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Abstract. In this paper, we relate some properties of non-
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Introduction

The relationship between an algebraic structure and a graph has expanded
immensely after the introduction of a zero divisor graph by Istvan Beck [3]
in 1988. Since then, several authors have defined many graphs such as
comaximal graph of a commutative ring [13], intersection graphs of ideals of
rings [4], the total graph of a commutative ring [1], etc. In [2], we introduced
a graph associated with non-trivial (left) ideals of a ring, namely, a non-
comaximal graph of ideals of a ring. The non-comaximal graph of ideals of
aring R, denoted by NC(R), is an undirected graph whose vertex set is the
collection of all non-trivial left ideals of R, and any two vertices are adjacent
if and only if their sum is non-trivial in R. In this paper, we discuss some
more properties of the non-comaximal graph of ideals of a commutative ring
with unity. Throughout the paper, we use the results from [12], where a
similar concept is discussed in module theory.

We recall some definitions and notations from graph and ring theories
which are used below. Throughout this paper, all graphs are undirected.
Let G be a graph with vertex set V(G) and edge set E(G). The graph G is
said to be empty if E(G) = (. We denote the degree of a vertex v € V(Q)
by deg(v), that is the number of edges incident on v. If deg(v) = 1, then v
is called an end vertex.

The graph G is complete if any two vertices of G are adjacent. A graph is
said to be bipartite if its vertex set V' (G) can be partitioned into two subsets
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V1 and V, such that every edge of G joins V; and Va. If |Vi| = m, |V| = n,
and every vertex in V; (or V3) is adjacent to all vertices in V4 (or V4), then
the bipartite graph is said to be complete and is denoted by K,, . If either
m or n is equal to 1, then K,,,, is said to be a star.

A walk in GG is an alternating sequence vgejv;...e,v, of vertices and edges,
in which each edge e; is v;_1v;. A walk is said to be closed if it has the same
first and last vertices. A path is a walk in which all vertices are distinct. We
denote a path with n vertices by P,. A circuit is a closed walk with all its
vertices distinct (except the first and the last ones). The length of a circuit
is the number of edges in the circuit. The length of the smallest circuit of
G is called the girth of G, and is denoted by girth(G). We say that G is
connected if there is a path between every two distinct vertices, and G is
disconnected if it is not connected.

If I and J are two distinct vertices of G, then d(1,J) is the length of the
shortest path from I to J, and if there is no such path, then d(1,.J) = cc.
The diameter of (G is the maximum distance among the distances between all
pairs of vertices of G, and is denoted by diam(G). A complete subgraph of G
is said to be a clique in G. The number of vertices in maximum clique of G is
called the clique number of G and is denoted by w(G). By chromatic number
X(G) of G, we mean the minimum number of colors required to color the
vertices in such a way that every two adjacent vertices have different colors.

In this paper, all rings are commutative with unity element. Let R be a
ring. A non-zero ideal m of R is said to be minimal if it contains no other
non-zero ideal. We use min(R) to denote the set of minimal ideals of R. A
simple ring is a non-zero ring that has no non-trivial proper ideal. Every
minimal ideal is a simple ring. In a commutative ring R, R is simple if and

only if R is a field. If I and J are two ideals of a ring R, then ! t J = 7 F{J'

A ring R is said to be Artinian if there does not exist an infinite strictly
descending chain of ideals. A ring R is said to be Noetherian if there does not
exist an infinite strictly ascending chain of ideals. In an Artinian ring, every
ideal contains a minimal ideal. In a Noetherian ring, every ideal is contained
in a maximal ideal. By I(R), we denote the length of ascending/descending
chain of R. A ring R is said to be local if it has exactly one maximal ideal.
An ideal of a ring R is said to be small if it has a non-trivial sum with every
non-trivial ideal of R.

Any undefined terminology can be found in [5H11].

1 Results

Now we present our main results.

Theorem 1 The graph NC(R) is disconnected if and only if R is a direct
sum of two minimal ideals.
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Proof. Let NC(R) be not connected. Suppose Gy, Gy are two components
of NC(R) and I € Gy, J € Go. Clearly, I + J = R, as there is no path
between [ and J. If INJ # 0, then I+(INJ) = I and J+(INJ) = J, there-
fore I —(INJ)—1 is a path, which is a contradiction to the disconnectedness
of NC(R). Hence, I NJ = (0), this implies R =I1&p J.

Assume that Z is an ideal of R such that Z & I. Then Z + 1 = I(# R),
which implies that Z and [ are adjacent vertices. Thus, Z,I € G; which
infers that there is no path between Z and J as J € (G5. Therefore, Z +.J =
R. Now,I=INR=IN(Z+J)=Z+(INnJ)=Z. Hence, [ is a minimal
ideal of R. Similarly, J is also a minimal ideal of R. Conversely, assume
that R = F @ G, where F and G are minimal ideals of R. Clearly, F' and

G are simple rings. As F'is commutative, F is a field (see [10]). In the same

R
way, GG is also a field. Now, — = F' which infers that G is a maximal ideal

of R. Similarly, F'is also a maximal ideal of R. Assume that F' is adjacent
to N. Hence, F'+ N # R. Since F' is maximal, N C F. The fact that F is
minimal implies that F' = N. Thus, F' is an isolated vertex. []

Theorem 2 If NC(R) is connected, then the followings hold:

(1) BEvery pair of mazximal ideals of R has non-zero intersection, and they
are connected.

(17) FEvery pair of minimal ideals has non-trivial sum, and they are connected.

Proof. (i) Let F and G be two maximal ideals of R. Suppose FNG = 0. As
F and G are maximal, this implies that F'+G = R. Therefore, F @ G = R.

Since % = G and g = F' we obtain that F' and G are fields. Hence, F

and G are minimal ideals of R, which is a contradiction to connectedness of
NC(R). Therefore, FNG # 0. Also, F — (FNG) — G is a path in NC(R).
This completes the proof.

(7i) Let f and ¢ be two minimal ideals of R. Clearly, f Ng = 0. If
f+g = R, then NC(R) is disconnected by Theorem[1] Therefore, f+g # R.
]

Remark 1 If NC(R) is connected, then the set of all maximal ideals of R
forms an independent set, and the set of all minimal ideals of R forms a
clique.

Theorem 3 Let R be an Artinian ring. If R contains a unique minimal
ideal, then NC(R) is connected.

Proof. Suppose R is an Artinian ring with unique minimal ideal m. If
I,J € V(NC(R)) are any two ideals, then m C I and m C J. Therefore,
I —m — J is a path, and hence, NC(R) is connected. [J
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Remark 2 The graph NC(Z,2p2), where p,q are primes, is a connected
graph. Thus, the converse of the above theorem is not true.

Theorem 4 If V(NC(R)) > 2 and NC(R) is disconnected, then the fol-
lowings hold:

(i) NC(R) is empty.

(1) l(R) = 2, where [(R) denotes the length of composition series of R.

Proof. Let NC(R) be disconnected. Then R = F @ G where F' and G
are minimal ideals of R. Clearly, F' and G are simple rings. As F' and G

R
are commutative, F' and G are fields (see [10]). Also, o = G and a = [

Therefore, F' and G are maximal ideals of R. Suppose I(# F,G) is any

ideal of R. It is clear that ] C R=F @G and INF =0=1NG. Again,

we obtain I @ F' = R, which implies % = | and ? > F. Therefore, I is

maximal as well as minimal ideal of R. Therefore, every non-trivial ideal of

R is minimal and maximal at the same time. By Theorem 2.3 in [2], NC(R)
is empty. [

Theorem 5 The graph NC(R) is complete if and only if R is local.

Proof. Suppose R is a local ring. Then R possesses a unique maximal ideal
M. 1t I,J € V(NC(R)), then I + J C M(# R). Thus, any two ideals are
adjacent, therefore NC(R) is complete. Conversely, let NC(R) be complete.
Suppose M, My are two maximal ideals of R. Then M; + M; = R. Hence,
My and M, are not adjacent, which is a contradiction. This concludes the
proof. [J

Corollary 1 The graph NC(R) is complete if and only if every ideal of R
15 small.

Corollary 2 If [V(NC(R))| = n, then deg(I) = n — 1 for any small ideal
I of R.

Theorem 6 If w(NC(R)) < oo, then the following statements hold:

(i) I(R) < oo.

(17) w(NC(R)) = 1 if and only if [V NC(R)| = 1 or R is a direct sum of two
mainimal ideals of R.

(133) If W(NC(R)) > 1, then the number of minimal ideals of R is finite.

Proof. (i) Let I; C I, C I3 C ... be an infinite ascending chain of ideals.
For p <q, I, + I, = I,(# R). Similar statement holds for descending chain
of ideals. Hence, the infinite chain forms an infinite clique, which contradicts
the assumption w(NC(R)) < co. Therefore, I(R) < oo.
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(77) The second statement is trivial.

(731) If w(NC(R)) > 1, then by (ii), |[VNC(R)| # 1, and R is not a
direct sum of two minimal ideals of R. By Theorem [l} NC(R) is connected.
Hence, by Theorem [2 every pair of minimal ideals of R has a non-trivial
sum. Consider the subgraph m* = {I : I is a minimal ideal of R} of
NC(R) generated by all minimal ideals of R. Clearly, m* forms a clique,
and this implies that |m*| = w(m*) < w(NC(R)) < oo. Hence, the number
of minimal ideals of R is finite. [

Theorem 7 If |V(NC(R))| > 2, then the following statements are equiva-
lent:

(i) NC(R) is a star graph.

(i1) NC(R) is tree.

(iii) X(NC(R))) = 2.

() I(R) = 3, R is an Artinian ring with unique minimal ideal, and all other
ideals are maximal.

Proof. (i) = (i1) and (ii) = (ii) are clear.

(1ii) = (i) Let x(NC(R))) = 2. Since w(NC(R) < x(NC(R)), by
Theorem [6], [(R) < oo. Thus, there does not exit any infinite chain in R,
hence R is Artinian, which infers that there exists a minimal ideal m in R.
We claim that m is the only minimal ideal of R. Let n(# m) be another
minimal ideal of R. If m +n = R, then it contradicts the assumption
X(NC(R))) = 2. Also, if m+n # R, then m — (m +n) —n —m is a cycle
of length 3, which contradicts x(INC(R))) = 2. Therefore, minimal ideal
of R is unique. Consider an ideal K of R wich is distinct from m. If K is
not maximal, then there exists an ideal X such that K G X G R and also
m ;Cé K, X, as R is an Artinian ring with unique minimal ideal. This implies
that m — K — X —m is a cycle of length 3, which is a contradiction. Hence,
K is maximal, and only possible composition series in R is m & K G R,
which implies that I(R) = 3.

(tv) = (i) It is clear that all maximal ideals which are connected to
the unique minimal ideal of R are end vertices of NC(R). Therefore, NC(R)
is a star graph. [J

Theorem 8 If deg(I) < 0o for every ideal I of a ring R, then [(R) < oo.

Proof. Assume that R contains an infinite ascending chain of ideals I; C
I, C I3 C ... Then deg(l;) = 00 as I1 +1; = I;(# R) for all j. Equivalently,
this happens for an infinite descending chain, too. Thus, I[(R) < co. [

Lemma 1 If m is minimal and m + M = R, then M is mazimal.
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Proof. Suppose, M is not maximal. Then there exists an ideal P of R
such that M & P G R. Therefore, 0 C mN M C mNP C m. Clearly,
mNM=mormnNP=0. If mN M =m, then m C M. This gives that
R =m+ M = M, which is a contradiction. If m N P = 0, then M = P
since P=PNR=PN(m+M)=M+ (mnNP)=M+0= M. Therefore,
M maximal. [

Theorem 9 Let m be a minimal ideal of R and deg(m) < oco. If NC(R) is
connected, then the following statements hold:
(1) the number of minimal ideals of R is finite.

(i) X(NC(R))) < oo.

Proof. Let min(R) = {m; : m; is a minimal ideal of R}. Clearly, m €
min(R), and hence, min(R) # (. By Theorem [2 m + m; # R for every
m; € min(R). Thus, |min(R)| < deg(m) + 1 < co. Therefore, min(R) is
finite.

(i7) Let {P;} be the set of ideals of R which are not adjacent to m. Then
m + P, = R for every i. By Lemma[I] P; is maximal, which implies that no
two distinct vertices of { P;} are adjacent. Hence, all the vertices belonging
to the set {P;} can be coloured by one colour. Also, consider the vertex set
{Q;} of all vertices which are adjacent to m. Since deg(m) < oo, [{Q;}| is
finite. Therefore, the total number of colours required to colour NC(R) is
finite, that is, x(NC(R))) < co. O

Theorem 10 If NC(R) has no 3-cycle, then every mazimal ideal is either
an 1solated vertex or an end vertex.

Proof. Let M be a maximal ideal which is neither an isolated vertex nor
an end vertex. Then deg(M) > 2, which infers that there exist at least two
ideals I, J of R such that I + M # R and J + M # R. As M is maximal,
I'S MandJ S M. Therefore, I4.J G M, which implies that I —M —.J —1
is a 3-cycle in NC(R), a contradiction. [J

Theorem 11 If M is an end vertex of NC(R), then either M is a mazimal
ideal or a minimal ideal of R.

Proof. Suppose M is an end vertex of NC(R). Therefore, there exists an
ideal I such that M + I # R. Since deg(M) = 1, hence M + 1 = M or
M+1T=1.1tM+1=1,then M ; I. If there exists an ideal J such that
05 JG M, then J 4 M = M. This contradicts the fact that deg(M) = 1.
Hence, M is a minimal ideal of R. On the other hand, M + I = M gives
I'G M. If there exists an ideal P such that M & P G R, then P+ M = P,
which contradicts the fact that deg(M) = 1. Thus, M is a maximal ideal of
R. The proof is complete. [J
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Theorem 12 The graph NC(R) = P if and only if R has only two non-
trivial ideals of R, one of which is maximal and the other is minimal.

Proof. Assume that NC(R) = P,. Let I,J € V(NC(R)) be two adjacent
vertices. Clearly, I + J # R. Therefore, either I +J =T or I +J = J. If
I + J =1, then it implies that I is maximal ideal and J is minimal ideal of
R. Similarly, the other case gives J is a maximal ideal and [ is a minimal
ideal of R. The converse statement is obvious. [

Theorem 13 If NC(R) is a path, then NC(R) = P, or Ps.

Proof. Let NC(R) be a path I1I515...1, ... Since I; is an end vertex of
NC(R), it is either a maximal ideal or a minimal ideal of R.

First, consider the case when [; is a minimal ideal of R. If 5 is maximal,
then clearly NC(R) = P,. If not, we go on increasing the vertex number.
For n = 3, I, + I3 # R as there is a path between [ and I3. Then, there are
three possibilities. In the first case, we consider Iy + I3 = I;, which implies
that I ; I,. In the case when Iy + I3 = I, we have I3 ; I5. This gives
I+ 15 ; I+ I # R. In the last case, we take Io+ I3 = I3, and thus I, ?Cﬁ Is.
The first two cases lead to the contradiction. Therefore, for n = 3, we get
a path with I; being a minimal ideal of R and I, ; I3. For n = 4, we have
four cases which are I3+ Iy, =11, I3+ 14, =15, I3+ 1, = I3 and I3+ I, = I4.
All the four cases lead to the contradiction. Therefore, NC'(R) = P;.

Now consider the case when I is a maximal ideal of R. Here, I ;Cé I, as
I+ 1y # R. For n = 3, we get three cases, which are I+ 135 = Iy, I, +13 = I
and Iy 4+ I3 = I3. Again, the first two cases lead to the contradiction. The
third case gives Iy ; I5. Thus, for n=3, we have a path with the conditions
I, G I and I, & I5. For n=4, we get the following cases: Iy + I, = I,
Is+ 1y = I, Is+ 1, = I3 and I3 + I, = I,. All of them lead to the
contradiction. Thus, NC(R) = P;. O

References

[1] D.F. Anderson and A. Badawi, The total graph of a com-
mutative ring. J. Algebra, 320 (2008), no. 7, pp. 2706-2719.
https://doi.org/10.1016/j.jalgebra.2008.06.028

[2] B. Barman and K.K. Rajkhowa, Non-comaximal graph of ideals of
a ring. Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), Article 76.
https://doi.org/10.1007/s12044-019-0504-x

[3] I. Beck, Coloring of commutative rings. J. Algebra, 116 (1988), no. 1,
pp. 208-226. https://doi.org/10.1016,/0021-8693(88)90202-5


https://doi.org/10.1016/j.jalgebra.2008.06.028
https://doi.org/10.1007/s12044-019-0504-x
https://doi.org/10.1016/0021-8693(88)90202-5

8 B. BARMAN AND K. K. RAJKHOWA

[4] 1. Chakrabarty, S. Ghosh, T.K. Mukherjee, and M.K. Sen, Intersection
graphs of ideals of rings. Discrete Math., 309 (2009), no. 17, pp. 5381—
5392. lhttps: //doi.org/10.1016/].disc.2008.11.034

[5] F. Harary, Graph theory, Addison-Wesley Publishing Company, Read-
ing, Mass., 1969.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of
Domination in Graphs, Marcel Dekker, New York, 1998.

[7] J.A. Huckaba, Commutative rings with zero-divisors, Marcel-Dekker,
New York, Basel, 1988.

[8] I. Kaplansky, Commutative rings, University of Chicago Press, Chicago,
1974.

[9] F. Kasch, Modules and rings, Academic Press, London, 1982.

[10] T. Lam, Lectures on modules and rings, Graduate Texts in Mathemat-
ics, 189, Springer, New York, 1999.

[11] J. Lambeck, Lectures on rings and modules, Blaisdell Publishing Com-
pany, Waltham, Toronto, London, 1966.

[12] L.A. Mahdavi and Y. Talebi, Co-intersection graph of submodules of a
module, Algebra Discrete Math., 21 (2016), no. 1, pp. 128-143.

[13] P.K. Sharma and S.M. Bhatwadekar, A note on graphical repre-
sentation of rings, J. Algebra, 176 (1995), no. 1, pp. 124-127.
https://doi.org/10.1006/jabr.1995.1236

Bikash Barman
Department of Mathematics,
Cotton University
Guwahati-781001, India.
barmanbikash685@gmail.com

Kukil Kalpa Rajkhowa
Department of Mathematics,
Cotton University
Guwahati-781001, India.
kukilrajkhowa@yahoo.com

Please, cite to this paper as published in
Armen. J. Math., V. 15, N. 2(2023), pp.
https://doi.org/10.52737/18291163-2023.15.2-1-8


https://doi.org/10.1016/j.disc.2008.11.034
https://doi.org/10.1006/jabr.1995.1236
mailto: barmanbikash685@gmail.com
mailto: kukilrajkhowa@yahoo.com
https://doi.org/10.52737/18291163-2023.15.2-1-8

