On Non-Comaximal Graphs of Ideals of Commutative Rings

B. Barman and K. K. Rajkhowa

Abstract

In this paper, we relate some properties of noncomaximal graph of ideals of a commutative ring with identity with the properties of the ring.

Key Words: Artinian Ring, Non-Comaximal Graph, Minimal Ideal Mathematics Subject Classification 2010: 05C25, 16D10, 13C99

Introduction

The relationship between an algebraic structure and a graph has expanded immensely after the introduction of a zero divisor graph by Istvan Beck [3] in 1988. Since then, several authors have defined many graphs such as comaximal graph of a commutative ring [13], intersection graphs of ideals of rings [4], the total graph of a commutative ring [1], etc. In [2], we introduced a graph associated with non-trivial (left) ideals of a ring, namely, a noncomaximal graph of ideals of a ring. The non-comaximal graph of ideals of a ring R, denoted by $N C(R)$, is an undirected graph whose vertex set is the collection of all non-trivial left ideals of R, and any two vertices are adjacent if and only if their sum is non-trivial in R. In this paper, we discuss some more properties of the non-comaximal graph of ideals of a commutative ring with unity. Throughout the paper, we use the results from [12], where a similar concept is discussed in module theory.

We recall some definitions and notations from graph and ring theories which are used below. Throughout this paper, all graphs are undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The graph G is said to be empty if $E(G)=\emptyset$. We denote the degree of a vertex $v \in V(G)$ by $\operatorname{deg}(v)$, that is the number of edges incident on v. If $\operatorname{deg}(v)=1$, then v is called an end vertex.

The graph G is complete if any two vertices of G are adjacent. A graph is said to be bipartite if its vertex set $V(G)$ can be partitioned into two subsets
V_{1} and V_{2} such that every edge of G joins V_{1} and V_{2}. If $\left|V_{1}\right|=m,\left|V_{2}\right|=n$, and every vertex in V_{1} (or V_{2}) is adjacent to all vertices in V_{2} (or V_{1}), then the bipartite graph is said to be complete and is denoted by $K_{m, n}$. If either m or n is equal to 1 , then $K_{m, n}$ is said to be a star.

A walk in G is an alternating sequence $v_{0} e_{1} v_{1} \ldots e_{n} v_{n}$ of vertices and edges, in which each edge e_{i} is $v_{i-1} v_{i}$. A walk is said to be closed if it has the same first and last vertices. A path is a walk in which all vertices are distinct. We denote a path with n vertices by P_{n}. A circuit is a closed walk with all its vertices distinct (except the first and the last ones). The length of a circuit is the number of edges in the circuit. The length of the smallest circuit of G is called the girth of G, and is denoted by $\operatorname{girth}(G)$. We say that G is connected if there is a path between every two distinct vertices, and G is disconnected if it is not connected.

If I and J are two distinct vertices of G, then $d(I, J)$ is the length of the shortest path from I to J, and if there is no such path, then $d(I, J)=\infty$. The diameter of G is the maximum distance among the distances between all pairs of vertices of G, and is denoted by $\operatorname{diam}(G)$. A complete subgraph of G is said to be a clique in G. The number of vertices in maximum clique of G is called the clique number of G and is denoted by $\omega(G)$. By chromatic number $\chi(G)$ of G, we mean the minimum number of colors required to color the vertices in such a way that every two adjacent vertices have different colors.

In this paper, all rings are commutative with unity element. Let R be a ring. A non-zero ideal m of R is said to be minimal if it contains no other non-zero ideal. We use $\min (R)$ to denote the set of minimal ideals of R. A simple ring is a non-zero ring that has no non-trivial proper ideal. Every minimal ideal is a simple ring. In a commutative ring R, R is simple if and only if R is a field. If I and J are two ideals of a ring R, then $\frac{I+J}{I} \cong \frac{J}{I \cap J}$.

A ring R is said to be Artinian if there does not exist an infinite strictly descending chain of ideals. A ring R is said to be Noetherian if there does not exist an infinite strictly ascending chain of ideals. In an Artinian ring, every ideal contains a minimal ideal. In a Noetherian ring, every ideal is contained in a maximal ideal. By $l(R)$, we denote the length of ascending/descending chain of R. A ring R is said to be local if it has exactly one maximal ideal. An ideal of a ring R is said to be small if it has a non-trivial sum with every non-trivial ideal of R.

Any undefined terminology can be found in [5-11].

1 Results

Now we present our main results.
Theorem 1 The graph $N C(R)$ is disconnected if and only if R is a direct sum of two minimal ideals.

Proof. Let $N C(R)$ be not connected. Suppose G_{1}, G_{2} are two components of $N C(R)$ and $I \in G_{1}, J \in G_{2}$. Clearly, $I+J=R$, as there is no path between I and J. If $I \cap J \neq 0$, then $I+(I \cap J)=I$ and $J+(I \cap J)=J$, therefore $I-(I \cap J)-I$ is a path, which is a contradiction to the disconnectedness of $N C(R)$. Hence, $I \cap J=(0)$, this implies $R=I \bigoplus J$.

Assume that Z is an ideal of R such that $Z \varsubsetneqq I$. Then $Z+I=I(\neq R)$, which implies that Z and I are adjacent vertices. Thus, $Z, I \in G_{1}$ which infers that there is no path between Z and J as $J \in G_{2}$. Therefore, $Z+J=$ R. Now, $I=I \cap R=I \cap(Z+J)=Z+(I \cap J)=Z$. Hence, I is a minimal ideal of R. Similarly, J is also a minimal ideal of R. Conversely, assume that $R=F \bigoplus G$, where F and G are minimal ideals of R. Clearly, F and G are simple rings. As F is commutative, F is a field (see (10]). In the same way, G is also a field. Now, $\frac{R}{G} \cong F$ which infers that G is a maximal ideal of R. Similarly, F is also a maximal ideal of R. Assume that F is adjacent to N. Hence, $F+N \neq R$. Since F is maximal, $N \subseteq F$. The fact that F is minimal implies that $F=N$. Thus, F is an isolated vertex.

Theorem 2 If $N C(R)$ is connected, then the followings hold:
(i) Every pair of maximal ideals of R has non-zero intersection, and they are connected.
(ii) Every pair of minimal ideals has non-trivial sum, and they are connected.

Proof. (i) Let F and G be two maximal ideals of R. Suppose $F \cap G=0$. As F and G are maximal, this implies that $F+G=R$. Therefore, $F \bigoplus G=R$. Since $\frac{R}{F} \cong G$ and $\frac{R}{G} \cong F$, we obtain that F and G are fields. Hence, F and G are minimal ideals of R, which is a contradiction to connectedness of $N C(R)$. Therefore, $F \cap G \neq 0$. Also, $F-(F \cap G)-G$ is a path in $N C(R)$. This completes the proof.
(ii) Let f and g be two minimal ideals of R. Clearly, $f \cap g=0$. If $f+g=R$, then $N C(R)$ is disconnected by Theorem1. Therefore, $f+g \neq R$.

Remark 1 If $N C(R)$ is connected, then the set of all maximal ideals of R forms an independent set, and the set of all minimal ideals of R forms a clique.

Theorem 3 Let R be an Artinian ring. If R contains a unique minimal ideal, then $N C(R)$ is connected.

Proof. Suppose R is an Artinian ring with unique minimal ideal m. If $I, J \in V(N C(R))$ are any two ideals, then $m \subseteq I$ and $m \subseteq J$. Therefore, $I-m-J$ is a path, and hence, $N C(R)$ is connected.

Remark 2 The graph $N C\left(Z_{p^{2} q^{2}}\right)$, where p, q are primes, is a connected graph. Thus, the converse of the above theorem is not true.

Theorem 4 If $V(N C(R)) \geq 2$ and $N C(R)$ is disconnected, then the followings hold:
(i) $N C(R)$ is empty.
(ii) $l(R)=2$, where $l(R)$ denotes the length of composition series of R.

Proof. Let $N C(R)$ be disconnected. Then $R=F \bigoplus G$ where F and G are minimal ideals of R. Clearly, F and G are simple rings. As F and G are commutative, F and G are fields (see 10|). Also, $\frac{R}{F} \cong G$ and $\frac{R}{G} \cong F$. Therefore, F and G are maximal ideals of R. Suppose $I(\neq F, G)$ is any ideal of R. It is clear that $I \subset R=F \bigoplus G$ and $I \cap F=0=I \cap G$. Again, we obtain $I \bigoplus F=R$, which implies $\frac{R}{F} \cong I$ and $\frac{R}{I} \cong F$. Therefore, I is maximal as well as minimal ideal of R. Therefore, every non-trivial ideal of R is minimal and maximal at the same time. By Theorem 2.3 in [2], $N C(R)$ is empty.

Theorem 5 The graph $N C(R)$ is complete if and only if R is local.
Proof. Suppose R is a local ring. Then R possesses a unique maximal ideal M. If $I, J \in V(N C(R))$, then $I+J \subseteq M(\neq R)$. Thus, any two ideals are adjacent, therefore $N C(R)$ is complete. Conversely, let $N C(R)$ be complete. Suppose M_{1}, M_{2} are two maximal ideals of R. Then $M_{1}+M_{2}=R$. Hence, M_{1} and M_{2} are not adjacent, which is a contradiction. This concludes the proof.

Corollary 1 The graph $N C(R)$ is complete if and only if every ideal of R is small.

Corollary 2 If $|V(N C(R))|=n$, then $\operatorname{deg}(I)=n-1$ for any small ideal I of R.

Theorem 6 If $\omega(N C(R))<\infty$, then the following statements hold:
(i) $l(R)<\infty$.
(ii) $\omega(N C(R))=1$ if and only if $|V N C(R)|=1$ or R is a direct sum of two minimal ideals of R.
(iii) If $\omega(N C(R))>1$, then the number of minimal ideals of R is finite.

Proof. (i) Let $I_{1} \subset I_{2} \subset I_{3} \subset \ldots$ be an infinite ascending chain of ideals. For $p<q, I_{p}+I_{q}=I_{q}(\neq R)$. Similar statement holds for descending chain of ideals. Hence, the infinite chain forms an infinite clique, which contradicts the assumption $\omega(N C(R))<\infty$. Therefore, $l(R)<\infty$.
(ii) The second statement is trivial.
(iii) If $\omega(N C(R))>1$, then by (ii), $|V N C(R)| \neq 1$, and R is not a direct sum of two minimal ideals of R. By Theorem 1, $N C(R)$ is connected. Hence, by Theorem 2, every pair of minimal ideals of R has a non-trivial sum. Consider the subgraph $m^{*}=\{I: I$ is a minimal ideal of $R\}$ of $N C(R)$ generated by all minimal ideals of R. Clearly, m^{*} forms a clique, and this implies that $\left|m^{*}\right|=\omega\left(m^{*}\right) \leq \omega(N C(R))<\infty$. Hence, the number of minimal ideals of R is finite.

Theorem 7 If $|V(N C(R))| \geq 2$, then the following statements are equivalent:
(i) $N C(R)$ is a star graph.
(ii) $N C(R)$ is tree.
(iii) $\chi(N C(R)))=2$.
(iv) $l(R)=3, R$ is an Artinian ring with unique minimal ideal, and all other ideals are maximal.

Proof. $(i) \Longrightarrow$ (ii) and $(i i) \Longrightarrow$ (iii) are clear.
$($ iii $) \Longrightarrow(i v)$ Let $\chi(N C(R)))=2$. Since $\omega(N C(R) \leq \chi(N C(R))$, by Theorem 6, l(R) < ∞. Thus, there does not exit any infinite chain in R, hence R is Artinian, which infers that there exists a minimal ideal m in R. We claim that m is the only minimal ideal of R. Let $n(\neq m)$ be another minimal ideal of R. If $m+n=R$, then it contradicts the assumption $\chi(N C(R)))=2$. Also, if $m+n \neq R$, then $m-(m+n)-n-m$ is a cycle of length 3 , which contradicts $\chi(N C(R)))=2$. Therefore, minimal ideal of R is unique. Consider an ideal K of R wich is distinct from m. If K is not maximal, then there exists an ideal X such that $K \varsubsetneqq X \varsubsetneqq R$ and also $m \varsubsetneqq K, X$, as R is an Artinian ring with unique minimal ideal. This implies that $m-K-X-m$ is a cycle of length 3 , which is a contradiction. Hence, K is maximal, and only possible composition series in R is $m \varsubsetneqq K \varsubsetneqq R$, which implies that $l(R)=3$.
$(i v) \Longrightarrow(i)$ It is clear that all maximal ideals which are connected to the unique minimal ideal of R are end vertices of $N C(R)$. Therefore, $N C(R)$ is a star graph.

Theorem 8 If $\operatorname{deg}(I)<\infty$ for every ideal I of a ring R, then $l(R)<\infty$.

Proof. Assume that R contains an infinite ascending chain of ideals $I_{1} \subset$ $I_{2} \subset I_{3} \subset \ldots$ Then $\operatorname{deg}\left(I_{1}\right)=\infty$ as $I_{1}+I_{j}=I_{j}(\neq R)$ for all j. Equivalently, this happens for an infinite descending chain, too. Thus, $l(R)<\infty$.

Lemma 1 If m is minimal and $m+M=R$, then M is maximal.

Proof. Suppose, M is not maximal. Then there exists an ideal P of R such that $M \varsubsetneqq P \varsubsetneqq R$. Therefore, $0 \subseteq m \cap M \subseteq m \cap P \subseteq m$. Clearly, $m \cap M=m$ or $m \cap P=0$. If $m \cap M=m$, then $m \subseteq M$. This gives that $R=m+M=M$, which is a contradiction. If $m \cap P=0$, then $M=P$ since $P=P \cap R=P \cap(m+M)=M+(m \cap P)=M+0=M$. Therefore, M maximal.

Theorem 9 Let m be a minimal ideal of R and $\operatorname{deg}(m)<\infty$. If $N C(R)$ is connected, then the following statements hold:
(i) the number of minimal ideals of R is finite.
(ii) $\chi(N C(R)))<\infty$.

Proof. Let $\min (R)=\left\{m_{i}: m_{i}\right.$ is a minimal ideal of $\left.R\right\}$. Clearly, $m \in$ $\min (R)$, and hence, $\min (R) \neq \emptyset$. By Theorem 2, $m+m_{i} \neq R$ for every $m_{i} \in \min (R)$. Thus, $|\min (R)| \leq \operatorname{deg}(m)+1<\infty$. Therefore, $\min (R)$ is finite.
(ii) Let $\left\{P_{i}\right\}$ be the set of ideals of R which are not adjacent to m. Then $m+P_{i}=R$ for every i. By Lemma 1, P_{i} is maximal, which implies that no two distinct vertices of $\left\{P_{i}\right\}$ are adjacent. Hence, all the vertices belonging to the set $\left\{P_{i}\right\}$ can be coloured by one colour. Also, consider the vertex set $\left\{Q_{i}\right\}$ of all vertices which are adjacent to m. Since $\operatorname{deg}(m)<\infty,\left|\left\{Q_{i}\right\}\right|$ is finite. Therefore, the total number of colours required to colour $N C(R)$ is finite, that is, $\chi(N C(R)))<\infty$.

Theorem 10 If $N C(R)$ has no 3-cycle, then every maximal ideal is either an isolated vertex or an end vertex.

Proof. Let M be a maximal ideal which is neither an isolated vertex nor an end vertex. Then $\operatorname{deg}(M) \geq 2$, which infers that there exist at least two ideals I, J of R such that $I+M \neq R$ and $J+M \neq R$. As M is maximal, $I \varsubsetneqq M$ and $J \varsubsetneqq M$. Therefore, $I+J \varsubsetneqq M$, which implies that $I-M-J-I$ is a 3 -cycle in $N C(R)$, a contradiction.

Theorem 11 If M is an end vertex of $N C(R)$, then either M is a maximal ideal or a minimal ideal of R.

Proof. Suppose M is an end vertex of $N C(R)$. Therefore, there exists an ideal I such that $M+I \neq R$. Since $\operatorname{deg}(M)=1$, hence $M+I=M$ or $M+I=I$. If $M+I=I$, then $M \varsubsetneqq I$. If there exists an ideal J such that $0 \varsubsetneqq J \varsubsetneqq M$, then $J+M=M$. This contradicts the fact that $\operatorname{deg}(M)=1$. Hence, M is a minimal ideal of R. On the other hand, $M+I=M$ gives $I \varsubsetneqq M$. If there exists an ideal P such that $M \varsubsetneqq P \varsubsetneqq R$, then $P+M=P$, which contradicts the fact that $\operatorname{deg}(M)=1$. Thus, M is a maximal ideal of R. The proof is complete.

Theorem 12 The graph $N C(R) \cong P_{2}$ if and only if R has only two nontrivial ideals of R, one of which is maximal and the other is minimal.

Proof. Assume that $N C(R) \cong P_{2}$. Let $I, J \in V(N C(R))$ be two adjacent vertices. Clearly, $I+J \neq R$. Therefore, either $I+J=I$ or $I+J=J$. If $I+J=I$, then it implies that I is maximal ideal and J is minimal ideal of R. Similarly, the other case gives J is a maximal ideal and I is a minimal ideal of R. The converse statement is obvious.

Theorem 13 If $N C(R)$ is a path, then $N C(R) \cong P_{2}$ or P_{3}.
Proof. Let $N C(R)$ be a path $I_{1} I_{2} I_{3} \ldots I_{n} \ldots$ Since I_{1} is an end vertex of $N C(R)$, it is either a maximal ideal or a minimal ideal of R.

First, consider the case when I_{1} is a minimal ideal of R. If I_{2} is maximal, then clearly $N C(R) \cong P_{2}$. If not, we go on increasing the vertex number. For $n=3, I_{2}+I_{3} \neq R$ as there is a path between I_{2} and I_{3}. Then, there are three possibilities. In the first case, we consider $I_{2}+I_{3}=I_{1}$, which implies that $I_{2} \varsubsetneqq I_{1}$. In the case when $I_{2}+I_{3}=I_{2}$, we have $I_{3} \varsubsetneqq I_{3}$. This gives $I_{1}+I_{3} \varsubsetneqq I_{1}+I_{2} \neq R$. In the last case, we take $I_{2}+I_{3}=I_{3}$, and thus $I_{2} \varsubsetneqq I_{3}$. The first two cases lead to the contradiction. Therefore, for $n=3$, we get a path with I_{1} being a minimal ideal of R and $I_{2} \varsubsetneqq I_{3}$. For $n=4$, we have four cases which are $I_{3}+I_{4}=I_{1}, I_{3}+I_{4}=I_{2}, I_{3}+I_{4}=I_{3}$ and $I_{3}+I_{4}=I_{4}$. All the four cases lead to the contradiction. Therefore, $N C(R) \cong P_{3}$.

Now consider the case when I_{1} is a maximal ideal of R. Here, $I_{2} \varsubsetneqq I_{1}$ as $I_{1}+I_{2} \neq R$. For $n=3$, we get three cases, which are $I_{2}+I_{3}=I_{1}, I_{2}+I_{3}=I_{2}$ and $I_{2}+I_{3}=I_{3}$. Again, the first two cases lead to the contradiction. The third case gives $I_{2} \varsubsetneqq I_{3}$. Thus, for $\mathrm{n}=3$, we have a path with the conditions $I_{2} \varsubsetneqq I_{1}$ and $I_{2} \varsubsetneqq I_{3}$. For $\mathrm{n}=4$, we get the following cases: $I_{3}+I_{4}=I_{1}$, $I_{3}+I_{4}=I_{2}, I_{3}+I_{4}=I_{3}$ and $I_{3}+I_{4}=I_{4}$. All of them lead to the contradiction. Thus, $N C(R) \cong P_{3}$.

References

[1] D.F. Anderson and A. Badawi, The total graph of a commutative ring. J. Algebra, 320 (2008), no. 7, pp. 2706-2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
[2] B. Barman and K.K. Rajkhowa, Non-comaximal graph of ideals of a ring. Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), Article 76. https://doi.org/10.1007/s12044-019-0504-x
[3] I. Beck, Coloring of commutative rings. J. Algebra, 116 (1988), no. 1, pp. 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
[4] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, and M.K. Sen, Intersection graphs of ideals of rings. Discrete Math., 309 (2009), no. 17, pp. 53815392. https://doi.org/10.1016/j.disc.2008.11.034
[5] F. Harary, Graph theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] J.A. Huckaba, Commutative rings with zero-divisors, Marcel-Dekker, New York, Basel, 1988.
[8] I. Kaplansky, Commutative rings, University of Chicago Press, Chicago, 1974.
[9] F. Kasch, Modules and rings, Academic Press, London, 1982.
[10] T. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.
[11] J. Lambeck, Lectures on rings and modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
[12] L.A. Mahdavi and Y. Talebi, Co-intersection graph of submodules of a module, Algebra Discrete Math., 21 (2016), no. 1, pp. 128-143.
[13] P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176 (1995), no. 1, pp. 124-127. https://doi.org/10.1006/jabr.1995.1236

Bikash Barman
Department of Mathematics, Cotton University
Guwahati-781001, India.
barmanbikash685@gmail.com
Kukil Kalpa Rajkhowa
Department of Mathematics,
Cotton University
Guwahati-781001, India.
kukilrajkhowa@yahoo.com
Please, cite to this paper as published in Armen. J. Math., V. 15, N. 2(2023), pp. $1 / 8$ https://doi.org/10.52737/18291163-2023.15.2-1-8

