sin β +
log ρ

cos β
.

So it remains to show that

lim
θ→π

2
−β

γ̃(tθ) sin θ
π
2
− β − θ

= 0.
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Since γ̃ is convex, then

γ̃(log ρ) ≥ γ̃(tθ) + (log ρ− tθ)γ̃
′
(tθ),

hence

0 <
γ̃(tθ) sin θ
π
2
− β − θ

≤ (tθ − log ρ)γ̃
′
(tθ) sin θ

π
2
− β − θ

=
(tθ − log ρ)(cot (π

2
− β)− cot θ) sin θ

π
2
− β − θ

,

but

lim
θ→π

2
−β

(tθ − log ρ)(cot (π
2
− β)− cot θ) sin θ

π
2
− β − θ

= 0,

therefore

lim
θ→π

2
−β

γ̃(tθ) sin θ
π
2
− β − θ

= 0.

This finishes the necessity part of the proof of the Theorem 1.

Sufficiency. So we have a function ϕ ∈ B(Π−β), such that equations (10)-(12) hold. By

V. Bernstein’s theorem (see [5]) we have that 0 ∈ Iϕ or

hϕ(0) = lim sup
n→∞

log |ϕ(n)|1/n = 0. (36)

Now let us show that equations (11),(12) and (36) yield that

hϕ(θ) ≤ π| sin θ|, θ ∈ (−π/2− β, π/2− β). (37)

Since hϕ(θ) is trigonometrically convex (see [4]), we have that

hϕ(θ) sin θ̃ ≤ hϕ(0) sin (θ̃ − θ) + hϕ(θ̃) sin θ, 0 ≤ θ < θ̃ <
π

2
− β,

hence using (36), we obtain

hϕ(θ) ≤ hϕ(θ̃) sin θ

sin θ̃
, 0 ≤ θ < θ̃ <

π

2
− β.

Now using the inequality (11), we get

hϕ(θ) ≤ lim sup
θ̃→π

2
−β

hϕ(θ̃) sin θ

sin θ̃
≤ π cos β sin θ

sin (π
2
− β)

= π sin θ, 0 ≤ θ <
π

2
− β.

In a same way one proves the inequality (37) for the case π/2− β < θ < 0.

From (37) it follows that

Iϕ ⊂
⋂

θ∈(−π
2
−β,π

2
−β)

{ζ : <(ζe−iθ) ≤ π| sin θ|}.

On the other hand ⋂
θ∈(−π

2
−β,π

2
−β)

{ζ : <(ζe−iθ) ≤ π| sin θ|} =
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{ζ : <ζ ≤ 0} ∩ {ζ : =ζ + α<ζ ≤ π} ∩ {ζ : =ζ + α<ζ ≥ −π},

thus

Iϕ ⊂ {ζ : <ζ ≤ 0} ∩ {ζ : =ζ + α<ζ ≤ π} ∩ {ζ : =ζ + α<ζ ≥ −π}.

Let us show that

− t+ i(π + αt),−t+ i(−π + αt)∈Iϕ, t ∈ [0, log ρ). (38)

Suppose that this is not true, i.e. there exists t0 ∈ [0, log ρ) such that

z0 = −t0 + i(π + αt0) ∈ Iϕ. (39)

Since Iϕ is convex (see [4]), then I0 = [0, z0] ⊂ Iϕ, therefore

hϕ(θ) ≥ KI0(θ), θ ∈ (−π
2
− β, π

2
− β),

from where we have that

lim inf
θ→π

2
−β

π cos β −KI0(θ)
π
2
− |θ + β|

≥ lim inf
θ→π

2
−β

π cos β − hϕ(θ)
π
2
− |θ + β|

≥ π sin β +
log ρ

cos β
.

Note that KI0(θ) = (π + αt0) sin θ, when arctan t0
π+αt0

≤ θ < π
2
− β, hence

lim inf
θ→π

2
−β

π cos β −KI0(θ)
π
2
− |θ + β|

= (π + αt0) sin β + t0 cos β = π sin β +
t0

cos β
< π sin β +

log ρ

cos β
,

which is a contradiction.

So we have proved that (38) holds. From this it follows that there exists a function

ε : R+ → R+ such that

a) ε ∈ C(R+),

b) ε(t) > 0, t ∈ [0, log ρ) and ε(t) = 0, t ∈ [log ρ,∞),

c) ε is decreasing,

d) {−t+ is : αt− π + ε(t) ≤ s ≤ αt+ π − ε(t), t ≥ 0} ⊃ Iϕ.

Consider a function γ given by the formula

γ(t) =
2

log2 ρ

∫ ∞
t

(τ − t)ε(τ)dτ , t ∈ R+. (40)

Lemma 3. The function γ has the following properties

a) γ ∈ C2(R+),

b) 0 < γ(t) ≤ ε(t), t ∈ [0, log ρ) and γ(t) = 0, t ∈ [log ρ,∞),

35



36 Levon Nurbekyan

c) γ is convex,

d) {−t+ is : αt− π + γ(t) ≤ s ≤ αt+ π − γ(t), t ≥ 0} ⊃ Iϕ.

Proof of the Lemma 3. The statements of the items a) and c) follow from the equality

γ′′(t) = 2ε(t)

log2 ρ
and from the properties of the function ε.

Now let us prove that γ(t) ≤ ε(t) for all t ∈ [0, log ρ). Indeed, for any such a t we have

γ(t) =
2

log2 ρ

∫ ∞
t

(τ − t)ε(τ)dτ =
2

log2 ρ

∫ log ρ

t

(τ − t)ε(τ)dτ

≤ 2ε(t)

log2 ρ

∫ log ρ

t

(τ − t)dτ =
2ε(t)

log2 ρ

(log ρ− t)2

2
≤ ε(t).

The inequality γ(t) ≤ ε(t) yields that

{−t+ is : αt− π + γ(t) ≤ s ≤ αt+ π − γ(t), t ≥ 0} ⊃
{−t+ is : αt− π + ε(t) ≤ s ≤ αt+ π − ε(t), t ≥ 0},

hence by the property d) of the function ε we have that

{−t+ is : αt− π + γ(t) ≤ s ≤ αt+ π − γ(t), t ≥ 0} ⊃ Iϕ.

The lemma is proven.

Consider the sets

L = {t+ is |αt− π + γ(t) ≤ s ≤ αt+ π − γ(t), t ∈ [0,∞)},

E = exp (L) = C \ (D1(0) ∪ {tei(α log t+π+θ) | |θ| < γ(log t), t ∈ [1, ρ)}).

From the convexity of the function γ it follows that the set L is convex, thus E is log-convex.

Note that L = L(E) and the direction of the set L is β = arctanα. Furthermore, since we

have that

−L∗(E) = {−t+ is |αt− π + γ(t) ≤ s ≤ αt+ π − γ(t), t ≥ 0},

by the property d) of the function γ, we obtain that

Iϕ ⊂ −L∗(E).

Now applying Theorem 2 we get that the series (2) defines an analytic function f ∈ H(C\E).

It remains to see that since γ(t) > 0 on the interval [0, log ρ), we have that

C \ E = D1(0) ∪ {tei(α log t+π+θ) | |θ| < γ(log t), t ∈ [1, ρ)} ⊃ γρ,

and therefore the element (2) has an analytic continuation along the segment γρ of α-spiral

passing through the point −1, hence Theorem 1 is fully proven.
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3 Examples of power series

As it was pointed out in the introduction, one of the issues of the theory of the analytic

continuations is the localization of the singularities of the element (2). In current work we

are interested in the localization of the singularities of a power series outside of its disc of

convergence.

More precisely, for every α ∈ R, we would like to find the smallest ρ ≥ 1 (in terms of the

coefficients {fn}) such that the series (2) do not continue analytically along the segment γρ

(see (9)). In other words, we would like to find the first singularity of the power series (2)

along the α-spiral passing through the point −1.

The Mittag-Leffler α-star of an element (2) is the maximal α-starlike domain, where the

element continues analytically. For any angle θ ∈ [0, 2π) denote by

γf (θ) = {eiθt1+iα | t ∈ [1, ρf (θ))}, (41)

where

ρf (θ) = sup{ρ′ | f ∈ H(γρ′)}. (42)

We call γf (θ) the θ direction wing of the Mittag-Leffler α-star of the element (2) and the

number ρf (θ) the ”length” of the wing γf (θ) (note that it is not the length of the curve γf (θ)

and it is a slight abuse of a term, but it will not cause any confusion).

A simple notion to characterize singularities of a power series is the notion of lacunas of

the series. This is the zero set of its coefficients. The density of the lacunas has been proven

to be an effective way to localize the singularities on the boundary of the convergence disc.

For a detailed discussion on these see [4].

It turns out that in the case of analytic continuation along the spirals outside of the disc

of convergence lacunas do not play a role and we address this issue in this section.

For a set P ⊂ N0 we say that it has a density if there exists a limit

∆(P ) = lim
r→∞

|{n ∈ P | n ≤ r}|
r

. (43)

We call it density of P and denote by ∆(P ).

For a series (1) we denote by Pf its lacunas:

Pf = {n | fn = 0}. (44)

Proposition 1. Fix any number α ∈ R and ρ > 1. Then for any given number 0 ≤ ∆ < 1

and any set P0 = {pn}∞n=0 ⊂ N0 that has density ∆(P0) = ∆, there exists a power series (2)

such that its Mittag-Leffler α-star contains wings of ”length” ρ and its lacunas are the set

P0.

To prove this proposition we need the following theorem
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Theorem 3 ([4]). The element (2) can be continued analytically to the whole complex plane

except possibly the arc {z | |z| = 1, | arg z| ≤ σ}, where σ ∈ [0, π), if and only if there exists

a function ϕ ∈ H(C) of the finite exponential type for which

ϕ(n) = fn, ∀n ∈ N0

and

hϕ(θ) ≤ σ| sin θ|, |θ| ≤ π. (45)

Remark 3. This theorem is a simple application of the Theorem 2.

Proof of the Proposition 1. Consider following function

ϕP0(z) =
∏
n∈P0

(1− z2

n2
) (46)

and the power series g(z) =
∑∞

n=0 gnz
n, where

gn = ϕP0(n). (47)

Since the density of P0 is ∆, we have that (see [5])

hϕP0 (θ) = π∆| sin θ|, |θ| ≤ π. (48)

From equations (47) and (48) it follows that the radius of convergence of g is 1 and it satisfies

the hypothesis of the Theorem 3 with σ = π∆. Hence g can be analytically continued to

C \ {z | |z| = 1, | arg z| ≤ π∆}.
Furthermore, the lacunas of g are Pg = P0. Since ∆(N0 \P0) = 1−∆(P0), we can choose

a infinite subset Q ⊂ N0 \ P0 such that

∆(Q) = 0. (49)

Now consider the series q(z) =
∞∑
n=0

qnz
n, where

qn = ρ−n, n ∈ Q,

qn = 0, n∈Q
(50)

We have that

lim sup
n→∞

|qn|
1
n = lim

n∈Q
|qn|

1
n = ρ−1,

hence the convergence disc of q is Dρ(0). Furthermore, Pq = N0 \Q, thus from (49) it follows

that

∆(Pq) = ∆(N0 \Q) = 1−∆(Q) = 1,
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which means that q has lacunas of full density 1, therefore it cannot be continued analytically

to any point outside of the disc Dρ(0) (see [4]). Let h be the function

h(z) = g(z) + q(z) (51)

and

h(z) =
∞∑
n=0

hnz
n, (52)

be its expansion.

Lemma 4. a) h ∈ H(Dρ(0) \ {z | |z| = 1, | arg z| ≤ π∆}),

b) the raduis of convergence of the element (52) is 1,

c) Ph ⊃ P0.

Proof of the Lemma 4. The item a) is a consequence of the facts that

g ∈ H(C \ {z | |z| = 1, | arg z| ≤ π∆}) (53)

and q ∈ H(Dρ(0)).

To prove b) note that since h ∈ H(Dρ(0) \ {z | |z| = 1, | arg z| ≤ π∆}), then h ∈
H(D1(0)). On the other hand since the disc of convergence of g is D1(0), it has to have

at least one singularity on the boundary ∂D1(0), but q is analytic on D1(0), hence that

singularity is also a singularity for h. This means that the disc of convergence of h is D1(0)

or equivalently the radius of convergence of the series (52) is 1.

It remains to prove the item c). We have that Pg = P0 and Pq = N0 \Q ⊃ P0, therefore

gn = qn = 0, n ∈ P0 and consequently hn = 0, n ∈ P0 or Ph ⊃ P0.

Lemma is fully proven.

Let us introduce another power series

r(z) =
∞∑
n=0

rnz
n, (54)

where rn = 1
nn
, n ∈ Ph \ P0

rn = 0, n ∈ N0 \ (Ph \ P0).
(55)

The function r is an entire function because lim
n→∞

|rn|1/n = 0.

Finally, consider the function

f(z) = h(z) + r(z), (56)

with expansion

f(z) =
∞∑
n=0

fnz
n. (57)
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Lemma 5. a) f ∈ H(Dρ(0) \ {z | |z| = 1, | arg z| ≤ π∆}),

b) the radius of convergence of the series (57) is 1,

c) Pf = P0:

Proof of the Lemma 5. The assertions of the items a), b) follow from the ones of the items

a), b) of the Lemma 4 and the fact that r is an entire function.

Since rn = 0, when n ∈ P0 or n ∈ N0 \ Ph, we have that fn = hn = 0 for n ∈ P0 and

fn = hn 6= 0 for n ∈ N0 \Ph. And finally, for n ∈ Ph \P0 we have that hn = 0 and rn = 1/nn,

hence fn = 1/nn 6= 0. This proves the assertion of item c) and the lemma is fully proven.

To finish the proof of the Proposition 1, it remains to see that the element (57) is the

one we need. Indeed, from the previous lemma we know that it has a radius of convergence

1, lacunas P0 and is analytic on the domain Dρ(0) \ {z | |z| = 1, | arg z| ≤ π∆}. Therefore,

we can say that

ρf (θ) ≤ ρ, |θ| ≤ π∆ (58)

and

ρf (θ) = ρ, |θ| > π∆. (59)

4 Natural zeros of the interpolating entire function

In this section we discuss the balance in between the growth of the entire function ϕ ∈
B(Π−β) that satisfies the conditions (11), (12) and the density of its natural zeros, i.e. zeros

that are natural numbers.

Theorem 4. Let ϕ ∈ B(Π−β) is such that hϕ(0) = 0 and bounds (11), (12) hold. Then

{n ∈ N0 | ϕ(n) = 0} 6= N0.

Proof. Let us assume that on contrary:

ϕ(n) = 0, ∀n ∈ N0. (60)

Consider the function ϕ0(z) = sinπz. The function ϕ0 is a function of a finite exponential

type, such that all integer numbers are its simple zeros:

ϕ0(z) = πz

∞∏
n=1

(1− z2

n2
). (61)

We have that

hϕ0(θ) = π| sin θ|, |θ| ≤ π, (62)
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hence the function

ψ(z) =
ϕ(z)

ϕ0(z)
, z ∈ Π−β (63)

is of a finite exponential type and moreover,

hψ(θ) = hϕ(θ)− π| sin θ|, |θ + β| < π

2
. (64)

Since hψ is trigonometrically convex, we have that

hψ(0) sin (π − 2θ) ≤ hψ(−π
2
− β + θ) sin (

π

2
− β − θ) + hψ(

π

2
− β − θ) sin (

π

2
+ β − θ), (65)

for 0 < θ < min(π/2− β, π/2 + β).

Pick some 1 < ρ′ < ρ, then from the inequalities (11), (12) we have that

hϕ(
π

2
− β − θ) ≤ π cos β − (π sin β +

log ρ
′

cos β
)θ (66)

and

hϕ(−π
2
− β + θ) ≤ π cos β − (−π sin β +

log ρ
′

cos β
)θ. (67)

From these we obtain

hψ(
π

2
− β − θ) ≤ π cos β − (π sin β +

log ρ
′

cos β
)θ − π cos (β + θ) (68)

and

hψ(−π
2
− β + θ) ≤ π cos β − (−π sin β +

log ρ
′

cos β
)θ − π cos (β − θ). (69)

Thus, from (65), we get that

hψ(0) sin 2θ

θ
≤ (

π cos β − π cos (β + θ)

θ
− π sin β − log ρ

′

cos β
) cos (β − θ)

+ (
π cos β − π cos (β − θ)

θ
+ π sin β − log ρ

′

cos β
) cos (β + θ),

for sufficiently small θ-s. Now passing to the limit when θ goes to zero, we obtain that

hψ(0) ≤ − log ρ′ < 0, (70)

which is a contradiction, because hψ(0) = hϕ(0) = 0.

Theorem 5. Let P0 ⊂ N0 be a subset with a density 0 ≤ ∆ = ∆(P0) < 1. Then, for every

ρ > 1 and β ∈ (−π/2, π/2) there exists a function ϕ ∈ B(Π−β) such that

{n ∈ N0 : ϕ(n) = 0} = P0, (71)

lim
θ→π

2
−β

π cos β − hϕ(θ)
π
2
− |θ + β|

= π sin β +
log ρ

cos β
, (72)

lim
θ→−π

2
−β

π cos β − hϕ(θ)
π
2
− |θ + β|

= −π sin β +
log ρ

cos β
. (73)
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Proof. Consider the function

ϕ(z) = ϕP0(z) sin (σ1ze
i(β−θ0)) sin (σ2ze

i(β+θ0))e−(σ3+iσ4)z, z ∈ C, (74)

where 

θ0 = arctan
log ρ+
√

log2 ρ+(π(1−∆) sin 2β)2

2π(1−∆) cos2 β
,

σ1 = π(1−∆) sin(θ0+β)
sin 2θ0

,

σ2 = π(1−∆) sin(θ0−β)
sin 2θ0

,

σ3 = log ρ,

σ4 = log ρ tan β,

(75)

and

ϕP0 =
∏
n∈P0

(
1− z2/n2

)
. (76)

Note that the zeros of ϕ and ϕ0 are the same, hence (71) holds.

Furthermore,

tan θ0 =
log ρ+

√
log2 ρ+ (π(1−∆) sin 2β)2

2π(1−∆) cos2 β
>

√
(π(1−∆) sin 2β)2

2π(1−∆) cos2 β
= tan |β|,

thus θ0 > |β|, so σ1, σ2 > 0 and therefore from the equation (48) we have that

hϕ(θ) = π∆| sin θ|+ σ1| sin (θ + β − θ0)|+ σ2| sin (θ + β + θ0)| − σ3 cos θ + σ4 sin θ.

A straightforward computation shows that hϕ(θ) satisfies the conditions (72) and (73).
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