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Introduction

The relationship between an algebraic structure and a graph has expanded
immensely after the introduction of a zero divisor graph by Istvan Beck [3]
in 1988. Since then, several authors have defined many graphs such as
comaximal graph of a commutative ring [13], intersection graphs of ideals of
rings [4], the total graph of a commutative ring [1], etc. In [2], we introduced
a graph associated with non-trivial (left) ideals of a ring, namely, a non-
comaximal graph of ideals of a ring. The non-comaximal graph of ideals of
a ring R, denoted by NC(R), is an undirected graph whose vertex set is the
collection of all non-trivial left ideals of R, and any two vertices are adjacent
if and only if their sum is non-trivial in R. In this paper, we discuss some
more properties of the non-comaximal graph of ideals of a commutative ring
with unity. Throughout the paper, we use the results from [12], where a
similar concept is discussed in module theory.

We recall some definitions and notations from graph and ring theories
which are used below. Throughout this paper, all graphs are undirected.
Let G be a graph with vertex set V (G) and edge set E(G). The graph G is
said to be empty if E(G) = ∅. We denote the degree of a vertex v ∈ V (G)
by deg(v), that is the number of edges incident on v. If deg(v) = 1, then v
is called an end vertex.

The graph G is complete if any two vertices of G are adjacent. A graph is
said to be bipartite if its vertex set V (G) can be partitioned into two subsets

1

http://armjmath.sci.am/
https://doi.org/10.52737/18291163-2023.15.2-1-8


2 B. BARMAN AND K. K. RAJKHOWA

V1 and V2 such that every edge of G joins V1 and V2. If |V1| = m, |V2| = n,
and every vertex in V1 (or V2) is adjacent to all vertices in V2 (or V1), then
the bipartite graph is said to be complete and is denoted by Km,n. If either
m or n is equal to 1, then Km,n is said to be a star.

A walk in G is an alternating sequence v0e1v1...envn of vertices and edges,
in which each edge ei is vi−1vi. A walk is said to be closed if it has the same
first and last vertices. A path is a walk in which all vertices are distinct. We
denote a path with n vertices by Pn. A circuit is a closed walk with all its
vertices distinct (except the first and the last ones). The length of a circuit
is the number of edges in the circuit. The length of the smallest circuit of
G is called the girth of G, and is denoted by girth(G). We say that G is
connected if there is a path between every two distinct vertices, and G is
disconnected if it is not connected.

If I and J are two distinct vertices of G, then d(I, J) is the length of the
shortest path from I to J , and if there is no such path, then d(I, J) = ∞.
The diameter of G is the maximum distance among the distances between all
pairs of vertices of G, and is denoted by diam(G). A complete subgraph of G
is said to be a clique in G. The number of vertices in maximum clique of G is
called the clique number of G and is denoted by ω(G). By chromatic number
χ(G) of G, we mean the minimum number of colors required to color the
vertices in such a way that every two adjacent vertices have different colors.

In this paper, all rings are commutative with unity element. Let R be a
ring. A non-zero ideal m of R is said to be minimal if it contains no other
non-zero ideal. We use min(R) to denote the set of minimal ideals of R. A
simple ring is a non-zero ring that has no non-trivial proper ideal. Every
minimal ideal is a simple ring. In a commutative ring R, R is simple if and

only if R is a field. If I and J are two ideals of a ring R, then
I + J

I
∼=

J

I ∩ J
.

A ring R is said to be Artinian if there does not exist an infinite strictly
descending chain of ideals. A ring R is said to be Noetherian if there does not
exist an infinite strictly ascending chain of ideals. In an Artinian ring, every
ideal contains a minimal ideal. In a Noetherian ring, every ideal is contained
in a maximal ideal. By l(R), we denote the length of ascending/descending
chain of R. A ring R is said to be local if it has exactly one maximal ideal.
An ideal of a ring R is said to be small if it has a non-trivial sum with every
non-trivial ideal of R.

Any undefined terminology can be found in [5–11].

1 Results

Now we present our main results.

Theorem 1 The graph NC(R) is disconnected if and only if R is a direct
sum of two minimal ideals.
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Proof. Let NC(R) be not connected. Suppose G1, G2 are two components
of NC(R) and I ∈ G1, J ∈ G2. Clearly, I + J = R, as there is no path
between I and J . If I∩J 6= 0, then I+(I∩J) = I and J+(I∩J) = J , there-
fore I−(I∩J)−I is a path, which is a contradiction to the disconnectedness
of NC(R). Hence, I ∩ J = (0), this implies R = I

⊕
J .

Assume that Z is an ideal of R such that Z $ I. Then Z + I = I( 6= R),
which implies that Z and I are adjacent vertices. Thus, Z, I ∈ G1 which
infers that there is no path between Z and J as J ∈ G2. Therefore, Z+J =
R. Now, I = I ∩R = I ∩ (Z + J) = Z + (I ∩ J) = Z. Hence, I is a minimal
ideal of R. Similarly, J is also a minimal ideal of R. Conversely, assume
that R = F

⊕
G, where F and G are minimal ideals of R. Clearly, F and

G are simple rings. As F is commutative, F is a field (see [10]). In the same

way, G is also a field. Now,
R

G
∼= F which infers that G is a maximal ideal

of R. Similarly, F is also a maximal ideal of R. Assume that F is adjacent
to N . Hence, F + N 6= R. Since F is maximal, N ⊆ F . The fact that F is
minimal implies that F = N . Thus, F is an isolated vertex. �

Theorem 2 If NC(R) is connected, then the followings hold:
(i) Every pair of maximal ideals of R has non-zero intersection, and they
are connected.
(ii) Every pair of minimal ideals has non-trivial sum, and they are connected.

Proof. (i) Let F and G be two maximal ideals of R. Suppose F∩G = 0. As
F and G are maximal, this implies that F +G = R. Therefore, F

⊕
G = R.

Since
R

F
∼= G and

R

G
∼= F , we obtain that F and G are fields. Hence, F

and G are minimal ideals of R, which is a contradiction to connectedness of
NC(R). Therefore, F ∩G 6= 0. Also, F − (F ∩G)−G is a path in NC(R).
This completes the proof.

(ii) Let f and g be two minimal ideals of R. Clearly, f ∩ g = 0. If
f+g = R, then NC(R) is disconnected by Theorem 1. Therefore, f+g 6= R.
�

Remark 1 If NC(R) is connected, then the set of all maximal ideals of R
forms an independent set, and the set of all minimal ideals of R forms a
clique.

Theorem 3 Let R be an Artinian ring. If R contains a unique minimal
ideal, then NC(R) is connected.

Proof. Suppose R is an Artinian ring with unique minimal ideal m. If
I, J ∈ V (NC(R)) are any two ideals, then m ⊆ I and m ⊆ J . Therefore,
I −m− J is a path, and hence, NC(R) is connected. �
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Remark 2 The graph NC(Zp2q2), where p, q are primes, is a connected
graph. Thus, the converse of the above theorem is not true.

Theorem 4 If V (NC(R)) ≥ 2 and NC(R) is disconnected, then the fol-
lowings hold:
(i) NC(R) is empty.
(ii) l(R) = 2, where l(R) denotes the length of composition series of R.

Proof. Let NC(R) be disconnected. Then R = F
⊕

G where F and G
are minimal ideals of R. Clearly, F and G are simple rings. As F and G

are commutative, F and G are fields (see [10]). Also,
R

F
∼= G and

R

G
∼= F .

Therefore, F and G are maximal ideals of R. Suppose I(6= F,G) is any
ideal of R. It is clear that I ⊂ R = F

⊕
G and I ∩ F = 0 = I ∩G. Again,

we obtain I
⊕

F = R, which implies
R

F
∼= I and

R

I
∼= F . Therefore, I is

maximal as well as minimal ideal of R. Therefore, every non-trivial ideal of
R is minimal and maximal at the same time. By Theorem 2.3 in [2], NC(R)
is empty. �

Theorem 5 The graph NC(R) is complete if and only if R is local.

Proof. Suppose R is a local ring. Then R possesses a unique maximal ideal
M . If I, J ∈ V (NC(R)), then I + J ⊆ M( 6= R). Thus, any two ideals are
adjacent, therefore NC(R) is complete. Conversely, let NC(R) be complete.
Suppose M1,M2 are two maximal ideals of R. Then M1 +M2 = R. Hence,
M1 and M2 are not adjacent, which is a contradiction. This concludes the
proof. �

Corollary 1 The graph NC(R) is complete if and only if every ideal of R
is small.

Corollary 2 If |V (NC(R))| = n, then deg(I) = n − 1 for any small ideal
I of R.

Theorem 6 If ω(NC(R)) <∞, then the following statements hold:
(i) l(R) <∞.
(ii) ω(NC(R)) = 1 if and only if |V NC(R)| = 1 or R is a direct sum of two
minimal ideals of R.
(iii) If ω(NC(R)) > 1, then the number of minimal ideals of R is finite.

Proof. (i) Let I1 ⊂ I2 ⊂ I3 ⊂ ... be an infinite ascending chain of ideals.
For p < q, Ip + Iq = Iq(6= R). Similar statement holds for descending chain
of ideals. Hence, the infinite chain forms an infinite clique, which contradicts
the assumption ω(NC(R)) <∞. Therefore, l(R) <∞.
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(ii) The second statement is trivial.

(iii) If ω(NC(R)) > 1, then by (ii), |V NC(R)| 6= 1, and R is not a
direct sum of two minimal ideals of R. By Theorem 1, NC(R) is connected.
Hence, by Theorem 2, every pair of minimal ideals of R has a non-trivial
sum. Consider the subgraph m∗ = {I : I is a minimal ideal of R} of
NC(R) generated by all minimal ideals of R. Clearly, m∗ forms a clique,
and this implies that |m∗| = ω(m∗) ≤ ω(NC(R)) <∞. Hence, the number
of minimal ideals of R is finite. �

Theorem 7 If |V (NC(R))| ≥ 2, then the following statements are equiva-
lent:
(i) NC(R) is a star graph.
(ii) NC(R) is tree.
(iii) χ(NC(R))) = 2.
(iv) l(R) = 3, R is an Artinian ring with unique minimal ideal, and all other
ideals are maximal.

Proof. (i) =⇒ (ii) and (ii) =⇒ (iii) are clear.

(iii) =⇒ (iv) Let χ(NC(R))) = 2. Since ω(NC(R) ≤ χ(NC(R)), by
Theorem 6, l(R) < ∞. Thus, there does not exit any infinite chain in R,
hence R is Artinian, which infers that there exists a minimal ideal m in R.
We claim that m is the only minimal ideal of R. Let n(6= m) be another
minimal ideal of R. If m + n = R, then it contradicts the assumption
χ(NC(R))) = 2. Also, if m + n 6= R, then m− (m + n)− n−m is a cycle
of length 3, which contradicts χ(NC(R))) = 2. Therefore, minimal ideal
of R is unique. Consider an ideal K of R wich is distinct from m. If K is
not maximal, then there exists an ideal X such that K $ X $ R and also
m $ K,X, as R is an Artinian ring with unique minimal ideal. This implies
that m−K −X −m is a cycle of length 3, which is a contradiction. Hence,
K is maximal, and only possible composition series in R is m $ K $ R,
which implies that l(R) = 3.

(iv) =⇒ (i) It is clear that all maximal ideals which are connected to
the unique minimal ideal of R are end vertices of NC(R). Therefore, NC(R)
is a star graph. �

Theorem 8 If deg(I) <∞ for every ideal I of a ring R, then l(R) <∞.

Proof. Assume that R contains an infinite ascending chain of ideals I1 ⊂
I2 ⊂ I3 ⊂ . . . Then deg(I1) =∞ as I1 + Ij = Ij(6= R) for all j. Equivalently,
this happens for an infinite descending chain, too. Thus, l(R) <∞. �

Lemma 1 If m is minimal and m+M = R, then M is maximal.
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Proof. Suppose, M is not maximal. Then there exists an ideal P of R
such that M $ P $ R. Therefore, 0 ⊆ m ∩M ⊆ m ∩ P ⊆ m. Clearly,
m ∩M = m or m ∩ P = 0. If m ∩M = m, then m ⊆ M . This gives that
R = m + M = M , which is a contradiction. If m ∩ P = 0, then M = P
since P = P ∩R = P ∩ (m+M) = M + (m∩P ) = M + 0 = M . Therefore,
M maximal. �

Theorem 9 Let m be a minimal ideal of R and deg(m) <∞. If NC(R) is
connected, then the following statements hold:
(i) the number of minimal ideals of R is finite.
(ii) χ(NC(R))) <∞.

Proof. Let min(R) = {mi : mi is a minimal ideal of R}. Clearly, m ∈
min(R), and hence, min(R) 6= ∅. By Theorem 2, m + mi 6= R for every
mi ∈ min(R). Thus, |min(R)| ≤ deg(m) + 1 < ∞. Therefore, min(R) is
finite.

(ii) Let {Pi} be the set of ideals of R which are not adjacent to m. Then
m+ Pi = R for every i. By Lemma 1, Pi is maximal, which implies that no
two distinct vertices of {Pi} are adjacent. Hence, all the vertices belonging
to the set {Pi} can be coloured by one colour. Also, consider the vertex set
{Qi} of all vertices which are adjacent to m. Since deg(m) < ∞, |{Qi}| is
finite. Therefore, the total number of colours required to colour NC(R) is
finite, that is, χ(NC(R))) <∞. �

Theorem 10 If NC(R) has no 3-cycle, then every maximal ideal is either
an isolated vertex or an end vertex.

Proof. Let M be a maximal ideal which is neither an isolated vertex nor
an end vertex. Then deg(M) ≥ 2, which infers that there exist at least two
ideals I, J of R such that I + M 6= R and J + M 6= R. As M is maximal,
I $M and J $M . Therefore, I+J $M , which implies that I−M−J−I
is a 3-cycle in NC(R), a contradiction. �

Theorem 11 If M is an end vertex of NC(R), then either M is a maximal
ideal or a minimal ideal of R.

Proof. Suppose M is an end vertex of NC(R). Therefore, there exists an
ideal I such that M + I 6= R. Since deg(M) = 1, hence M + I = M or
M + I = I. If M + I = I, then M $ I. If there exists an ideal J such that
0 $ J $ M , then J + M = M . This contradicts the fact that deg(M) = 1.
Hence, M is a minimal ideal of R. On the other hand, M + I = M gives
I $M . If there exists an ideal P such that M $ P $ R, then P +M = P ,
which contradicts the fact that deg(M) = 1. Thus, M is a maximal ideal of
R. The proof is complete. �
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Theorem 12 The graph NC(R) ∼= P2 if and only if R has only two non-
trivial ideals of R, one of which is maximal and the other is minimal.

Proof. Assume that NC(R) ∼= P2. Let I, J ∈ V (NC(R)) be two adjacent
vertices. Clearly, I + J 6= R. Therefore, either I + J = I or I + J = J . If
I + J = I, then it implies that I is maximal ideal and J is minimal ideal of
R. Similarly, the other case gives J is a maximal ideal and I is a minimal
ideal of R. The converse statement is obvious. �

Theorem 13 If NC(R) is a path, then NC(R) ∼= P2 or P3.

Proof. Let NC(R) be a path I1I2I3 . . . In . . . Since I1 is an end vertex of
NC(R), it is either a maximal ideal or a minimal ideal of R.

First, consider the case when I1 is a minimal ideal of R. If I2 is maximal,
then clearly NC(R) ∼= P2. If not, we go on increasing the vertex number.
For n = 3, I2 + I3 6= R as there is a path between I2 and I3. Then, there are
three possibilities. In the first case, we consider I2 + I3 = I1, which implies
that I2 $ I1. In the case when I2 + I3 = I2, we have I3 $ I3. This gives
I1+I3 $ I1+I2 6= R. In the last case, we take I2+I3 = I3, and thus I2 $ I3.
The first two cases lead to the contradiction. Therefore, for n = 3, we get
a path with I1 being a minimal ideal of R and I2 $ I3. For n = 4, we have
four cases which are I3 + I4 = I1, I3 + I4 = I2, I3 + I4 = I3 and I3 + I4 = I4.
All the four cases lead to the contradiction. Therefore, NC(R) ∼= P3.

Now consider the case when I1 is a maximal ideal of R. Here, I2 $ I1 as
I1+I2 6= R. For n = 3, we get three cases, which are I2+I3 = I1, I2+I3 = I2
and I2 + I3 = I3. Again, the first two cases lead to the contradiction. The
third case gives I2 $ I3. Thus, for n=3, we have a path with the conditions
I2 $ I1 and I2 $ I3. For n=4, we get the following cases: I3 + I4 = I1,
I3 + I4 = I2, I3 + I4 = I3 and I3 + I4 = I4. All of them lead to the
contradiction. Thus, NC(R) ∼= P3. �
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