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Introduction and Notations

The classical isoperimetric inequality for a simple closed plane curve C with
perimeter L enclosing a domain of area A states that

L2 − 4πA ≥ 0 (1)

with equality if and only if C is a circle.
If we define the isoperimetric deficit by

∆(C) = L2 − 4πA,

the isoperimetric inequality becomes ∆(C) ≥ 0 with equality if and only
if C is a circle. There are inequalities stronger than (1). For example,
Bonnesen [4] (see also [5]) proved that

L2 − 4πA ≥ π2(Rc − ri)2 (2)

where Rc and ri are, respectively, the radius of the circumscribed circle (i.e.,
the circle of minimum radius that contains C) and of the inscribed circle
(i.e., one of the circles of maximum radius contained in C).

In the twenties of the past century, Bonnesen found many inequalities
like (2), i.e., inequalities of the form

L2 − 4πA ≥ B, (3)

where the quantity B at the right hand side has the following properties:

1

http://armjmath.sci.am/
https://doi.org/10.52737/18291163-2023.15.1-1-15


2 S. VASSALLO

1. B ≥ 0;

2. B = 0 only if the convex body is a circle;

3. B has a geometric significance.

Such inequalities are called Bonnesen-style inequalities. Many Bonnesen
type inequalities have been proved, see, for example, [1,8,36]. For a detailed
discussion on this subject, refer to Osserman’s paper [26].

If C is a closed, convex curve in the plane, a circular annulus, bounded
by two concentric circles with radii r and R, where r ≤ R, is said to enclose
C if no point of C is out of the circle with radius R, while no point of C
is inside the circle with radius r. The annulus is said to bi-enclose C if C
passes at least four times between the outer circle and the inner circle of the
annulus, i.e., there are, at least, four points P1, P2, P3, P4 on C in this order
(clockwise or counterclockwise) such that

• the inner circumference touches the curve in, at least, the two points
P1 and P3;

• the outer circumference touches the curve in, at least, the two points
P2 and P4.

In [4], Bonnesen proved that there exists a unique circular annulus enclos-
ing C with minimal difference of the radii; this annulus, called the minimal
circular annulus of C, is also the unique annulus that bi-encloses C. Also
he proved the following inequality, which is sharper than (2)

L2 − 4πA ≥ 4π(R− r)2, (4)

where R and r (with r ≤ R) are the radii of the minimal annulus, sharper
than (2), with equality only for circles. In the same paper, Bonnesen found
the curve with minimal deficit. Moreover, Nagy [24] proved that the minimal
circular annulus of C has also minimal area.

There are also papers concerning the upper bound of the isoperimetric
deficit. Favard in [9] (see also [10]) shows that for a curve C with minimal
annulus of radii (r, R) the following inequality holds:

L2 − 4πA ≤ 4π2R(R− r) (5)

with equality if and only if C is a circle. In the same paper, Favard shows also
that for a given minimal annulus, the maximum of the deficit is attained for
a polygon circumscribed to the small circle and with all the vertices, except
at most one, on the big circle (if arccos(r/R) = π/k with k ∈ N, k 6= 0, the
maximum deficit is attained by the regular polygon of k sides circumscribed
to the small circle and inscribed in the big circle).
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Bottema [6] shows that if C has continuous curvature radius (i.e., it is
smooth and does not contain segments),

L2 − 4πA ≤ π2(ρM − ρm)2

where ρM and ρm are the maximum and the minimum of the curvature
radius, and the equality holds if and only if C is a circle.

In [35], many upper bounds for the isoperimetric deficit have been found,
for example,

L2 − 4πA ≤ 2πL(Rc − ri),
that is shown also in [3].

Many authors consider particular classes of convex bodies, and they ob-
tain stronger results than inequality (1). For example, for n-sided polygons,
the following isoperimetric inequality holds:

L2 − 4n tan
π

n
A ≥ 0 (6)

with equality if and only if the polygon is regular (see [19, 20, 22, 25]). Im-
provements to the above inequality are shown, for example, in [7, 18,34].

For triangles, Rabinowitz [31] obtained many Bonnessen-style inequali-
ties, improving the general ones given in [26].

Let us note that isoperimetric problems have a very extensive literature,
and there are results also in the space Rn, in Minkowski spaces, for star
bodies, and so on (see, for example, [3, 11–14, 17, 21, 23, 29, 32, 33]). On the
minimal annulus and generalizations we refer also to [2, 15–17,27,28,30].

In this paper, upper and lower bounds for the isoperimetric deficit in the
form of inequality (6) for parallelograms,

∆(C) = L2 − 16A

and for triangles,
∆(C) = L2 − 12

√
3A

are found, using the minimal annulus. The bounds obtained are sharp, but
only the upper bound has an explicit formula.

1 Parallelograms

Due to the symmetry, the center of the minimal annulus is the center of the
parallelogram, and the two circles of the annulus are the inscribed and the
circumscribed circles.

The isoperimetric inequality for quadrilaterals is

L2 − 16A ≥ 0

with equality for squares.



4 S. VASSALLO

A B

CD

O

E

F

G

α

Figure 1: A parallelogram with minimal annulus of radii (r, R)

In Fig. 1, OC = OA = R, OE = OF = r. It is obvious that ev-
ery parallelogram in this family is uniquely determined by the angle α, or,
equivalently, by the length x of the segment AG.

We can suppose that AB ≥ BC. We have

x := AG = 2r cot(α), a(x) := AB = 2
√
R2 − r2 − x

b(x) := AD =
√

4r2 + x2,

and, since AB ≥ BC, x satisfies

0 ≤ x ≤ R2 − 2r2√
R2 − r2

.

Let us write for simplicity x = (R2 − 2r2)/
√
R2 − r2. For x = 0, the paral-

lelogram is a rectangle, the points D and B are on the circumscribed circle
and α = π/2. For x = x the parallelogram is a rhombus and the segments
AD and BC are tangent to the inscribed circle. Let us note that r ≤ R/

√
2.

In the following, we denote by Q the expression
√
R2 − r2.

Proposition 1 Among all the parallelograms with minimal annulus of radii
(r, R) (see Fig. 1), the parallelogram with maximal isoperimetric deficit is the
rhombus with side AB of length AB = R2/

√
R2 − r2; the parallelogram with

minimal isoperimetric deficit is the parallelogram with AB = 2
√
R2 − r2−λ

and AC =
√

4r2 + λ2, where λ is the unique real solution to the third degree
equation

t3 + (r −Q) t2 + r (4r −Q) t+ r
(
R2 + 2r2 − 4rQ

)
= 0 (7)

satisfying
0 ≤ λ ≤ x.

The extreme cases are shown in Fig. 2.
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Figure 2: The parallelogram ABCD with minimal deficit and the rhombus
AFCE with maximal deficit.

Proof. Let us write the isoperimetric deficit as a function of x:

∆(x) = L2(x)− 16A(x) = 4
(√

4r2 + x2 + 2Q− x
)2
− 32r (2Q− x) .

Since

∆′′(x) = 2(L′(x))2 + 2L(x)L′′(x) and L′′(x) =
8r2

(4r2 + x2)3/2
> 0,

the function ∆(x) is convex.
Since

∆′(0) = 16 (r −Q) < 0 and ∆′(x) =
32r

(√
R2 − r2 − r

)
√
R2 − r2

> 0,

the isoperimetric deficit has two local maxima in x = 16R2 (R2 − 2r2)
2

and
in x = 0 and a unique global minimum where ∆′(x) vanishes.

Now

∆(0) = 16
(
R2 − 2rQ

)
<

16R2

Q2

(
R2 − 2rQ

)
= ∆ (x) ,

therefore, the global maximum for the isoperimetric deficit is assumed for
the rhombus.

It is possible to show with elementary arguments that equations (7) and
∆′(x) = 0 are equivalent for 0 ≤ x ≤ x, and the solution of equation (7) is
then the minimum point of the isoperimetric deficit. �

Using the previous result, it is easy to give an exact upper bound for the
isoperimetric deficit in terms of the radii R and r of the minimal annulus:

∆(x) ≤ ∆ (x) =
16R2 (R2 − 2r2)

2

(R2 − r2)
(
R2 + 2r

√
R2 − r2

) .
On the contrary, it is not so easy (but it is possible) to write the exact lower
bound.
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Example 1 If R = 1 and r = 0.5 the minimal deficit is around 1.53155166
and it is attained for x ≈ 0.2170120446; the maximum deficit is approxi-
mately 2.85812471.

If R = 1 and r = 0.2 the minimal deficit is around 8.02821815 and
it is attained for x ≈ 0.3228270469; the maximum deficit is approximately
10.13469401.

In Fig. 3, the maximum and the minimum isoperimetric deficit ∆ are
drawn as functions of r/R.
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Figure 3: The maximum and the minimum isoperimetric deficit

The following result gives a lower and an upper bounds that are not
sharp but more meaningful.

Corollary 1 Let us consider a parallelogram, and let (r, R) be the radii of
its minimal annulus. Then

L2 − 16A ≥ 16 (R2 − 2r2)
3

√
R2 − r2

(
(R2 + 4r2)

√
R2 − r2 + 2r(2R2 − r2)

)
≥ 16 (R2 − 2r2)

3

3
√

2R3
√
R2 − r2

≥ 16 (R2 − 2r2)
3

3
√

2R4

≥
16
(
R− r

√
2
)3

3R
√

2

(8)
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and

L2 − 16A ≤ 16
(R2 − 2r2)

2

R2

≤ 64
(
R− r

√
2
)2
.

(9)

In the above inequalities, the equality sign holds only if the parallelogram is
a square.

Proof. As proved in Proposition 1, the function ∆(x) is convex, and thus
its graph lies above the tangent lines at x = 0 and x = x, which equations
are, respectively,

y = 16 (r −Q)x+ 16
(
R2 − 2rQ

)
,

y =
32r (Q− r)

Q

(
x− R2 − 2r2

Q

)
+

16R2 (R2 − 2rQ)

Q2
.

The ordinate of the intersection point of these two tangent lines is

16 (R2 − 2r2)
3

Q ((R2 + 4r2)Q+ 2r(2R2 − r2))
,

and then the first inequality in (8) follows. All other inequalities in (8) are
simple consequences of the first one.

To prove inequalities (9) we note that the denominator of ∆(x) is h(t) =
(1− t2)

(
1 + 2t

√
1− t2

)
where t = r/R. The function h(t) takes its minima

for t = 0 and t = 1/
√

2, and then h(t) ≥ 1 which proves the first inequality.
The following are similar. �

2 Triangles

Bonnessen [4] has shown that a triangle ABC with BC ≥ AC ≥ AB has
a minimal annulus of radii (r, R) if the sides BC and AC are tangent to
the interior circle and the vertices B and C are on the exterior circle (see
Fig. 4). In Fig. 4, OC = OB = R, OG = OF = r, α = arcsin (r/R), and
BC = 2

√
R2 − r2. It is obvious that every triangle in this family is uniquely

determined by the length of the side AC or, equivalently, of the segment
AE (E is the intersection of the tangent line to the inner circle from B and
the line AC). Let us remark that for Euler’s inequality R ≥ 2r, and then
α ≤ π/6.

The isoperimetric inequality for triangles is

L2 − 12
√

3A ≥ 0

with equality for the equilateral triangle.
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Figure 4: A triangle with minimal annulus of radii (R, r)

Proposition 2 Among all the triangles with minimal annulus of radii (r, R)
(see Fig. 4), the triangle with maximal isoperimetric deficit is the isosceles
one with sides AB and AC with AC = AB =

(
R2
√
R2 − r2

)
/(R2 − 2r2)

and basis BC; the triangle with minimal isoperimetric deficit is the triangle
with AC =

(
R2
√
R2 − r2

)
/(R2 − 2r2) + 2Rλ cosα, where λ is the unique

real solution to the third degree equation in the unknown y[
−4y2 cos2(2α) + 2 cos(2α)(3 cos(2α) + 2)(cos(2α)− 1)y

+2 cos3(2α) + cos2(2α)− cos(2α)− 1
]2

=
(
1 + 4y cos(2α)4y2 cos2(2α)− 8 cos3(2α)y

)
×
(

3
√

3 sin(2α) cos(2α)− 1− 2y cos(2α)− 2 sin2 α cos(2α)
)2

(10)

satisfying 0 ≤ λ ≤ 1− 1/(2 cos(2α)).

The extreme cases are shown in Fig. 5.

Proof. Let

BC = a = 2R cosα, AE = x and xF = a

(
1− 1

2 cos(2α)

)
.

Thus

b = b(x) = AC =
a

2 cos(2α)
+x, c = c(x) = AB =

√
a2 + b2 − 2ab cos(2α).

The point A must be on the segment DE. If A = E, x = 0, and the triangle
ABC is isosceles on the basis BC; if A = D, the triangle ABC is isosceles
on the basis AB, and therefore b(x) = a and x = xF . Then 0 ≤ x ≤ xF .
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A B
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D

Figure 5: The triangle ABC with minimal deficit and the isosceles triangle
ABD with maximal deficit.

The isoperimetric deficit of the triangle ABC is

∆(x) = L2(x)− 12
√

3A(x) = [a+ b(x) + c(x)]2 − 6
√

3ab(x) sin(2α).

It is easy to see that ∆′′(x) = 2 (L′(x))2 + 2L(x)L′′(x), and, since L′′(x) =
a2 sin2(2α)/[c(x)]3 > 0, the function ∆(x) is convex.

The derivative of ∆(x) in x = 0 is

∆′(0) =
2a sin(2α)

2 cos2 α− 1

(
3
√

3− 6
√

3 cos2 α + 8 sinα cos3 α
)
,

and, since

3
√

3− 6
√

3 cos2 α + 8 sinα cos3 α < 3
√

3− 6
√

3 + 8
1

2

(√
3

2

)3

= 0,

we obtain ∆′(0) < 0.
The derivative of ∆(x) in x = xF is

∆′(xF ) = 4a(2− cos2 α + 2 sinα− 3
√

3 sinα cosα).

The function g(α) = 2 − cos2 α + 2 sinα − 3
√

3 sinα cosα is decreasing on
[0, π/6], and then g(α) > g(π/6) = 0 and ∆′(xF ) > 0.

Therefore the isoperimetric deficit ∆(x) takes its local maxima at x = 0
and x = xF and its global minimum at the unique x in [0, xF ] where ∆′(x)
vanishes.

If 0 ≤ x ≤ xF , denoting x = 2y
√
R2 − r2, the equation ∆′(x) = 0 is

equivalent to equation (10), and then it has a unique solution.
It is possible, as in Proposition 1, to prove that ∆(0) > ∆(xF ), and thus

the maximum of the isoperimetric deficit is attained at x = 0. �



10 S. VASSALLO

Using the previous result it is easy to give an exact upper bound for the
isoperimetric deficit in terms of the radii R and r of the minimal annulus,
i.e., ∆(0):

∆(x) ≤ ∆(0) =
6(R2 − r2)3/2(4R2 − 7r2)(R + 2r)2(R− 2r)2

(R2 − 2r2)2
[
2(R2 − r2)3/2 + 3

√
3r(R2 − 2r2)

] .
On the contrary, it is not so easy (but it is possible) to write the exact lower
bound.

Example 2 If R = 1 and r = 0.2, the minimal deficit is about 6.09284610,
and it is attained for x ≈ 0.6574593176; the maximum deficit is around
8.224649710. If R = 1 and r = 0.4, the minimal deficit is approximately
0.73167813, and it is attained for x ≈ 0.4440140348; the maximum deficit is
around 1.68349019.

In Fig. 6, the maximum and the minimum of the isoperimetric deficit ∆
are drawn as functions of the ratio r/R. The following result gives a lower

0 0.1 0.2 0.3 0.4 0.5 0.6-0.1
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4
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10

12

14

16

r/R

∆

Figure 6: The maximum and the minimum isoperimetric deficit

and an upper bounds that are not sharp, but more meaningful.

Corollary 2 Let T be a triangle, and let (r, R) be the radii of its minimal
annulus. Then

L2 − 12
√

3A ≥
[
16(R + 2r)(R + r)3/2(R− r)3(R + 7r)(R− 2r)2

][
(R2 − 2r2)(R3 + 2R2r − 6Rr2 + 4r3)((R + r)3/2

+3
√

3r
√
R− r)

]−1
,

(11)



ON THE MINIMAL ANNULUS OF TRIANGLES AND PARALLELOGRAMS 11

L2 − 12
√

3A ≥ 16
(R− r)3(R− 2r)2

R3
, (12)

L2 − 12
√

3A ≥ k(R− 2r)2, (13)

and

L2 − 12
√

3A ≤ 12
√

3
(R2 − r2)3/2(R2 − 4r2)2

R5

≤ 48
√

3
(R2 − r2)3/2(R− 2r)2

R3

≤ 54(R− 2r)2.

(14)

In the above inequalities, the equality sign holds only if the triangle is equi-
lateral.

Proof. As proved in Proposition 2, the function ∆(x) is convex, and then
its graph lies above the tangent lines at x = 0 and x = xF . The ordinate of
the intersection point of these two tangent lines is

16(R + 2r)(R + r)3/2(R− r)3(R + 7r)(R− 2r)2

(R2 − 2r2)(R3 + 2R2r − 6Rr2 + 4r3)((R + r)3/2 + 3
√

3r
√
R− r)

,

and the result follows.

Inequalities (12) and (13) follow by studying (possibly by using some
algebraic software) the functions

16(1 + 2z)(1 + z)3/2(1 + 7z)

(1− 2z2)(1 + 2z − 6z2 + 4z3)((1 + z)3/2 + 3
√

3z
√

1− z)

and
16(1 + 2z)(1 + z)3/2(1− z)3(1 + 7z)

(1− 2z2)(1 + 2z − 6z2 + 4z3)((1 + z)3/2 + 3
√

3z
√

1− z)

where z = r/R.

Finally, denoting by z = r/R, it is easy to find the maxima of the function

h(z) =
6(4− 7z2)

(1− 2z2)2
[
2(1− z2)3/2 + 3

√
3z(1− 2z2)

] ,
and since

∆(0) = h(z)
(R2 − r2)3/2(R2 − 4r2)2

R5
,

the first inequality in (14) follows. The following are similar. �
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In [31], Rabinowitz shows many Bonnesen-style inequalities for triangles
in which the second member depends on the radii of the circumscribed and
the inscribed circle, on the area and the perimeter of the triangle. Let us
explicitly note that these inequalities do not hold if we take the radii of the
minimal annulus instead of the radii of the circumscribed and the inscribed
circle. Consider, for example, Rabinowitz’s inequality

L2 − 12
√

3A ≥ (L− 6
√

3ρi)
2

where ρi is the inradius of the triangle. If in the above inequality we take
the radius r instead of the inradius, the inequality holds for the isosceles
triangle with sides

(
R2
√
R2 − r2

)
/(R2 − 2r2) and basis 2

√
R2 − r2 (since in

this case the inner circle of the annulus is also the inscribed circle of the
triangle), but it does not hold for the isosceles triangle with sides 2

√
R2 − r2

and basis 4r
√
R2 − r2/R.
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problems for the minimal annulus of a convex set. Math. Inequal. Appl.,
9 (2006), pp. 359–374. https://doi.org/10.7153/mia-09-36

[16] M.A. Hernández Cifre and P.J. Herrero Piñeiro, Optimizing geometric
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