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Abstract. In this study, we define a new type of number
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Introduction and Preliminaries

Number sequences arise in many different theoretical and applied areas, as
well as in mathematical modeling of all the problems where there is a kind
of invariance to shift in terms of space or of time. As in the computation of
spline functions, time series analysis, signal and image processing, queueing
theory, polynomial and power series computations and many other areas,
typical problems modelled by number sequences are the numerical solution
of certain differential and integral equations (see, for example, [7, 18,23]).

The Fibonacci sequence has delighted mathematicians and scientists
alike for centuries because of its beauty and tendency to appear in unex-
pected places. Fibonacci numbers are found in Pascals triangle, Pythagorean
triples, computer algorithms, graph theory and many other areas of mathe-
matics. They also occur in a variety of other fields such as physics, finance,
architecture, computer sciences, color image processing, geostatistics, music,
and art. There are many studies of the Fibonacci sequence in the literature
because of its numerous applications as well as many generalizations, some
of which can be found in [1–3,8, 9, 11–13,16,24,29].

Leonardo Fibonacci and Alwyn Horadam examined number sequences
defined by recurrence relations, which were then studied over the years (see,
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for example, [4, 10, 19, 22, 25, 27, 28]). The Leonardo sequence, also known
as Leonardo numbers, is a linear recurrent sequence of integers related to
the Fibonacci sequence (see [30]). Its elements are defined by the following
recurrence formula

Len = Len−1 + Len−2 + 1, n ≥ 2

with Le0 = Le1 = 1. This sequence can also be defined in the following way:

Le0 = Le1 = 1, Le2 = 3, Len = 2Len−1 − Len−3, n ≥ 3.

Corresponding characteristic equation is given by

x3 − 2x2 + 1 = 0

and has three real roots: x1 = (1+
√

5)/2, x2 = (1−
√

5)/2 and x3 = 1. Note
that x1 and x2 are the roots of the characteristic equation of the Fibonacci
sequence (see [5]).

Fibonacci and Lucas numbers are defined by the following recurrence
relations

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0

and
L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln, n ≥ 0,

respectively. Besides, the nth Fibonacci and Lucas numbers are formulized
as

Fn =
αn − βn

α− β
and Ln = αn + βn, n ≥ 1,

where α = (1 +
√

5)/2, β = (1−
√

5)/2 (see [20]).
Pell and Pell-Lucas numbers are defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, n ≥ 0

and
Q0 = Q1 = 2, Qn+2 = 2Qn+1 +Qn, n ≥ 0,

respectively. Equivalently, these numbers are formulized as

Pn =
αn − βn

α− β
and Qn = αn + βn, n ≥ 1,

where α = 1 +
√

2, β = 1−
√

2 (see [21]).
Jacobsthal and Jacobsthal-Lucas numbers are defined recurrently as fol-

lows
J0 = 0, J1 = 1, Jn+2 = Jn+1 + 2Jn, n ≥ 0
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and
K0 = 2, K1 = 1, Kn+2 = Kn+1 + 2Kn, n ≥ 0,

or, equivalently,

Jn =
αn − βn

α− β
and Kn = αn + βn,

where α = 2, β = −1 (see [6]).
Horadam numbers are defined by the second-order linear homogeneous

recurrence relation

Hn+2 = aHn+1 + bHn, n ≥ 0,

with H0 = r, H1 = s, where a, b, r, s ∈ Z. Equivalently, they can be
formulized as

Hn =
(s− rβ)αn − (s− rα)βn

α− β
, n ≥ 0,

where α = (a+
√
a2 + 4b)/2, β = (a−

√
a2 + 4b)/2 (see [17]).

Horadam aHn−1 + bHn−2 a b r s
Fibonacci Fn−1 + Fn−2 1 1 0 1
Pell-Lucas 2Qn−1 +Qn−2 2 1 2 2
Jacobsthal Jn−1 + 2Jn−2 1 2 0 1

Table 1: Number sequences and their names

n 0 1 2 3 4 5 6 7 8 9
Fn 0 1 1 2 3 5 8 13 21 34
Qn 2 2 6 14 34 82 198 478 1154 2786
Jn 0 1 1 3 5 11 21 43 85 171

Table 2: The first ten terms of the Fibonacci, Pell-Lucas and Jacobsthal
sequences

The Binet formula for a sequence of numbers whose characteristic equa-
tion is of the 3rd order can be formed as follows

Sn =
m1α

n

(α− β)(α− γ)
+

m2β
n

(β − α)(β − γ)
+

m3γ
n

(γ − α)(γ − β)
, n ≥ 0,

where m1 = S2 − (β + γ)S1 + βγS0, m2 = S2 − (α + γ)S1 + αγS0 and
m3 = S2 − (α + β)S1 + αβS0. Equivalently, Sn is defined by

S0 = a, S1 = b, S2 = c, Sn = rSn−1 + sSn−2 + tSn−3, n ≥ 3,
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where a, b and c are arbitrary complex or real numbers and r, s and t are
real numbers (see [26]).

In this work, Leonardo-Alwyn numbers will be defined and a variety of
their algebraic properties will be presented. Some identities, such as Binets
formula and generating function formula, as well as a matrix representation
of the Leonardo-Alwyn number sequence, will be given.

1 The Leonardo-Alwyn Numbers

In this section, the Leonardo-Alwyn numbers, dedicated to Leonardo Fi-
bonacci and Alwyn Horadam, will be introduced. These numbers will be
defined similarly to the Leonardo number sequence. By adding the number
1 to the roots of number sequences with quadratic characteristic equations,
a third-order characteristic equation will be obtained. Starting from this
equation, the recurrence relationship between the numbers of the Leonardo-
Alwyn sequence will be found. The elements of this sequence can also be
derived from sequences of numbers whose two consecutive terms are equal;
namely, the first two terms of this number sequence are determined to be
the same.

The Leonardo-Alwyn sequence with the properties of well-known number
sequences seems to be useful in different applications.

Definition 1 Let integers a ≥ 1 and b, c be such that a + b − 1 6= 0 and
a2 + 4b ≥ 1. The Leonardo-Alwyn numbers LAn are recursively defined by

LAn = aLAn−1 + bLAn−2 + c, n ≥ 2,

LA0 = LA1 = a =

{
H0, H0 6= 0,
H1, H0 = 0,

where H0 = r and H1 = s are the first two Horadam numbers, r, s ∈ Z and
c = r + s.

From equations

LAn = aLAn−1 + bLAn−2 + c, LAn+1 = aLAn + bLAn−1 + c, n ≥ 2,

one can obtain by subtraction an equivalent recurrence formula for LAn.

Proposition 1 The Leonardo-Alwyn sequence can be equivalently defined
by

LAn+1 = (a+ 1)LAn + (b− a)LAn−1 − bLAn−2, n ≥ 2,

where LA2 = a2 +ab+c is an additional value. The associated characteristic
polynomial is

p(X) = X3 − (a+ 1)X2 − (b− a)X + b = (X − 1)(X2 − aX − b),

which has roots t1 = (a+
√
a2 + 4b)/2, t2 = (a−

√
a2 + 4b)/2 and t3 = 1.
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The Leonardo sequence is obtained using the characteristic equation of
the Fibonacci sequence. This sequence is named after Leonardo Bigollo
Pisano, who obtained the Fibonacci sequence. The first names of Pell and
Lucas are given since the John-Edouard sequence is also constructed using
the characteristic equation of the Pell-Lucas sequence. Similarly, the char-
acteristic equation of the Jacobsthal sequence is used in the Ernst sequence,
and Jacobsthal’s name is given to it. The Ernst sequence is also known as
the Purkiss sequence (see, for example, [14], [15]).

The new family of number sequence is Leonardo-Alwyn, and its members
are: Leonardo numbers LEn (sequence A001595 in the ON-LINE Encyclo-
pedia of integer sequences), John- Edouard numbers JEn (new) and Ernst
numbers ERn (sequence A051049 in the ON-LINE Encyclopedia of integer
sequences [semi-new: Ernst and Purkiss numbers have the same terms but
different derivations]).

The sequences LEn, JEn and ERn satisfy the following third-order linear
recurrences:

LE0 = LE1 = 1, LE2 = 3, LEn = 2LEn−1 − LEn−3, n ≥ 3;

JE0 = JE1 = 2, JE2 = 10, JEn = 3JEn−1 − JEn−2 − JEn−3, n ≥ 3;

ER0 = ER1 = 1, ER2 = 4, ERn = 2ERn−1+ERn−2−2ERn−3, n ≥ 3.

Leonardo-Alwyn aLAn−1 + bLAn−2 + c a b
Leonardo LEn−1 + LEn−2 + 1 1 1

John-Edouard 2JEn−1 + JEn−2 + 4 2 1
Ernst ERn−1 + 2ERn−2 + 1 1 2

Table 3: Number sequences and their names

n 0 1 2 3 4 5 6 7 8 9
LEn 1 1 3 5 9 15 25 41 67 109
JEn 2 2 10 26 66 162 394 954 2306 5570
ERn 1 1 4 7 16 31 64 127 256 511

Table 4: The first ten terms of the Leonardo, John-Edouard and Ernst
sequences

Definition 2 The sequence LA−n is defined as follows

LA−n =
(b− a)

b
LA−n+1 +

(a+ 1)

b
LA−n+2 −

1

b
LA−n+3, n ≥ 1,

where LA0 = LA1 = a and LA2 = a2 + ab+ c.
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The sequences LE−n, JE−n and ER−n satisfy the following third order
linear recurrences

LE−n = 2LE−n+1 − LE−n+3,

JE−n = −JE−n+1 + 3JE−n+2 − JE−n+3,

ER−n =
1

2
ER−n+1 + ER−n+2 −

1

2
ER−n+3,

n ≥ 3.

n -1 -2 -3 -4 -5
LEn -1 1 -3 3 -7
JEn -6 10 -30 66 -166

ERn −1

2

1

4
−7

8

1

16
−31

32

Table 5: The first five negative terms of the Leonardo, John-Edouard and
Ernst sequence

Theorem 1 The Binet’s formula for LAn, n ≥ 0 numbers is

LAn = αtn1 + βtn2 + γtn, n ≥ 0,

where

t1 =
a+
√
a2 + 4b

2
, t2 =

a−
√
a2 + 4b

2
, t3 = 1,

α =
(a2 + ab− a+ c)(a2 + 4b− (a− 2)

√
a2 + 4b)

2(a2 + 4b)(a+ b− 1)
,

β =
(a2 + ab− a+ c)(a2 + 4b+ (a− 2)

√
a2 + 4b)

2(a2 + 4b)(a+ b− 1)
, γ =

c

1− a− b
.

Moreover,

t1 + t2 + t3 = a+ 1, t1t2t3 = −b, t1t2 + t1t3 + t2t3 = a− b.

Proof. The proof is carried out using equation (1). �

The sequences LEn, JEn and ERn satisfy the following Binet’s formulas:

LEn =

(
5 +
√

5

5

)
tn1 +

(
5−
√

5

5

)
tn2 − 1,

JEn = 2tn1 + 2tn2 − 2,

ERn = tn1 +
1

2
tn2 −

1

2
,

n ≥ 0, where t1 and t2 represent the roots of sequences with quadratic
characteristic equations associated with the sequences LEn, JEn and ERn,
respectively.
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Theorem 2 Let integers ln be recursively defined by

l1 = l2 = a, ln = aln−1 + bln−2, n ≥ 2.

Then

LAn =

[
1 +

c

a(a+ b− 1)

]
ln+1 −

c

a+ b− 1
, n ≥ 0.

Proof. We show by induction on n. For n > 0 and n = 1, we have LA0 =
LA1 = l1 = l2 = a, and it remains to check the equality

a = a

[
1 +

c

a(a+ b− 1)

]
− c

a+ b− 1
,

which is obviously holds. Let the assertion be true for (n − 1) and n with
n ≥ 1. Then

LAn+1 = a

[
1 +

c

a(a+ b− 1)
ln+1 −

c

a+ b− 1

]
+b

[
1 +

c

a(a+ b− 1)
ln −

c

a+ b− 1

]
+ c

=

[
1 +

c

a(a+ b− 1)

]
(aln+1 + bln)−

[
c

a+ b− 1

]
(a+ b) + c

=

[
1 +

c

a(a+ b− 1)

]
ln+2 −

c

a+ b− 1
.

�

Corollary 1 If l0 = l1 = a, then

LAn =

[
1 +

c

a(a+ b− 1)

]
ln −

c

a+ b− 1
, n ≥ 0.

Corollary 2 For the sequences LEn, JEn and ERn, the following equations
hold

LEn = 2Fn+1 − 1,

JEn = 2Qn − 2,

ERn =
3Jn+1 − 1

2
for all n ≥ 0.

Corollary 3 The Leonardo numbers in the form LEn = 2Fn+1− 1 are odd.
The John-Edouard numbers in the form JEn = 2(Qn − 1) are even. The
elements of the Ernst sequence are even when n is even and odd otherwise.
Moreover,

ERn =


1 if n = 0,

2n − 1 if n is odd,
2n if n is even.
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Theorem 3 The generating function for the Leonardo-Alwyn numbers is

h(t) =
LA0 + [LA1 − (a+ 1)LA0] t+ [LA2 − (b− a)LA0 − (a+ 1)LA1] t2

1− (a+ 1)t− (b− a)t2 + bt3
.

Proof. Let h(t) =
∑∞

n=0 LAnt
n be the generating function for Leonardo-

Alwyn. Then

(a+ 1)th(t) = (a+ 1)
∞∑
n=0

LAnt
n+1,

(b− a)t2h(t) = (b− a)
∞∑
n=0

LAnt
n+2

and

(−b)t3h(t) = (−b)
∞∑
n=0

LAnt
n+3.

After the necessary calculations, the statement of the theorem follows. �

The generating functions for the sequences LEn, JEn and ERn are given
by

∞∑
n=0

LEnt
n =

1− t+ t2

1− 2t+ t3
,

∞∑
n=0

JEnt
n =

2− 4t+ 4t2

1− 3t+ t2 + t3
,

∞∑
n=0

ERnt
n =

1− t+ t2

1− 2t− t2 + 2t3
.

2 The Matrix Form of the Leonardo-Alwyn

Numbers

In this section, we will give the matrix representation of the Leonardo-Alwyn
numbers. Using it, we will obtain some properties of the Leonardo-Alwyn
numbers.

The basic matrix for the Leonardo-Alwyn sequence is

Q =

 a+ 1 1 0
b− a 0 1
−b 0 0

 .
Due to the Cayley-Hamilton theorem, Leonardo-Alwyn’s characteristic

polynomial is given by

p(λ) = |λI −Q| =

∣∣∣∣∣∣
λ− a− 1 −1 0
a− b λ −1
b 0 λ

∣∣∣∣∣∣ = λ3−(a+1)λ2−(b−a)λ+b = 0.
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Theorem 4 Let LAn, n ≥ 0 be the Leonardo-Alwyn numbers. Then the
following equalities hold LAn+3 LAn+2 LAn+1

LAn+2 LAn+1 LAn

LAn+1 LAn LAn−1

 =

 LA3 LA2 LA1

LA2 LA1 LA0

LA1 LA0 LA−1

 a+ 1 1 0
b− a 0 1
−b 0 0

n

,

 LA−n+3 LA−n+2 LA−n+1

LA−n+2 LA−n+1 LA−n
LA−n+1 LA−n LA−n−1

 =

 LA3 LA2 LA1

LA2 LA1 LA0

LA1 LA0 LA−1

 0 0 −b
1 0 a+ 1
0 1 b− a

n

.

Proof. We will use induction on n. The first equality hold for n = 1. Now
suppose that it is true for n > 1. Then for n+ 1, we can write LA3 LA2 LA1

LA2 LA1 LA0

LA1 LA0 LA−1

Qn+1 =

 LA3 LA2 LA1

LA2 LA1 LA0

LA1 LA0 LA−1

QnQ

=

 LAn+3 LAn+2 LAn+1

LAn+2 LAn+1 LAn

LAn+1 LAn LAn−1

 a+ 1 1 0
b− a 0 1
−b 0 0


=

 LAn+4 LAn+3 LAn+2

LAn+3 LAn+2 LAn+1

LAn+2 LAn+1 LAn

 .
The second equality is verified similarly. �

Corollary 4 (Simsons identity) Let LAn, n ≥ 0 be the Leonardo-Alwyn
numbers. Then the following relations hold∣∣∣∣∣∣

LAn+3 LAn+2 LAn+1

LAn+2 LAn+1 LAn

LAn+1 LAn LAn−1

∣∣∣∣∣∣ =


4(−1)n if LAn is LEn,

256(−1)n if LAn is JEn,
9(−2)n−1 if LAn is ERn,∣∣∣∣∣∣

LA−n+3 LA−n+2 LA−n+1

LA−n+2 LA−n+1 LA−n
LA−n+1 LA−n LA−n−1

∣∣∣∣∣∣ =


4(−1)n if LAn is LEn,

256(−1)n if LAn is JEn,
9(−2)n−1 if LAn is ERn.

Theorem 5 Let LAn, n ≥ 0 be the Leonardo-Alwyn numbers. Then the
following relations hold

[LAn+2 LAn+1 LAn] = [LA2 LA1 LA0]

 a+ 1 1 0
b− a 0 1
−b 0 0

n

,

[LA−n+2 LA−n+1 LA−n] = [LA2 LA1 LA0]

 0 0 −b
1 0 a+ 1
0 1 b− a

n

.
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Proof. The first equality holds for n = 1. Now suppose that it is true for
n > 1. Then

[LA2 LA1 LA0]

 a+ 1 1 0
b− a 0 1
−b 0 0

n+1

= [LAn+2 LAn+1 LAn]

 a+ 1 1 0
b− a 0 1
−b 0 0


= [LAn+3 LAn+2 LAn+1] .

The second equality is verified similarly. �

3 Sums of Leonardo-Alwyn Numbers

In this section, we present some results concerning sums of terms of the
Leonardo-Alwyn sequence.

Theorem 6 Let LAn, n ≥ 0 be the Leonardo-Alwyn numbers. Then

n∑
i=0

LAi =


2Fn+3 − n− 3 if LAn is LEn

2Pn+1 − 2n− 2 if LAn is JEn

3Jn+3 − 2n− 5

4
if LAn is ERn

n∑
i=0

LA2i+1 =


2F2n+2 − n− 1 if LAn is LEn

Q2n − 2n− 8 if LAn is JEn

J2n+4 − 2n− 3

2
if LAn is ERn

n∑
i=0

LA2i =


2F2n+3 − n− 3 if LAn is LEn

Q2n+1 − 2n if LAn is JEn

Jn+2 if LAn is ERn

Proof. We have

LA0 = aLA−1 + bLA−2 + c,

LA1 = aLA0 + bLA−1 + c,

LA2 = aLA1 + bLA0 + c,

. . .

LAn = aLAn−1 + bLAn−2 + c.

Taking the sum of the equalities above, we obtain

n∑
i=0

LAi =
(−a− b)LAn + (a+ b)LA−1 + b(LA−2 − LAn−1)

1− a− b
.
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From Corollary 2, it follows that finite sums for the sequences LEn, JEn

and ERn are given by

n∑
i=0

LAi =


2Fn+3 − n− 3 if LAn is LEn

2Pn+1 − 2n− 2 if LAn is JEn

3Jn+3 − 2n− 5

4
if LAn is ERn

Two other statements of the theorem are verified similarly. �

References

[1] S.L. Adler, Quaternionic quantum mechanics and quantum elds, New
York Oxford University Press, 1994.

[2] F. Alves and R. Vieira, The Newton fractals Leonardo sequence study
with the Google Colab. Int. Elect. J. Math. Ed., 15 (2020), no. 2, pp.
1–9. https://doi.org/10.29333/iejme/6440

[3] J. Baez, The octonians. Bull. Amer. Math. Soc., 145 (2001), no. 39,
pp. 145–205.

[4] J. Bravo, C.A. Gomez and J. L. Herrera, On the intersection of k-
Fibonacci and Pell numbers. Bull. Korean Math. Soc., 56 (2019), no.
2, pp. 535–547.

[5] P. Catarino and A. Borges, On Leonardo numbers. Acta Math. Univ.
Comenianae, 1 (2020), pp. 75–86.
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