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Abstract

A generalization of the Krylov-Eckhoff method is investigated for removing of the classi-

cal Gibbs phenomenon. Convergence acceleration scheme for Fourier expansions of piecewise

smooth functions is derived. Numerical results are presented and discussed.
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1 Introduction

Fourier series are used widely in many branches of mathematics. They are often used to-

gether with separation of variables to construct solutions to boundary value problems for

differential equations as well as with spectral methods to find approximate solutions to these

problems numerically. For practical purposes, solutions to these problems are usually ob-

tained using a finite number of the terms in a Fourier series. This truncation procedure leads

to nonuniformly valid approximations because when the approximated function has a point

of discontinuity, the Gibbs phenomena is present. The ”oscillations” caused by this phe-

nomena typically propagate into regions away from the singularity and degrade the quality

of the partial sum approximation.

In case of piecewise smooth functions the idea of overcoming the Gibbs phenomenon for

convergence acceleration was suggested by A. Krylov as far back as in 1905 [1] but it was

widely known only since 1960 after investigations of C. Lanczos [2]. The problem of practical

applications was solved by K. Eckhoff in 1993 [3] by utilization of the Bernoulli polynomials

for approximate reconstruction of jumps.
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Let f = f(x) is a function on [−1, 1] with given points of singularities 1 {ak},

−1 = a1 < · · · < am = 1, 1 ≤ m <∞.

It is supposed that am+1 = a1 and if a1 = −1 then a1 − 0 = 1 − 0, a1 + 0 = −1 + 0. Let

f ∈ CQ+1, Q ≥ 0 on each segment [ak, ak+1] . By {Ask} denote the following ”jumps” of f

and its derivatives in {as}

Ask(f) = f (k)(as − 0)− f (k)(as + 0), k = 0, 1, · · · , Q, s = 1, · · · ,m. (1)

It is easy to see that the Fourier coefficients {fn} of f

fn =
1

2

∫ 1

−1
f(t)e−iπntdt =

1

2

m−1∑
s=1

∫ as+1

as

f(t)e−iπntdt (2)

have the following asymptotic representation (n 6= 0)

fn = −1

2

m∑
s=1

e−iπnas
Q∑
k=0

Ask(f)

(iπn)k+1
+ gn,

where

gn =
1

2(iπn)Q+1

∫ 1

−1
f (Q+1)(t)e−iπntdt = o(n−Q−1), n→∞. (3)

Consider now Bernoulli polynomials {Bk(x)}, k ≥ 0 with the Fourier coefficients

Bk,n =


0, n = 0

(−1)n+1

2(iπn)k+1
, n 6= 0

(4)

On the real line Bernoulli polynomials are considered as 2-periodic piecewise-smooth func-

tions with ”jump points” {ak = 2k + 1}, k = 0,±1,±2, ....

According to (1-3) the function f can be represented in the form

f(x) =
∑
∀n

fne
iπnx = WQ(x) + w(x) (5)

where

WQ(x) =
m∑
s=1

Q∑
k=0

Ask(f)Bk(x− as − 1)

and w ∈ CQ(R).

Hence the sequence

FN(x) = WQ(x) +
N∑

n=−N

wne
iπnx (6)

1We call a point aj as the Q-singularity point of a g(x) if
∑Q

k=0 |Ajk(g)|2 6= 0. The points x = ±1 are

identified
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converges uniformly to f(x) with the rate o(N−Q−1), N →∞.

However for a realization of the corresponding algorithm we need to know not only the

Fourier coefficients {fn}, |n| ≤ N but also the jump points {as} and the corresponding jump

values {Ask(f)}.
The problem of determination of the approximate values {Ãsk} can be solved by utiliza-

tion only of the Fourier coefficients (if all jump points {as} are known) by solution of the

following linear system, arising from (2), by an appropriate choice of indices n = ns, s =

1, 2, ...,m(Q+ 1), θN ≤ |ns| ≤ N, 0 < θ < 1

fn = −1

2

m∑
s=1

e−iπnas
Q∑
k=0

Ãsk
(iπn)k+1

, n = n1, n2, ..., nm(Q+1)

provided unique solvability2.

We will call this approach as Krylov-Eckhoff (KE)-method and WQ(x) as a correction

function. From above we have

Proposition 1. KE-method is exact for a finite sum of piecewise-polynomials when Q

is rather big and N > (Q+ 1)/2 .

Many investigations were devoted to similar problems (see, for example, [4]-[13] with

references therein). In particular, D. Gottlieb and C.-W. Shu [4] proposed a way of over-

coming the Gibbs phenomenon by a technique that involved a conversion to a series by the

Gegenbauer polynomials. In [7] a method that used quasi-polynomials was suggested which

was further generalized in [9] to the eigenfunction expansions using corresponding Green

functions of the regular boundary value problems for ODE with smooth coefficients.

This paper proposes a general formulation of convergence acceleration scheme which

actually contains the above mentioned Krylov-Eckhoff method as a particular case.

2 The scheme

The idea of our generalization is a realization of Krylov-Eckhoff scheme using a wide range

of correction functions for acceleration in the case of m ≥ 1 Q−singularity points (see In-

troduction). For a fixed integer Q consider a system of piecewise smooth basis functions

{Φj
r(x)}, r = 1, 2, · · ·Q + 1, j = 1, 2, · · · ,m, −1 ≤ x ≤ 1 with corresponding Fourier coeffi-

cients {φjrn}, n = 0,±1,±2, · · · . Suppose that we can quickly and efficiently find values of

each Φj
r(x) on the segment [−1, 1] (for example, when we have its explicit form) as well as

find values of corresponding Fourier coefficients {φjrn} for each n (for example, by an explicit

form).

2In the case of smooth f the unique solvability follows from the fact that the matrix of the system is a

Vandermonde matrix.
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2.1 The case of smooth f

First consider the simplest case when m = 1. Then Φ1
r(x) = Φr(x), Φ1

r ∈ CQ+1[−1, 1],

and f ∈ CQ+1[−1, 1]. We will show that (providing some simple conditions) the following

function G

G(x) =

Q+1∑
r=1

cr Φr(x)

is a correction function if coefficients {cr} are determined appropriately.

Denote by φrn, n = 0,±1, · · · the Fourier coefficients of Φr(x). According to (3) we have

the following asymptotic representation

φrn = (−1)n+1

Q∑
k=0

hrk
2(iπn)k+1

+ o(n−Q−1), n→∞, (7)

where {hrk} are the corresponding jumps of Φr(x) and its derivatives

hrk = Φ(k)
r (1)− Φ(k)

r (−1).

Hence for Fourier coefficients {gn} of G(x) we have

gn = (−1)n+1

Q∑
k=0

Hk

2(iπn)k+1
+ o(n−Q−1), n→∞, (8)

where

Hk =

Q∑
r=1

crhrk.

Representation (8) leads to the following system of linear equations for determination of the

values H̃k which approximate the values of Hk

(−1)ns+1

Q∑
k=0

H̃k

2(iπns)k+1
= fns , s = 1, · · · , Q+ 1. (9)

The Vandermonde matrix of this system provides unique solvability.

It is clear, that here the acceleration problem is solved if the matrix [hrk], r, k = 1, 2, · · · , Q
is invertible so approximate vales c̃k of ck can be found.

2.2 General case

In this case we suppose that each Φj
r(x) has only one Q-singularity point aj.

Here we have the following asymptotic representation (j = 1, 2, · · · ,m)

φjrn = −e−iπajn
Q∑
k=0

hjrk
2(iπn)k+1

+ o(n−Q−1), n→∞. (10)
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Hence for Fourier coefficients {gn} of G

G(x) =
m∑
j=1

Q+1∑
r=1

cjr Φj
r(x)

we have

gn = −
m∑
j=1

e−iπajn
Q∑
k=0

Hj
k

2(iπn)k+1
+ o(n−Q−1), n→∞, (11)

where

Hj
k =

Q+1∑
r=1

cjrh
j
rk.

Representation (11) leads to the following system of linear equations for determination of

the approximate values H̃j
k of Hj

k

−
m∑
j=1

e−iπajns

Q∑
k=0

H̃j
k

2(iπns)k+1
= fns , s = 1, 2, · · · , (Q+ 1)m, ns = O(N), N →∞. (12)

It is easy to see that the matrix M of this system is block-Vandermonde and does not depend

on the type of correction functions.

Proposition 2. The equation (12) is uniquely solvable if the (Q + 1)m × (Q + 1)m-

matrix M and (Q + 1) × (Q + 1)-matrices [hjrk], j = 1, 2, · · · ,m, are invertible and N is

rather big.

Proposition 3. Described method is exact for any linear combination of functions

{Φj
j(x)} if the (Q + 1) × (Q + 1)-matrices [hjrk], j = 1, 2, · · · ,m, are invertible and N >

(Q+ 1)m/2 .

Remark 1. The solution of equation (12) is actually a repetition of corresponding part

of KE-method with additional inverses of matrices [hjrk].

2.2.1 Some examples of basis functions

In addition to Bernoulli polynomials used by K. Eckhoff (when corresponding basis functions

are polynomials) we consider some other simple cases.

• Exponential basis functions

αrj ∈ C, Φj
r(x) =

−1 < x < aj, exp(i π αrj(x− aj))

x ≥ aj, exp(i π αrj(x− aj − 2))
(13)

Fourier coefficients of basis functions are

φjrn =

If αrj is integer and n = αrj, 0

Otherwise,
sin(π αrj)

iπ(αrj−n)

(14)
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In this case [hjrk] = 2 [ik+1αkrj sin (αrj)] is multiplication of a Vandermonde matrix by

diagonal matrices (from left side and right side). Here we see that suggested acceleration

algorithm is valid, if for any fixed j (= 1, 2, · · · ,m) the values αrj, r = 1, 2, · · · ,m, are

different and not integer.

• Rational basis functions

αrj ∈ C�[−1, 1], Φj
r(x) =

−1 < x < aj,
1

x−αrj

x ≥ aj,
1

x−αrj−2

(15)

Here we have

φjrn =
1

2
exp(−i αrj π n)(Γ(0,−i π n (αrj + 1))− Γ(0,−i π n (αrj − 1))) (16)

where Γ(a, z) =
∫ +∞
z

ta−1 e−t dt is the incomplete gamma function which is one of special

functions included in the MATHEMATICA package. It has a branch cut discontinuity in

the complex z plane running from −∞ to 0 (see [13]). So it is necessary to calculate (16)

separately on the cut line (for example, when n=0).

• Bernoulli-like basis functions.

It is convenient to use a system {Φj
r(x)} with triangular nonsingular [hjrk] for each fixed

j. Note, that in [12] the following functions (k = 0, 1, · · · ) are considered

Ψl(x) =

l = 2k + 1, (1− cos(π(x+ 1)))k+1/2

l = 2k, sin(πx)(1− cos(π(x+ 1)))k−1/2

Fourier coefficients of this functions have explicit form and corresponding system {Ψr(x)}, k =

0, 1, · · ·Q will be Bernoulli-like for any Q (see page 262 in [12]).

Remark 2. It is easy to see that from any basis {Φj
r(x)} one can construct a Bernoulli-

like system if Proposition 3 is fulfilled.

Remark 3. In consideration of known relations between the discrete and the continuous

Fourier series one can expand above stated results to trigonometric interpolation on a uniform

grid (similarly to [13]).

3 Numerical results

Below ”Classic” algorithm corresponds to the truncated sum

fN(x) =
N∑

n=−N

fn e
iπnx.
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3.1 Smooth function

First consider a smooth function (with singularity only in x = a1 = ±1)

f1(x) = J 7
3

(
ix2 − x+ 1

)
sinh

(
2

3
cos

(
1

3
− x
)
− i(5x+ 2i) log(x+ 4)

)
.

Figure 1 shows the graphs of real and imaginary parts of this function.
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0.5

1.0

1.5

2.0

ImH f1L

ReH f1L

Figure 1: The graphs of real and imaginary parts of f1(x) .

For acceleration algorithms with Q = 3 the following basis functions are used

Algorithms Basis functions

KE-method {x/2, x2/4− 1/12, x3/12− x/12, x4/48− x2/24 + 7/720}
Bernoulli-like {erf(x), (ex − e−1) log(2− x), (1− x2)2/(x+ 5), (cos(2)− cos(2x))3}
Exponential {exp(iπx/4), exp(−iπx/2), exp(4 iπx/3), exp(−5 iπx/2)}

Rational {1/(x+ 3), 1/(x− 3), 1/(x+ 5), 1/(x− 5)}

Table 1. Basis functions for f = f1(x), Q = 3.

In Table 2 working time of each algorithm corresponds to the sum of times for N = 16

and N = 64.

Error norm→ L∞ -errors L2 -errors

Algorithms ; time ↓ ‖N→ 16 64 16 64

Classic ; 0.016 sec. 1.5 e-0 1.5 e0 8.8 e-2 4.4 e-2

KE-method ; 0.063 sec. 1.6 e-3 5.1 e-6 5.7 e-5 9.2 e-8

Bernoulli-like ; 0.17 sec. 1.7 e-3 5.2 e-6 6.0 e-5 9.4 e-8

Exponential ; 0.063 sec. 1.1 e-3 3.5 e-6 4.0 e-5 6.4 e-8

Rational ; 0.187 sec. 1.6 e-3 5.2 e-6 5.8 e-5 9.3 e-8

Table 2. Errors and working times while approximating f1(x) when N = 16, 64;Q = 3.
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3.2 Function with one jump

Now consider a function with jumps in an additional point (a1 = ±1, a2 = 1/3)

f2(x) =

x ≤ 1
3
, 2

3−x + x sin((3 + 2i)x)

x > 1
3
, e−x − i cos(4x)

Figure 2 shows the graphs of real and imaginary parts of f2.

-1.0 -0.5 0.5 1.0

-3

-2

-1

1

2
ImH f2L

ReH f2L

Figure 2: The graphs of real and imaginary parts of f2(x).

For acceleration algorithms with Q = 2 the following basis functions {Φ1
k(x)}, {Φ2

k(x)},
k = 1, 2, 3 are used.

Algorithms Basis functions

KE-method {x, x2 − 1/3, x3 − x}, {x, x2 − 1/3, x3 − x}
Exponential {exp( i π x

2
), exp(−3i π x

2
), exp(5i π x

3
)}, {exp(−2i π x

3
), exp(4i π x

5
), exp(−7i π x

4
)}

Rational { 1
(x−3) ,

1
(x+5)

, 1
(x−5)}, {

1
(x+3)

, 1
(x−5/2) ,

1
(x+7/3)

}
Hybrid {exp( i π x

2
), log(3− x), 1

(x+3)
}, {x2, x exp(x), 1

(x−5)}

Table 3. Basis functions for f = f2(x), Q = 2.

Error norm→ L∞ -errors L2 -errors

Algorithms ; time ↓ ‖N→ 32 128 32 128

Classic ; 0.016 sec. 2.2 e 0 2.2 e 0 1.2 e-1 6.0 e-2

KE-method ; 1.61 sec. 2.1 e-4 2.9 e-6 1.0 e-5 7.1 e-8

Exponential ; 1.51 sec. 2.2 e-4 3.2 e-6 1.0 e-5 6.8 e-8

Rational ; 1.6 sec. 2.7 e-4 3.8 e-6 1.3 -5 8.8 e-8

Hybrid ; 2.22 sec. 1.5 e-4 2.6 e-6 7.3 e-6 5.0 e-8
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Table 4. Errors and working times of algorithms while approximating f2(x) for N = 32, 128;Q =

2.

In Table 4 working time of each algorithm corresponds to the sum of times for N = 32

and N = 128.

4 Conclusion

The results of numerical experiments show that there is no any strict recommendation con-

cerning the choice of basis functions in spite of repetition a part of KE-method in any cases

(see Remark 1 above). Accuracy of the method depends on the approximated function rather

than on the basis functions. L2-error depends mainly on the distance between expanded

function f and finite-dimensional space which has the system {Φj
r(x)}, j = 1, · · · ,m; r =

0, · · · , Q; as a basis.

It seems that the choice of parameters of some basis functions (for example, vales αrj in

exponential basis functions and rational basis functions ) can give possibilities for construc-

tion of adaptive algorithms.

Working times of different algorithms mainly depend on the inner procedures of the

packages that calculate the pointwise values and the Fourier coefficients φjrn of the basis

functions. We have used the MATHEMATICA package (see [14]) which calculates the values

of (16) rather slow especially for large vales of N (see Table 4).
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