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Introduction

Let (X, ρ, µ) be a space of homogeneous type with L := diam(X) < ∞. The
paper is devoted to the boundedness of the operators

(Mf)(x) = sup
x∈X

0<r<L

(µB(x, r))−1
∫

B(x,r)
|f(y)|dµ(y), x ∈ X,

(Kf)(x) = lim
ε→0

∫

X\B(x,ε)
k(x, y)f(y)dµ(y), x ∈ X

in Morrey spaces with variable exponent defined on X, where k is the Calderón-
Zygmund kernel on X.

In the paper [2] some properties of variable Morrey spaces over a bounded open
set Ω ⊂ Rn and the boundedness of maximal and Riesz potential operators in
these spaces were studied.

For mapping properties of maximal functions and singular integrals on Lebesgue
spaces with variable exponent we refer to [9], [10], [7], [6], [19]-[20], [26], [13] (see
also [29], [17] and references therein).

We notice that the main results of this paper were announced in [18].
The paper is organized as follows. In Section 1 we formulate and prove some

properties of variable exponent spaces. Section 2 is devoted to the boundedness
of M in variable exponent Morrey spaces, while in Section 3 we study the same
problem for the operator K. Section 4 deals with applications of the derived results
to singular integrals on fractal sets.

Constants (often different constants in the same series of inequalities) will be
denoted by c or C.
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1. Preliminaries

A space of homogeneous type (SHT ) (X, d, µ) is a topological space X with
a complete measure µ such that the space of compactly supported continuous
functions is dense in L1

µ(X) and there is a non-negative function (quasimetric)
ρ : X ×X → R+ which satisfies the following conditions:

(i) ρ(x, x) = 0 for all x ∈ X.
(ii) ρ(x, y) > 0 for all x 6= y, x, y ∈ X.
(iii) There exists a positive constant a0 such that ρ(x, y) ≤ a0ρ(y, x) for every

x, y ∈ X.
(iv) There exists a constant a1 such that ρ(x, y) ≤ a1(ρ(x, z)+ ρ(z, y)) for every

x, y, z ∈ X.
(v) For every neighbourhood V of the point x ∈ X there exists r > 0 such that

the ball B(x, r) = {y ∈ X : ρ(x, y) < r} is contained in V .
(vi) Balls B(x, r) are measurable for every x ∈ X and for arbitrary r > 0.
(vii) There exists a constant b > 0 such that

µB(x, 2r) ≤ bµ(B(x, r)) < ∞ (1.1)

for every x ∈ X and r, 0 < r < ∞.

It is known (see [24], [14], p.2) that there exists another quasimetric ρ′, equivalent
to ρ, for which every ball is open.

Throughout the paper we assume that L := diam(X) < ∞; µ{x} = 0 for all
x ∈ X, and

µ
(
B(x0, R) \B(x0, r)

)
> 0 (1.2)

for all x0 ∈ X and r, R with 0 < r < R < L/2. For the definition and some
properties of SHT see, e.g., [24], [5], [14], Ch.1, [12], Ch. 1.

Notice that conditions (1.1) and L < ∞ imply µX < ∞.
If b is the smallest constant for which the measure µ satisfies (1.1), then the

number Q = log2 b is called the doubling order of µ. Iterating (1.1) we find that

µ(B(x,R))

µ(B(y, r))
≤ Cµ

(
R

r

)Q

(1.1′)

for all balls B(x,R) and B(y, r) with B(y, r) ⊂ B(x, R). For example, in the case
of Rn with the Lebesgue measure Q = n.

Let p and q be measurable functions on X such that 1 < p− ≤ p(x) ≤ p+ < ∞,
1 < q− ≤ q(x) ≤ q+ < ∞, where

p− = inf
X

p, p+ := sup
X

p, q− = inf
X

q, q+ := sup
X

q.

We shall use the following notation:

p−(E) = inf
E

p, p+(E) := sup
E

p,

where E is a µ− measurable subset of X.
19



The Lebesgue space with variable exponent Lp(·)(X) (or Lp(x)(X)) is the class
of all measurable µ- functions f on X for which

Sp(f) :=
∫

X
|f(x)|p(x)dx < ∞.

The norm in Lp(·)(X) is defined as follows

‖f‖Lp(·)(X) = inf

{
λ > 0 : Sp(f/λ) ≤ 1

}
.

It is known that Lp(·)(X) is a Banach space (see [23], [16]). For other properties
of Lp(·) spaces we refer to [31], [23], [28], [16].

Definition 1.1. We say that p satisfies the Dini-Lipschitz condition on X
(p ∈ DL(X)) if there exists a positive constant A such that

|p(x)− p(y)| ≤ A

− log(ρ(x, y))

for all x, y ∈ X with ρ(x, y) ≤ 1/2.

Remark 1.1. It is easy to check that if 1 < p−(X) ≤ p+(X) < ∞ and p ∈ DL(X),
then 1/p(·) and p′(·) belong to DL(X), where p′(·) := p(·)/(p(·)− 1).

The next lemma was proved in [16] for metric measure spaces.

Lemma 1.1. Let p ∈ DL(X). Then there exists a positive constant c such that
for all balls B ⊂ X the inequality

µ(B)p−(B)−p+(B) ≤ c

holds.

Proof. First notice that (1.1′) implies that µ is lower Ahlfors Q-regular, i.e.
there is a positive constant c independent of y and r such that

µB(y, r) ≥ crQ

for all y ∈ X and 0 < r < L. Further, suppose that c0 = min
{

1
2
, a1(a0+1)

}
, where

a0 and a1 are constants from the definition of the quasimetric ρ. If 0 < r < c0,
then for B := B(y, r), we have

(µB)p−(B)−P+(B) ≤ crp−(B)−p+(B) ≤ cr
QA

log(c0r) ≤ c.

2

Remark 1.2. It is easy to check that if p ∈ DL(X), then there is a positive
constant c such that

(µB)p(x) ≤ c(µB)p(y)

for all balls B and all x, y ∈ B.

In [2] variable Morrey spaces over a bounded open set Ω ⊂ Rn were introduced.
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Definition 1.2. Let 1 < q− ≤ q(·) ≤ p(·) ≤ p+ < ∞. We say that a measurable

locally integrable function f on X belongs to the class M
p(·)
q(·) (X) if

‖f‖
M

p(·)
q(·) (X)

= sup
x∈X

0<r<L

(µB(x, r))1/p(x)−1/q(x)‖f‖Lq(·)(B(x,r)).

It is easy to see that if p = q, then M
p(·)
q(·) (X) = Lp(·)(X). When p(x) ≡ p and

q(x) ≡ q are constants, the space M
p(·)
q(·) coincides with the classical Morrey space

Mp
q (see [25], [27], [15], [1] for the definition and some properties of Mp

q ). For the
boundedness of maximal and singular integrals in the spaces Mp

q we refer to [4],
[11], [3], [30].

Taking into account Remark 1.2 we have the next statement.

Proposition 1.1. If p, q ∈ DL(X), then there are positive constants c1 and c2

such that
c1‖f‖M̃

p(·)
q(·) (X)

≤ ‖f‖
M

p(·)
q(·) (X)

≤ c2‖f‖M̃
p(·)
q(·) (X)

for all f , where

‖f‖
M̃

p(·)
q(·) (X)

:= sup
x∈X

0<r<L

‖(µ(B(x, r)))1/p(·)−1/q(·)f(·)‖Lq(·)(B(x,r)).

This follows easily from Lemma 1.1 and Remark 1.2.

For the next statement we refer to [23], [28].

Proposition 1.2. Let f be a measurable function on X and let E be a measur-
able subset of X. Then the following inequalities hold:

‖f‖p+(E)

Lp(·)(E)
≤ Sp(fχE) ≤ ‖f‖p−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≤ 1;

‖f‖p−(E)

Lp(·)(E)
≤ Sp(fχE) ≤ ‖f‖p+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≥ 1.

Hölder’s inequality in variable exponent Lebesgue spaces has the following form
(see e.g. [23], [28]):

∫

E
fgdµ ≤

(
1/p−(E) + 1/(p′)−(E)

)
‖f‖Lp(·)(E)‖g‖Lp′(·)(E). (1.3)

The following statement holds (for Euclidean spaces see [2], Lemma 7).

Proposition 1.3. Let 1 < (q1)− ≤ q1(·) ≤ q2(·) ≤ (q2)+ < ∞ and let q1, q2 ∈
DL(X). Then

M
p(·)
q2(·)(X) ↪→ M

p(·)
q1(·)(X).

Proof. By Lemma 1.1, Remark 1.2 and Proposition 1.2 it is enough to see that
there is a positive constant c independent of f , x and r such that

‖(µB(x, r))1/q2(·)−1/q1(·)f(·)‖Lq1(·)(B(x,r)) ≤ c‖f‖Lq2(·)(B(x,r)).
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Indeed, suppose that ‖f‖Lq2(·)(B(x,r) ≤ 1; using Hölder’s inequality and Remark
1.1 we have

Sq1

(
(µB(x, r))1/q2(·)−1/q1(·)f(·)

)
=

∫

B(x,r)

(
(µB(x, r))1/q2(y)−1/q1(y)|f(y)|

)q1(y)

dy ≤

c(µB(x, r))q1(x)/q2(x)−1‖|f |q1(·)‖Lq2(·)/q1(·)(B(x,r))‖χB(x,r)(·)‖L(q2(·)/q1(·))′ (X) ≤ c.

2

Lemma 1.2. Let β be a measurable function on X satisfying β(x) < −1 for
all X. Suppose that r is a small positive number. Then there exists a positive
constant c independent of r and x such that

A(x, r) :=
∫

X\B(x,r)
(µ(Bxy)

β(x)dµ(y) ≤ c
β(x) + 1

β(x)
(µ(B(x, r))β(x)+1,

where

Bxy := µ(B(x, ρ(x, y)).

Proof. We have

A(x, y) =
∫ ∞

0
µ((X \B(x, r)) ∩ {y ∈ X : (µBxy)

β(x) > λ})dλ =

∫ (µ(B(x,r))β(x)

0
+

∫ ∞

(µ(B(x,r))β(x)
:= A1(x, r) + A2(x, r).

First observe that A2(x, r) = 0 for all x ∈ X and small r. Indeed, let x ∈ X and
λ > (µB(x, r))β(x). We denote

Eλ(x) := {y ∈ X : (µBxy)
β(x) > λ}.

Suppose that y ∈ (X \B(x, r)) ∩ Eλ(x). Then we have

µBxy < λ1/β(x).

On the other hand, if λ > (µBxy)
β(x), then µBxy < λ1/β(x) < µB(x, r).

When y ∈ X \ B(x, r) we have ρ(x, y) ≥ r and therefore, µBxy ≥ µB(x, r).
Consequently, (X \ B(x, r)) ∩ Eλ(x) = ∅ if λ > (µB(x, r))β(x), which implies that
A2(x, r) = 0.

Now we estimate A1(x, r). First we show that

µEλ ≤ b2λ1/β(x), (1.4)

where b is the constant from the doubling condition for µ. If µEλ = 0, then (1.4)
is obvious. If µEλ 6= 0, then 0 < t0 < ∞, where

t0 = sup{s ∈ (0, L) : µB(x, s) < λ1/β(x)}.
Indeed, since L < ∞, we have t0 < ∞. Assume now that t0 = 0. Then Eλ = {x};
otherwise there exists y, y ∈ Eλ(x), such that ρ(x, y) > 0 and µBxy < λ1/β(x)

which contradicts the assumption t0 = 0. Hence we conclude that 0 < t0 < ∞.
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Further, let z ∈ Eλ(x). Then µBxz < λ1/β(x). Consequently, ρ(x, z) ≤ t0. From
this we have z ∈ B(x, 2t0), which due to the doubling condition yields

µEλ(x) ≤ µB(x, 2t0) ≤ b2µB(x, t0/2) ≤ b2λ1/β(x).

This implies (1.4). Since β(x) < −1, we have

A1(x, r) ≤ b2
∫ (µB(x,r))β(x)

0
µEλ(x)dλ =

b2β(x)

1 + β(x)
(µB(x, r))β(x)+1.

2

Lemma 1.3 ([5], [33]). Conditions (1.1) and (1.2) imply the reverse doubling
condition (RDC) i.e. there exist constants α, β, 0 < α, β < 1 such that

µB(x, αr) ≤ βµB(x, r) (1.5)

for all x ∈ X and all sufficiently small positive r.

2. Maximal Functions

In this section we establish the boundedness of the operator M in M
p(·)
q(·) (X).

The following statement is well-known (see [9] for Euclidean spaces and [16] for
metric measure spaces).

Theorem A. Let 1 < q− ≤ q(x) ≤ q+ < ∞. Suppose that q ∈ DL(X). Then
M is bounded in Lq(x)(X).

Our aim in this section is to prove the next statement.

Theorem 2.1. Let 1 < q− ≤ q(·) ≤ p(·) ≤ p+ < ∞ and let p, q ∈ DL(X).

Then M is bounded in M
p(·)
q(·) (X).

Proof. Let r be a small positive number. Represent f as follows: f = f1 + f2,
where f1 = fχB(x,ār), f2 = f − f1, where ā = a1(a1(a0 + 1) + 1). We have

(µB(x, r))1/p(x)−1/q(x)‖Mf‖Lq(·)(B(x,r) ≤
(µB(x, r))1/p(x)−1/q(x)‖Mf1‖Lq(·)(B(x,r)+

(µB(x, r))1/p(x)−1/q(x)‖Mf2‖Lq(·)(B(x,r) := I1 + I2.

Taking into account the condition q ∈ DL(X), Theorem A and the doubling
condition we have

I1 ≤ c(µB(x, r))1/p(x)−1/q(x)‖χB(x,ār)f‖Lq(·)(X) ≤ c‖f‖
M

p(·)
q(·) (X)

.

Now observe that for y ∈ B(x, r),

Mf2(y) ≤ sup
B

B⊃B(x,r)

1

µB

∫

B
|f |dµ,

because B(x, r) ⊂ B(y, a1(a0 + 1)r) ⊂ B(x, ār).
Hence by Hölder’s inequality, Lemma 1.1 and Proposition 1.2 we have

I2 ≤ c(µB(x, r))1/p(x)−1/q(x)
[

sup
B

B⊃B(x,r)

1

µB

∫

B
|f |dµ

]
‖χB(x,r)(·)‖Lq(·)(X) ≤
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c(µB(x, r))1/p(x) sup
B

B⊃B(x,r)

(µB)−1‖f‖Lq(·)(B)‖χB‖Lq′(·)(X) ≤

c(µB(x, r))1/p(x) sup
B

B⊃B(x,r)

(µB)−1(µB)1/(q−(B))′‖f‖Lq(·)(B) ≤

c sup
B

B⊃B(x,r)

(µB)1/p(x)−1/q(x)‖f‖Lq(·)(B) ≤

c sup
B

(µB)1/p(x0)−1/q(x0)‖f‖Lq(·)(B) ≤ c‖f‖
M

p(·)
q(·) (X)

,

where x0 is the center of B.
Finally we conclude that M is bounded in M

p(·)
q(·) (X). 2

3. Singular Integrals

Let k : X ×X \ {(x, x) : x ∈ X} → R be a measurable function satisfying the
conditions:

|k(x, y)| ≤ c

µB(x, ρ(x, y))
, x, y ∈ X, x 6= y;

|k(x1, y)− k(x2, y)|+ |k(y, x1)− k(y, x2)| ≤ cω
(

ρ(x2, x1)

ρ(x2, y)

)
1

µB(x2, ρ(x2, y))

for all x1, x2 and y with ρ(x2, y) > ρ(x, x2), where ω is a positive, non-decreasing
function on (0,∞) satisfying ∆2 condition (ω(2t) ≤ cω(t), t > 0) and the Dini
condition

∫ 1
0 ω(t)/tdt < ∞.

We also assume that for some p0, 1 < p0 < ∞, and all f ∈ Lp0(X) the limit

(Kf)(x) = p.v.
∫

X
k(x, y)f(y)dµ(y)

exists almost everywhere on X and that K is bounded in Lp0(X).
The following statement is known (see [21], [22]).

Theorem B. Let p ∈ DL(X). Then K is bounded in Lp(·)(X).

Theorem 3.1. Let 1 ≤ q− ≤ q(·) ≤ p(·) ≤ p+ < ∞. Suppose that q, p ∈
DL(X). Then K is bounded in M

p(·)
q(·) (X).

Proof. We take small r > 0 and represent f as follows: f1 + f2, where f1 =
fχB(x,2a1r), f2 = f − f1. First observe that if y ∈ B(x, r) and z ∈ X \ B(x, 2a1r),
then µB(x, ρ(x, z)) ≤ cµB(y, ρ(y, z)). Indeed,

ρ(x, z) ≤ a1ρ(x, y) + a1ρ(y, z) ≤ a1r + a1ρ(y, z) ≤ ρ(x, z)/2 + a1ρ(y, z).

Hence ρ(x, z) ≤ 2a1ρ(y, z). This implies

µB(x, ρ(x, z)) ≤ cµB(x, ρ(y, z)).

Further, if t ∈ B(x, ρ(y, z)), then

ρ(y, t) ≤ a1ρ(y, z) + a1ρ(z, t) ≤ a1(ρ(y, z) + a1ρ(z, x) + a1ρ(x, t)) ≤
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a1(ρ(y, z) + 2a2
1a0ρ(y, z) + a1ρ(y, z)) = 2a2

1(1 + a0a1)ρ(y, z).

Thus, µB(x, ρ(y, z)) ≤ cµB(y, ρ(y, z)). Finally,

µB(x, ρ(x, z)) ≤ c1µB(x, ρ(y, z)) ≤ c2µB(y, ρ(y, z))).

Let us take an integer m so that αm diam(X) is sufficiently small, where α is
the constant from (1.5). Now by the reverse doubling condition and the latter
inequality, for y ∈ B(x, r), we have

|Kf2(y)| ≤ c
∫

X\B(x,2a1r)
|f(z)|µB(x, ρ(x, z))−1dµ(z) ≤

∫

X\B(x,2a1r)
|f(z)|

( ∫

B(x,αmρ(x,z))\B(x,αm−1ρ(x,z))
(µB(x, ρ(x, t)))−2dµ(t)

)
dµ(z) ≤

∫

X\B(x,αm−12a1r)
(µB(x, ρ(x, t)))−2

( ∫

B(x,α1−mρ(x,t))
|f(z)|dµ(z)

)
dµ(t) ≤

∫

X\B(x,αm−12a1r)
(µB(x, ρ(x, t)))−1f̄(x, t)dµ(t),

where

f̄(x, t) :=

[
µB(x, α1−mρ(x, t))

]−1 ∫

B(x,α1−mρ(x,t))
|f(z)|dµ(z).

Taking into account the condition q ∈ DL(X) and (1.1) we find that

f̄(x, t) ≤ (µ(x, α1−mρ(x, t)))−1‖f‖Lq(·)(B(x,α1−mρ(x,t))‖χB(x,α1−mρ(x,t))‖Lq′(·)(X) ≤

‖f‖
M

q(·)
p(·) (B(x,α1−mρ(x,t))

(µ(x, α1−mρ(x, t)))−1/q′(x)−1/p(x)+1/q′(x) ≤

c‖f‖
M

p(·)
q(·) (X)

(µ(x, ρ(x, t)))−1/p(x).

Hence, Lemma 1.2 yields

|Kf2(y)| ≤ c‖f‖
M

p(·)
q(·) (X)

∫

X\B(x,αm−12a1r)
(µ(x, ρ(x, t)))−1/p(x)−1dµ(t) ≤

cp‖f‖M
p(·)
q(·) (X)

(µB(x, r))−1/p(x) ≤ c‖f‖
M

p(·)
q(·) (X)

(µB(x, r))−1/p(x).

Further, by the last inequality, Theorem B, Lemma 1.1 and Remark 1.2 we have

(µB(x, r))1/p(x)−1/q(x)‖Kf‖Lq(·)(B(x,r)) ≤
(µB(x, r))1/p(x)−1/q(x)‖Kf1‖Lq(·)(B(x,r))+

(µB(x, r))1/p(x)−1/q(x)‖Kf2‖Lq(·)(B(x,r)) ≤
(µB(x, r))1/p(x)−1/q(x)‖f‖Lq(·)(B(x,2a1r))+

(µB(x, r))1/p(x)−1/q(x)‖K2f‖Lq(·)(B(x,r)) ≤ c‖f‖
M

p(·)
q(·) (X)

+
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c(µB(x, r))−1/q(x)‖χB(x,r)‖Lq(·)(X)‖f‖M
p(·)
q(·) (X)

≤ c‖f‖
M

p(·)
q(·) (X)

.

2

4. Applications to singular integrals on fractal sets

Let Γ ⊂ C be a connected rectifiable curve and let ν be arc-length measure on
Γ. By definition, Γ is regular if

ν(D(z, r) ∩ Γ) ≤ r

for every z ∈ Γ and all r > 0, where D(z, r) is a disc in C with center z and radius
r. The reverse inequality

ν(D(z, r) ∩ Γ) ≥ cr

holds for all z ∈ Γ and r < L/2, where L is a diameter of Γ. If we equip Γ with
the measure ν and the Euclidean metric, the regular curve becomes an SHT.

The associate kernel in which we are interested is

k(z, w) =
1

z − w
.

The Cauchy integral

SΓf(t) =
∫

Γ

f(τ)

t− τ
dν(τ)

is the corresponding singular operator.
The above-mentioned kernel in the case of regular curves is a Calderón-Zygmund

kernel. As was proved by G. David [8], a necessary and sufficient condition for
continuity of the operator SΓ in Lr(Γ), where r is a constant (1 < r < ∞), is that
Γ is regular.

Definition 4.1. Let 1 < q− ≤ q(·) ≤ p(·) ≤ p+ < ∞. We say that a measurable

locally integrable function f on Γ belongs to the class M
p(·)
q(·) (Γ) if

‖f‖
M

p(·)
q(·) (Γ)

= sup
z∈Γ

0<r<L

(ν(D(z, r) ∩ Γ))1/p(z)−1/q(z)‖f‖Lq(·)(D(z,r)∩Γ).

Theorem 3.1 implies the following statement.

Proposition 4.1. Let Γ be a regular curve. Suppose that 1 < q− ≤ q(z) ≤
p(z) ≤ p+ < ∞ for all z ∈ Γ. Assume that L < ∞ and p, q ∈ DL(Γ). Then the

Cauchy integral SΓ is a bounded operator in M
p(·)
q(·) (Γ).

Let now Γ be a subset of Rn which is an s-set (0 ≤ s ≤ n) in the sense that
there is a Borel measure µ in Rn such that

(i) supp µ = Γ;
(ii) there are positive constants c1 and c2 such that for all z ∈ Γ and all r ∈ (0, 1),

c1r
s ≤ µ(B(x, r) ∩ Γ) ≤ c2r

s.

It is known (see [32], Theorem 3.4) that µ is equivalent to the restriction of
Hausdorff s− measure Hs to Γ. We shall thus identify µ with Hs|Γ.
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Let Γ(x, r) = B(x, r)∩Γ, where x ∈ Γ. Suppose that KΓ is a Calderón-Zygmund
singular integral defined on an s− set Γ.

The next statement is a consequence of Theorem 3.1.

Proposition 4.2. Let 1 < q− ≤ q(x) ≤ p(x) ≤ p+ < ∞ for all x ∈ Γ. Suppose
that Γ is bounded. Assume that p, q ∈ DL(Γ). Then the operator KΓ is a bounded

operator in M
p(·)
q(·) (Γ).
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homogénes. Lecture Notes in Math. Vol. 242, Springer-Verlag, Berlin, 1971.
[6] D. Cruz-Uribe, SFO, A. Fiorenza, J. M. Martell and C. Perez, The boundedness of classical

operators on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 31(2006), 239-264.
[7] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable Lp

spaces. Ann. Acad. Sci. Fenn. Math. 28(2003), No. 1, 223–238.
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