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1 Introduction.

Let F be a local p field where p is a prime number. Let W be a finite-dimensional vector space

over F ; and let 〈, 〉 be a non-degenerate symplectic bilinear form on W . Let G = Sp (W )

be the group of isometries of W with respect to 〈, 〉. The Weil representation of G which

arises in considering unitary representations of the Heisenberg group attached to W , has

an importatnt role in Θ-correspondences and automorphic forms. The nontrivial unitary

representation theory of H, the Heisenberg group, is given by the following Theorem.

Theorem 1. (Stone− von Neumann). Let χ be a nontrivial character of F+. Then up to

an isomorphism there is only one equivalence class of irreducible unitary representations of

H with central character χ.

In this paper, we will use a specific complete polarization of the symplectic space W, to

construct all smooth irreducible representations of the Heisenberg group over a finite field,

Fpm including p = 2. (See [5] and [6]for complete polarization of a symplectic space example.)

Our approach, as in [5] can be applied to infinite cases as well, i.e. when the ground field is a

local non-Archimedean p-field; However, to exhaust all representations, we use the finiteness

of the ground field (in a finite case, the number of all irreducible representations are known.)

Although some of the Lemmas and corollaries are found in the literatures, in this paper,

we present them with detailed and simple proofs for convenience and completeness.
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2 Heisenberg Group

Let F be a finite field with q = pm elements; where p is a prime number and m is a positive

integer. Let W be a finite-dimensional vector space over F ; and let 〈, 〉 be a non-degenerate

symplectic bilinear form on W ; i.e. 〈, 〉 is a map from W ×W → F having the following

properties:

(1)- 〈, 〉 is linear in each variable.

(2)- 〈, 〉 is non-degenerate; i.e. for any w ∈ W,w 6= 0 there is w′ ∈ W such that

〈w,w′〉 6= 0.

(3)- 〈, 〉 is symplectic ; i.e. for all w,w′ ∈ W we have 〈w,w′〉 = −〈w′, w〉.
The Heisenberg group, H = H (W ), attached to W is the group with underying set

W × F and the following multiplication:

(w, a) (w′, a′) = (w + w′, a+ a′ + 〈w,w′〉)

For all w,w′ ∈ W and a, a′ ∈ F . See also [5] and [6].

Let dimW = 2n, for some positive integer n. Thus |H| = q2n+1. When p = 2 the group

is abelian and its representations are all one dimentional (Characters). In this case; we find

all representations in the next section.

From now on we assume p is an odd prime number.

Lemma 1. Let w ∈ W,w 6= 0. Define ϕw : W → F by ϕw (w′) = 〈w,w′〉 . Then ϕw is onto.

Proof. Let b ∈ F . If b = 0, then take w′ = 0. So let b 6= 0. Since 〈, 〉 is nondegenerate there

is w′ ∈ W such that 〈w,w′〉 = 1. Now we have ϕw (bw′) = 〈w, bw′〉 = b 〈w,w′〉 = b.

Lemma 2. There are q2n + q − 1 conjugacy classes in H.

Proof. Let (w, 0) ∈ H, with w 6= 0 Then the conjugacy class that contains this element is

(w′, a′) (w, 0) (−w′,−a′) = (w, 2 〈w′, w〉)

From here and Lemma 1, we deduce that conjugacy classe of (w, 0) is {(w, a) ∈ H | w 6= 0}.
Thus there are q2n−1 classes of this form and each class contains q elements. Now let w = 0

and look for conjugacy classes for (0, a) , a ∈ F . Then some computations as above shows

that there are q different conjugacy classes of this type with one element in each class.

Corollary 1. There are two types of conjugacy classes in H with representative elements

(w, 0) , w 6= 0, and (0, a) , w ∈ W,a ∈ F .

Corollary 2. There are q2n + q − 1 irreducible representations of H. See [1], [2], [7]

Lemma 3. The center of H, Z (H), is isomorphic to F+.
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Proof. Let (w, a) ∈ Z (H), then we must have

(w, a) (w′, a′) = (w′, a′) (w, a)

for all (w′, a′) ∈ H. Thus

(w′ + w, a′ + a+ 〈w′, w〉) = (w + w′, a+ a′ + 〈w,w′〉)

From here we must have 〈w,w′〉 = 〈w′, w〉 or 〈w,w′〉 = 0. Since 〈, 〉 is nondegenerate we get

w = 0. Thus

Z (H) = {(0, a) ∈ H | a ∈ F} .

Now define f : Z (H) → F+ by f (0, a) = a. It is easy to show that f is an isomorphism.

See also [5] and [6].

Lemma 4. The group of commutatores of H, [H,H], is equal to Z (H), the center of H.

Proof. Let (w, a) , (w′, a′) ∈ H. Then we have

(w, a) (w′, a′) (−w,−a) (−w′,−a′) = (0, 〈w,w′〉) .

Now apply Lemma 1 to get [H,H] = Z (H). See also [6]

Corollary 3. The quotient group H/Z (H) is abelian group with |H/Z (H)| = q2n+1

q
= q2n

elements.

Lemma 5. Any character (one-dimensional representation) ρ of H induces a character of

H/Z (H), and conversely any character of H/Z (H) induces a character of H.

Proof. Let (w, a) , (w′, a′) ∈ H. Then we have:

ρ ((w, a) (w′, a′) (−w,−a) (−w′,−a′))
= ρ (w, a) ρ (w′, a′) ρ (−w,−a) ρ (−w′,−a′)
= ρ (w, a) ρ (w′, a′) (ρ (w, a))−1 (ρ (w′, a′))

−1

= 1

= ρ (0, 〈w,w′〉)

Thus ρ is trivial on [H,H] = Z (H). Let (̃w, a) be an element of H/Z (H) whose represen-

tative is (w, a). Now one can easily check that ρ̃ : H/Z (H) → C×, ρ̃
(

(̃w, a)
)

= ρ (w, a)

is a well-defined character of H/Z (H). Conversely any character ρ̃, of H/Z (H) induces a

character of H by ρ (w, a) = ρ̃
(

(̃w, a)
)
.

Lemma 6. H/Z (H) is isomorphic to additive group W .

Proof. Define ϕ : H → W by ϕ (w, a) = w . Then one can check that ϕ is an onto

homomorphis and its kernel is Z (H) .

164



The Representations of The Heisenberg Group over a Finite Field 165

Corollary 4. Any character of H/Z (H) will be determined by its value on W . In fact a

set of the representatives of Z (H) in H/Z (H) is W × {0} = {(w, 0) |w ∈ W }.

Proof. Let (̃w, a) ∈ H/Z (H) . Then (̃w, a) = (̃w, 0) , because (w, a) − (w, 0) = (0, a) ∈
Z (H) .

All characters (One-dimensional representations) of H are given by the following theorem.

Theorem 2. Let χ be a non-trivial character of F+(See [4] for the existence of a non

trivial character of F+.). For any (w, 0) ∈ W × {0} Define ψ̃
(w,χ)

: H/Z (H) → C×

by ψ̃
(w,χ)

(
˜(w′, 0)

)
= χ (〈w,w′〉) for ˜(w′, 0) ∈ H/Z (H). Then ψ̃

(w,χ)
is a character of

H/Z (H) .

Proof. First we will show that ψ̃
(w,χ)

is well defined. Let (̃w1, 0) = (̃w2, 0) ∈ H/Z (H) then we

must have (w1, 0)− (w2, 0) ∈ Z (H). From here we have (w1 − w2, 0 + 0 + 〈w1, w2〉) ∈ Z (H)

Thus w1 − w2 = 0. Hence w1 = w2 = w′; i.e.

ψ̃
(w,χ)

(
(̃w1, 0)

)
= ψ̃

(w,χ)

(
(̃w2, 0)

)
= χ (〈w,w′〉) .

On the other hand we have:

ψ̃
(w,χ)

(
(̃w1, 0)(̃w2, 0)

)
= ψ̃

(w,χ)

(
˜(w1 + w2, 0 + 0 + 〈w1, w2〉)

)
= ψ̃

(w,χ)

(
˜(w1 + w2, 0)

)
= χ (〈w,w1 + w2〉)
= χ (〈w,w1〉+ 〈w,w2〉)
= χ (〈w,w1〉)χ (〈w,w2〉)
= ψ̃

(w,χ)

(
(̃w1, 0)

)
ψ̃

(w,χ)

(
(̃w2, 0)

)
.

Lemma 7. For any a ∈ F× we have ψ̃
(aw,χ)

= ψ̃
(w,χa)

where χa (x) = χ (ax) for all x ∈ F is,

a character of F+.

Proof. For any (̃w′, 0) ∈ H/Z (H) we have:

ψ̃
(aw,χ)

(
(̃w′, 0)

)
= χ (〈aw,w′〉)
= χ (a 〈w,w′〉)
= χa (〈w,w′〉)
= ψ̃

(w,χa)

(
(̃w′, 0)

)
.
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Lemma 8. Let χ be a character of F+. If ψ̃
(w,χ)

= ψ̃
(w′,χ)

, then w = w′.

Proof. Let ψ̃
(w,χ)

= ψ̃
(w′,χ)

. Then for any (̃w′′, 0) ∈ H/Z (H), we have:

ψ̃
(w,χ)

(
(̃w′′, 0)

)
= χ (〈w,w′′〉)

= ψ̃
(w′,χ)

(
(̃w′′, 0)

)
= χ (〈w′, w′′〉) .

From here we get

χ (〈w − w′, w′′〉) = 1

Since 〈, 〉 is non-degenerate we must have w − w′ = 0,thus w = w′.

Corollary 5. There are q2n characters of H.

Proof. Since |W × {0}| = |{(w, 0) |w ∈ W }| = q2n, the Lemmas 7 and 8 imply that there

are q2n characters for H/Z (H). Now apply Lemma 5.

There are q−1 more irreducible representations of H. These representations have dimen-

sions bigger than one. We determine these representations as follows.

Lemma 9. Let B = {α1, β1, α2, β2, · · · , αn, βn} be a basis of W having the following prop-

erties: (this basis exists because W is a non-degenerate symplectic space.)

〈αi, αj〉 = 〈βi, βj〉 = 0, for all i, j

〈αi, βj〉 = 0, for all i, j, i 6= j

〈αi, βi〉 = 1, for all i

Let V be the subspace of W generated by B1 = {α1, α2, · · · , αn}. Then:

1. For all v, v′ ∈ V , 〈v, v′〉 = 0.

2. Let w ∈ W but w /∈ V . Then there exists αk ∈ B1 such that 〈w, αk〉 6= 0.

Proof. 1. This is a consequence of our choice of the basis B1.

2. Let w ∈ W . Thus w =
n∑
i=1

λiαi +
n∑
j=1

µjβj, where λi, µj ∈ F and µk 6= 0 for at least

one k, 1 ≤ k ≤ n, because w /∈ V . From here for this k we have:

〈w, αk〉 =

〈
n∑
i=1

λiαi +
n∑
j=1

µjβj, αk

〉

=
n∑
i=1

λi 〈αi, αk〉+
n∑
j=1

µj 〈αi, αk〉

= 0 + µk

= µk
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Corollary 6. Let W ′ be the subspace of W generated by B2 = {β1, β2, · · · , βn}. For any

a ∈ F and w ∈ W ′, w 6= 0, there is v ∈ V such that 〈w, v〉 = a.

Proof. By Lemma 1 there is w′ ∈ W such that 〈w,w′〉 = a. Now write w′ = v1 + v2 for some

v1 ∈ V and v2 ∈ W ′( note that we have W = V
⊕

W ′). From here and properties of the

basis B2 we have:

a = 〈w,w′〉
= 〈w, v1 + v2〉
= 〈w, v1〉+ 〈w, v2〉
= 〈w, v1〉+ 0

= 〈w, v1〉

Now set v = v1.

Lemma 10. Let V be the subspace of W introduced in the Lemma 9. Set K = {(v, a) ∈ H |
v ∈ V, a ∈ F}. Then K is a normal abelian subgroup of H.

Proof. Let (v1, a1) and (v2, a2) ∈ K. Then by using first part of Lemma 9 we have:

(v1, a1) (−v2,−a2) = (v1 − v2, a1 − a2 + 〈v1,−v2〉)
= (v1 − v2, a1 − a2) ∈ K

Since K 6= ∅ thus it is a subgroup of H. Also note that we have

(v1, a1) (v2, a2) = (v1 + v2, a1 + a2)

= (v2 + v1, a2 + a1)

= (v2, a2) (v1, a1)

So K is abelian. Now let (w, a) ∈ H. Then for any (v, b) ∈ K we have

(w, a) (v, b) (−w,−a) = (w + v − w, a+ b− a+ 〈w, v〉+ 〈w + v,−w〉)
= (v, b+ 〈w, v〉) ∈ K.

Thus K is normal.

Definition 1. Let K be as in Lemma 10. Define ψ : K → C× by ψ (v, a) = χ (a) , where χ

is a nontrivial character of F+.

Lemma 11. Let ψbe as in Definition 1 . Then ψ is a character of K. See also [5] and [6].
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Proof. Let (v1, a1) and (v2, a2) ∈ K. Then we have:

ψ ((v1, a1) (v2, a2)) = ψ

(
v1 + v2, a1 + a2 +

1

2
〈v1, v2〉

)
= ψ (v1 + v2, a1 + a2 + 0)

= χ (a1 + a2)

= χ (a1)χ (a2)

= ψ (v1, a1)ψ (v2, a2) .

Corollary 7. There are at least q − 1 nontrivial character of K.

Proof. Because there are q − 1 nontrivial character of F+.

Lemma 12. Let ψ,K be as in Definition 1 . Let

C (H,K) = {f : H → C | f (kh) = ψ (k) f (h) , for all k ∈ K,h ∈ H} .

Then C (H,K) is a vector space over C of dimension qn. See also [5]

Proof. It is easy to show C (H,K) is a vector space. We will show that dim C (H,K) = qn.

Let S = {s1, s2, · · · , sqn} be a set of representatives of cosets of K in H. Thus for any h ∈ H
there exist a unique k ∈ K and s ∈ S such that h = ks. Now for each i, 1 ≤ i ≤ qn, define

fi : H → C as follows

fi (ksj) = χ (k) δij

where

δij =

{
1 i = j

0 i 6= j

is Kronoker delta. Since for any f ∈ C (H,K), we then have

f =

qn∑
i=1

f (si) fi

and if we set

qn∑
i=1

λifi = 0 we get λi = 0, for all i, 1 ≤ i ≤ qn, the set of all these functions,

{fi}i , 1 ≤ i ≤ qn is a basis for C (H,K). Thus dim C (H,K) = qn.

Definition 2. Let Notations be as in Lemmas 12 and 8., and define ρ : H → GL (C (H,K))

by

(ρ (h) f) (h′) = f (h′h) , for all f ∈ C (H,K) , and h, h′ ∈ H.

Theorem 3. Let (ρ, C (H,K)) be the function as defined in Definition 2. Then (ρ, C (H,K))

is an irreducible representation of H of degree qn.
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Proof. Let h1, h2 ∈ H. We then for all f ∈ C (H,K) and h′ ∈ H have:

(ρ (h1h2) f) (h′) = f ((h′h1)h2)

= (ρ (h2) f) (h′h1)

= ρ (h1) (ρ (h2) f) (h′)

i.e. ρ (h1h2) = ρ (h1) ρ (h2) . Thus ρ is a representation of H. To Show (ρ, C (H,K)) is

irreducible; it is enough to show that ψh 6= ψ for all h ∈ H and h /∈ K, where ψh is defined

by

ψh (x) = ψ
(
h−1xh

)
, for all x ∈ K.

See [7]. Since χ is nontrivial there is a ∈ K such that ψ (v, a) = χ (a) 6= 1, for all v ∈ V.
(V is the same as in the Lemma 9.) Now Let W ′ be the same as in the Corollary 6. Let

h = (v, b) ∈ H\K; thus there are v1 ∈ V and v2 ∈ W ′, v2 6= 0, such that v = v1 + v2.Then

by the Lemma 1 there is some v′ ∈ V such that 〈v2, v′〉 = a. Now let x = (v′, 0) ∈ K. We

then have:

ψh (x) = ψ
(
h−1xh

)
= ψ ((−v,−b) (v′, 0) (v, b))

= ψ (v′, 〈v, v′〉)
= χ (〈v, v′〉) .

On the other hand we have

〈v, v′〉 = 〈v1 + v2, v
′〉

= 〈v1, v′〉+ 〈v2, v′〉
= 0 + 〈v2, v′〉
= 〈v2, v′〉
= a.

From here we get ψh (x) = χ (〈v, v′〉) = χ (a) 6= 1, but ψ (x) = ψ (v′, 0) = χ (0) = 1, i.e.

ψh (x) 6= ψ (h−1xh). See also [5] for another proof of irreducibility.

Corollary 8. Let(ρ, C (H,K)) be the representation of H as defined in Definition 2. Then

the central character of (ρ, C (H,K)) is χ.

Proof. Let h = (0, a) be an element in Z (H ) ,the center of H. Then for all f ∈ C (H,K)

and (w, b) ∈ H we have:

(ρ (0, a) f) (w, b) = f ((w, b) (0, a))

= f ((0, a) (w, b))

= χ (a) f (w, b) .

i.e. ρ (0, a) f = χ (a) f , for all f ∈ C (H,K). Thus ρ|Z(H ) = χ.
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Corollary 9. Different characters of F+ induce different ρ’s.

Corollary 10. Any irreducible representation of H is either a character as in Corollary 5

or a qn- dimensional representation as in Theorem 3.

Proof. The dimensions of irreducible representations of H, say n1, n2, · · · , nk, where k is the

number of the irreducible representations of H must satisfy the following equation:

|H| = q2n+1

=
k∑
i=1

n2
i .

From Corollary 5 we know there are q2n one dimensional representations of H and from

Theorem 3 we get (q − 1) irreducible representations of H of dimension qn . Now note that:

q−1∑
i=1

(qn)2 +

q2n∑
i=1

12 = (q − 1) q2n + q2n

= q2n+1

= |H| .

3 Representations of H when p = 2

Let p = 2 and let V,W ′ be as in Lemma 9 and Corollary 6. Thus W = V ⊕W ′.

Lemma 13. For any w ∈ W we have 〈w,w〉 = 0.

Proof. Write w = w1 + w2, for w1 ∈ V and w2 ∈ W ′. We then have:

〈w,w〉 = 〈w1 + w2, w1 + w2〉
= 〈w1, w1〉+ 〈w1, w2〉+ 〈w2, w1〉+ 〈w2, w2〉
= 0 + 2 〈w1, w2〉+ 0

= 0.

Definition 3. Let χ be a nontrivial character of F+. For each w = w1 + w2 ∈ W ; define

ϕ
(w,χ)

: H → C× by

ϕ
(w,χ)

(w′, a) = χ (a)χ (〈w1, w
′
2〉)χ (〈w′1, w′2〉)χ (〈w2, w

′
1〉) .

For any (w′, a) ∈ H, where w′ = w′1 + w′2 ∈ W , w′1 ∈ V and w′2 ∈ W ′.
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Theorem 4. Let ϕ
(w,χ)

be the function defined in Definition 3. Then ϕ
(w,χ)

is a character of

H whose restriction to F is χ.

Proof. Let (w′, a) and (w′′, b) ∈ H and write w′ = w′1 +w′2 and w′′ = w′′1 +w′′2 for w′1,w
′′
1 ∈ V

and w′2, w
′′
2 ∈ W ′. Then we have:

(w′, a) (w′′, b) = (w′ + w′′, a+ b+ 〈w′, w′′〉)
= (w′1 + w′2 + w′′1 + w′′2 , a+ b+ 〈w′1 + w′2, w

′′
1 + w′′2〉)

= ((w′1 + w′′1) + (w′2 + w′′2) , a+ b+ 〈w′1, w′′1〉+ 〈w′1, w′′2〉+ 〈w′2, w′′1〉+ 〈w′2, w′′2〉)
= ((w′1 + w′′1) + (w′2 + w′′2) , a+ b+ 〈w′1, w′′2〉+ 〈w′2, w′′1〉) .

From here we have:

ϕ
(w,χ)

(w′, a) (w′′, b)

= ϕ
(w,χ)

((w′1 + w′′1) + (w′2 + w′′2) , a+ b+ 〈w′1, w′′2〉+ 〈w′2, w′′1〉)
= χ (a+ b+ 〈w′1, w′′2〉+ 〈w′2, w′′1〉)χ (〈w1, w

′
2 + w′′2〉)χ (〈w′1 + w′′1 , w

′
2 + w′′2〉)χ (〈w2, w

′
1 + w′′1〉)

= χ (a+ b)χ (〈w′1, w′′2〉+ 〈w′2, w′′1〉)χ (〈w1, w
′
2 + w′′2〉)χ (〈w′1 + w′′1 , w

′
2 + w′′2〉)χ (〈w2, w

′
1 + w′′1〉)

= χ (a+ b)χ (〈w1, w
′
2 + w′′2〉)χ (〈w2, w

′
1 + w′′1〉)χ (〈w′1, w′′2〉+ 〈w′2, w′′1〉)χ (〈w′1 + w′′1 , w

′
2 + w′′2〉)

= χ (a+ b)χ (〈w1, w
′
2 + w′′2〉)χ (〈w2, w

′
1 + w′′1〉)χ (〈w′1, w′2〉+ 〈w′′1 , w′′2〉)

= χ (a)χ (〈w1, w
′
2〉)χ (〈w′1, w′2〉)χ (〈w2, w

′
1〉)χ (b)χ (〈w1, w

′′
2〉)χ (〈w′′1 , w′′2〉)χ (〈w2, w

′′
1〉)

= ϕ
(w,χ)

(w′, a)ϕ
(w,χ)

(w′′, b) .

Thus ϕ
(w,χ)

is a character of H. Inparticular we have: ϕ
(w,χ)

(0, a) = χ (a) .

Corollary 11. For any w ∈ W and any two distinct characters of F+, χ1 and χ2 we have

ϕ
(w,χ1)

6= ϕ
(w,χ2)

.

Lemma 14. Let χ be a non-trivial character of F+.Then for any two elements w and w′ of

W we have ϕ
(w,χ)
6= ϕ

(w′,χ)
.

Proof. Let w = w1 + w2 ∈ W and w′ = w′1 + w′2 ∈ W where w1, w
′
1 ∈ V and w2, w

′
2 ∈ W ′.

Suppose ϕ
(w,χ1)

= ϕ
(w,χ2)

. For any v ∈ V and a ∈ F we then must have

ϕ
(w,χ1)

(v, a) = ϕ
(w,χ2)

(v, a)

But for the left hand side of this equation we have:

ϕ
(w,χ1)

(v, a) = χ (a)χ (〈w1, 0〉)χ (〈v, 0〉)χ (〈w2, v〉)
= χ (a)χ (〈w2, v〉) .

The same computations gives ϕ
(w,χ2)

(v, a) = χ (a)χ (〈w′2, v〉) . From here we must have

χ (〈w2, v〉) = χ (〈w′2, v〉) for all v ∈ V . This and the Lemma 9 force to get w2 = w′2.

The same argument by choosing v ∈ W ′ gives w1 = w′1.

171



172 Manouchehr Misaghian

Corollary 12. The Theorem 4 gives (q − 1) q2n characters of H.

Proof. This is a consequence of the Corollary 11 and the Lemma 14.

Definition 4. Let χ be a nontrivial character of F+; and set K = {0} × F . By the Lemma

6 H/K is isomorphic to additive groupW . Thus any character of H/K is determined by its

values on {(w, 0) | w ∈ W} .So for each w ∈ W , ρ̃(w,χ) : H/K → C× defined by

ρ̃(w,χ)

(
(̃w′, 0)

)
= χ (〈w,w′〉) .

is a character of H/K . Now define ρ(w,χ) : H → C×by ρ(w,χ) (w′, a) = ρ̃(w,χ)

(
(̃w′, 0)

)
.

The rest of the characters of H are given in the following theorem.

Theorem 5. Let ρ(w,χ)be the function as defined in the Definition 4. Then ρ(w,χ) is a

character of H whose restriction to K is trivial.

Proof. The same proof as in the Theorem 2 works here.

Corollary 13. Theorem 5 determines q2n characters of H.

Proof. This result follows from Lemmas 7 and 8.

Theorem 6. Any representation of H when p = 2 is either one of the characters defined in

the Therorem 4 or one of the characters defined in the Theorem 5.

Proof. Let ψ be a character of H. If the restriction of ψ to {0}×F is a nontrivial character,

then it is one of the characters in the Theorem 4. If the restriction of ψ to {0}×F is trivial,

then it is one of the characters in the Theorem 5. Moreover, the number of characters that

are built in the Theorems 4 and 5 are:

(q − 1) q2n + q2n = q2n+1.

which is the same as the order of H .
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