Difference sequence spaces in *n*-normed spaces defined by Musielak-Orlicz function

Kuldip Raj, Sunil K. Sharma and Ajay K. Sharma

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India

kuldeepraj 68@hotmail.com

Abstract

In the present paper we introduced generalized difference sequence spaces combining lacunary sequences and Musielak-Orlicz function $\mathcal{M} = (M_k)$ over n-normed spaces and examine some properties of the resulting sequence spaces.

Key Words: Orlicz function, Musielak-Orlicz function, n-normed space, Paranorm space, Difference sequence, Lacunary sequence.

Mathematics Subject Classification 2000: 40A05, 40C05A, 46A45

1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler[1] in the mid of 1960's, while that of n-normed spaces one can see in Misiak[12]. Since then, many others have studied this concept and obtained various results, see Gunawan ([2],[3]) and Gunawan and Mashadi [4]. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} of dimension d, where $d \geq n \geq 2$ and \mathbb{K} is the field of real or complex numbers. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \dots, x_n||$ is invariant under permutation;
- 3. $||\alpha x_1, x_2, \dots, x_n|| = |\alpha| \ ||x_1, x_2, \dots, x_n||$ for any $\alpha \in \mathbb{K}$; and
- 4. $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$;

is called a *n*-norm on X and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} .

For example, we may take $X = \mathbb{R}^n$ being equipped with the *n*-norm $||x_1, x_2, \dots, x_n||_E =$ the volume of the *n*-dimensional parallelepiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, ||\cdot, \dots, \cdot||)$ be an *n*-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_n||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$.

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k\to\infty} ||x_k - L, z_1, \cdots, z_n|| = 0 \text{ for every } z_1, \cdots, z_n \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdot \cdot \cdot, \cdot||)$ is said to be Cauchy if

$$\lim_{k,l\to\infty} ||x_k - x_l, z_1, \cdots, z_n|| = 0 \text{ for every } z_1, \cdots, z_n \in X.$$

If every Cauchy sequence in X is convergent then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let X be a linear metric space. A function $p:X\to\mathbb{R}$ is called paranorm if it satisfies the following :

- 1. p(x) > 0 for all $x \in X$;
- 2. p(-x) = p(x) for all $x \in X$;
- 3. $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$ and
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [16], Theorem 10.4.2, pp. 183).

Let ℓ_{∞} , c and c_0 denotes the sequence spaces of bounded, convergent and null sequences respectively. A sequence $x = (x_k) \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of (x_k) coincide. In [6] it was shown that

$$\hat{c} = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n x_{k+s} \text{ exists, uniformly in } s \right\}.$$

In ([7],[8]) Maddox defined strongly almost convergent sequences. Recall that a sequence $x = (x_k)$ is strongly almost convergent if there is a number L such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s} - L| = 0, \text{ uniformly in } s.$$

By a lacunary sequence $\theta = (i_r)$, $r = 0, 1, 2, \dots$, where $i_0 = 0$, we shall mean an increasing sequence of non-negative integers $g_r = (i_r - i_{r-1}) \to \infty$ as $r \to \infty$. The intervals determined by θ are denoted by $I_r = (i_{r-1}, i_r]$ and the ratio i_r/i_{r-1} will be denoted by q_r . The space N_{θ} of lacunary strongly convergent sequences was defined by Freedman [15] as follows:

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L \right\}.$$

In [5] Kizmaz defined the sequence spaces

$$Z(\Delta) = \left\{ x = (x_k) : (\Delta x_k) \in Z \right\} \text{ for } Z = \ell_{\infty}, c \text{ and } c_0,$$

where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$. Et and Colak [14] generalized the difference sequence spaces to the sequence spaces

$$Z(\Delta^m) = \left\{ x = (x_k) : (\Delta^m x_k) \in Z \right\} \text{ for } Z = \ell_\infty, c \text{ and } c_0,$$

where $m \in N$, $\Delta_x^0 = (x_k)$, $\Delta x = (x_k - x_{k+1})$,

$$\Delta^{m} x = (\Delta^{m} x_{k}) = (\Delta^{m-1} x_{k} - \Delta^{m-1} x_{k+1}).$$

The generalized difference sequence has the following binomial representation

$$\Delta^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+v}.$$

An orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \Big\{ \rho > 0 : \sum_{k=1}^{\infty} M\Big(\frac{|x_k|}{\rho}\Big) \le 1 \Big\}.$$

It is shown in [10] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \ge 1)$. The Δ_2 -condition is equivalent to $M(Lx) \le kLM(x)$ for all values of $x \ge 0$, and

for L > 1. A sequence $\mathcal{M} = (M_k)$ of Orlicz function is called a Musielak-Orlicz function see ([11],[13]). A sequence $\mathcal{N} = (N_k)$ defined by

$$N_k(v) = \sup\{|v|u - (M_k) : u \ge 0\}, \ k = 1, 2, \dots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows:

$$t_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \Big\},$$
$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} (M_k)(x_k), \quad x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

Let M be an Orlicz function and $p = (p_k)$ be any sequence of strictly positive real numbers. Gungor and Et [9] defined the following sequence spaces

$$[c, M, p](\Delta^m) = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[M \left(\frac{|\Delta^m x_{k+s} - L|}{\rho} \right) \right]^{p_k} = 0, \right\}$$

uniformly in s, for some $\rho > 0$ and L > 0,

$$[c, M, p]_0(\Delta^m) = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|\Delta^m x_{k+s}|}{\rho}\right) \right]^{p_k} = 0, \right\}$$

uniformly in s, for some $\rho > 0$ $\}$,

$$[c, M, p]_{\infty}(\Delta^m) = \left\{ x = (x_k) : \sup_{n, s} \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|\Delta^m x_{k+s}|}{\rho}\right) \right]^{p_k} < \infty \text{ for some } \rho > 0 \right\}.$$

Let $(X, ||\cdot, \dots, \cdot||)$ be a *n*-normed space and w(n - X) denotes the space of X-valued sequences. Let $p = (p_k)$ be any bounded sequence of positive real numbers and $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. In this paper, we define the following sequence spaces

$$[c, \mathcal{M}, p, ||\cdot, \dots, \cdot||]^{\theta}(\Delta^{m})$$

$$= \left\{ x = (x_{k}) \in w(n-X) : \lim_{r \to \infty} \frac{1}{g_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(|| \frac{\Delta^{m} x_{k+s} - L}{\rho}, z_{1}, \dots, z_{n-1} || \right) \right]^{p_{k}} = 0,$$
uniformly in $s, z_{1}, \dots, z_{n-1} \in X$ for some $\rho > 0$ and $L > 0 \right\},$

$$[c, \mathcal{M}, p, ||\cdot, \dots, \cdot||]_0^{\theta}(\Delta^m) = \left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \dots, z_{n-1}|| \right) \right]^{p_k} = 0,$$
 uniformly in $s, z_1, \dots, z_{n-1} \in X$ for some $\rho > 0$ $\right\}$,

$$[c, \mathcal{M}, p, ||\cdot, \dots, \cdot||]_{\infty}^{\theta}(\Delta^{m}) = \left\{ x = (x_{k}) \in w(n - X) : \sup_{r,s} \frac{1}{g_{r}} \sum_{k=1}^{n} \left[M_{k} \left(|| \frac{\Delta^{m} x_{k+s}}{\rho}, z_{1}, \dots, z_{n-1}|| \right) \right]^{p_{k}} \right\}$$

When, $\mathcal{M}(x) = x$, we get

$$[c, p, || \cdot, \cdots, \cdot ||]^{\theta}(\Delta^m) = \left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right)^{p_k} = 0,$$
 uniformly in $s, z_1, \cdots, z_{n-1} \in X$ for some $\rho > 0$ and $L > 0 \right\},$

$$[c, p, || \cdot, \cdots, \cdot ||]_0^{\theta}(\Delta^m) = \left\{ x = (x_k) \in w(n - X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right)^{p_k} = 0, \text{ uniformly in } s, z_1, \cdots, z_{n-1} \in X \text{ for some } \rho > 0 \right\},$$

$$[c, p, || \cdot, \cdots, \cdot ||]_{\infty}^{\theta}(\Delta^{m}) = \left\{ x = (x_{k}) \in w(n - X) : \sup_{r, s} \frac{1}{g_{r}} \sum_{k=1}^{n} \left(|| \frac{\Delta^{m} x_{k+s}}{\rho}, z_{1}, \cdots, z_{n-1}|| \right)^{p_{k}} \right\}$$

$$z_{n-1} = \left\{ x = (x_{k}) \in w(n - X) : \sup_{r, s} \frac{1}{g_{r}} \sum_{k=1}^{n} \left(|| \frac{\Delta^{m} x_{k+s}}{\rho}, z_{1}, \cdots, z_{n-1}|| \right)^{p_{k}} \right\}$$

If we take $p_k = 1$ for all k, then we get

$$[c, \mathcal{M}, || \cdot, \cdots, \cdot ||]^{\theta}(\Delta^m) = \left\{ x = (x_k) \in w(n - X) : \\ \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0, \\ \text{uniformly in } s, \ z_1, \cdots, z_{n-1} \in X \ \text{ for some } \ \rho > 0 \ \text{ and } \ L > 0 \right\},$$

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) = \left\{ x = (x_k) \in w(n-X) : \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right] = 0, \text{ uniformly in } s, \ z_1, \cdots, z_{n-1} \in X \text{ for some } \rho > 0 \right\},$$

$$[c, \mathcal{M}, ||\cdot, \dots, \cdot||]_{\infty}^{\theta}(\Delta^{m}) = \left\{ x = (x_{k}) \in w(n-X) : \sup_{r,s} \frac{1}{g_{r}} \sum_{k=1}^{n} \left[M_{k} \left(|| \frac{\Delta^{m} x_{k+s}}{\rho}, z_{1}, \dots, z_{n-1}|| \right) \right] \right\}$$

$$z_{n-1} || = \left\{ x = (x_{k}) \in w(n-X) : \sup_{r,s} \frac{1}{g_{r}} \sum_{k=1}^{n} \left[M_{k} \left(|| \frac{\Delta^{m} x_{k+s}}{\rho}, z_{1}, \dots, z_{n-1}|| \right) \right] \right\}$$
for some $\rho > 0$.

The following inequality will be used throughout the paper

$$|x_k + y_k|^{p_k} \le K(|x_k|^{p_k} + |y_k|^{p_k}),\tag{1}$$

where x_k 's and y_k 's are complex numbers, $K = \max(1, 2^{H-1})$ and $H = \sup_k p_k < \infty$.

2 Some properties of difference sequence spaces

In this section we prove some results on difference sequence spaces defined in the present paper.

Theorem 1. Let $\mathcal{M} = (M_k)$ be Musielak-Orlicz function and $p = (p_k)$ be a bounded sequence of strictly real numbers. Then $[c, \mathcal{M}, p, ||., \cdots, \cdot||]^{\theta}(\Delta^m)$, $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$ and $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$ are linear spaces over the set of complex numbers \mathbb{C} .

Proof. Let $x = (x_k), y = (y_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0, \text{ uniformly in } s,$$

and

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0, \text{ uniformly in } s.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M_k 's are non-decreasing convex functions, by using in-

equality (1), we have

$$\begin{split} &\frac{1}{g_r}\sum_{k\in I_r}\left[M_k\Big(||\frac{\Delta^m(\alpha x_{k+s}+\beta y_{k+s})}{\rho_3},z_1,\cdots,z_{n-1}||\Big)\right]^{p_k}\\ &\leq \frac{1}{g_r}\sum_{k\in I_r}\left[M_k\Big(||\frac{\alpha\Delta^m(x_{k+s})}{\rho_3},z_1,\cdots,z_{n-1}||+||\frac{\beta\Delta^m(y_{k+s})}{\rho_3},z_1,\cdots,z_{n-1}||\Big)\right]^{p_k}\\ &\leq K\frac{1}{g_r}\sum_{k\in I_r}\frac{1}{2^{p_k}}\Big[M_k\Big(||\frac{\Delta^m(x_{k+s})}{\rho_1},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\\ &+K\frac{1}{g_r}\sum_{k\in I_r}\frac{1}{2^{p_k}}\Big[M_k\Big(||\frac{\Delta^m(y_{k+s})}{\rho_2},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\\ &\leq K\frac{1}{g_r}\sum_{k\in I_r}\Big[M_k\Big(||\frac{\Delta^m(x_{k+s})}{\rho_1},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\\ &+K\frac{1}{g_r}\sum_{k\in I_r}\Big[M_k\Big(||\frac{\Delta^m(y_{k+s})}{\rho_1},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\\ &\to 0 \ \text{as} \ r\to\infty, \ \text{uniformly in} \ s. \end{split}$$

Thus, we have $\alpha x + \beta y \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$. Hence $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$ is a linear space.

Similarly, we can prove that $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$ and $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^m)$ are linear spaces.

Theorem 2. For any Musielak-Orlicz function $\mathcal{M} = (M_k)$ and a bounded sequence $p = (p_k)$ of strictly positive real numbers, $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$ is a topological linear space paranormed by

$$g(x) = \inf \Big\{ \rho^{\frac{p_r}{H}} : \Big(\frac{1}{g_r} \sum_{k \in I} \Big[M_k(||\frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}||) \Big]^{p_k} \Big)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \Big\},$$

where $H = \max(1, \sup_k p_k) < \infty$.

Proof. Clearly $g(x) \ge 0$ for $x = (x_k) \in [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]_0^\theta(\Delta^m)$. Since $M_k(0) = 0$, we get g(0) = 0. Again, if g(x) = 0, then

$$\inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \right\} = 0.$$

This implies that for a given $\epsilon > 0$ there exists some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that

$$\left(\frac{1}{g_r}\sum_{k\in I_-}\left[M_k\left(||\frac{\Delta^m x_{k+s}}{\rho_\epsilon}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1.$$

Thus

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\rho_{\epsilon}}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1,$$

for each r and s. Suppose that $x_k \neq 0$ for each $k \in N$. This implies that $\Delta^m x_{k+s} \neq 0$, for each $k, s \in N$. Let $\epsilon \longrightarrow 0$, then $||\frac{\Delta^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1}|| \longrightarrow \infty$. It follows that

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\epsilon}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \longrightarrow \infty$$

which is a contradiction. Therefore, $\Delta^m x_{k+s} = 0$ for each k and s and thus $x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1$$

and

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1$$

for each r and s. Let $\rho = \rho_1 + \rho_2$. Then, by Minkowski's inequality, we have

$$\left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(x_{k+s} + y_{k+s})}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
\leq \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(x_{k+s}) + \Delta^m(y_{k+s})}{\rho_1 + \rho_2}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
\leq \left(\sum_{k \in I_r} \left[\frac{\rho_1}{\rho_1 + \rho_2} M_k \left(|| \frac{\Delta^m(x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
+ \frac{\rho_2}{\rho_1 + \rho_2} M_k \left(|| \frac{\Delta^m(y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \\
\leq 1$$

Since ρ , ρ_1 and ρ_2 are non-negative, so we have

$$g(x+y) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(x_{k+s} + y_{k+s})}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \right\},$$

$$\leq \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m(x_{k+s})}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \right\}$$

$$+ \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{g_r} \sum_{k \in I} \left[M_k \left(|| \frac{\Delta^m(y_{k+s})}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \right\}.$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m \lambda x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \right\}.$$

Then

$$g(\lambda x) = \inf \Big\{ (|\lambda|t)^{\frac{p_r}{H}} : \Big(\frac{1}{g_r} \sum_{k \in I} \Big[M_k \Big(|| \frac{\Delta^m x_{k+s}}{t}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \Big\},$$

where $t = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_r} \leq \max(1, |\lambda|^{\sup p_r})$, we have

$$g(\lambda x) \le \max(1, |\lambda|^{\sup p_r}) \inf \Big\{ t^{\frac{p_r}{H}} : \Big(\frac{1}{g_r} \sum_{k \in I_n} \Big[M_k \Big(|| \frac{\Delta^m x_{k+s}}{t}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \Big)^{\frac{1}{H}} \le 1, r, s \in \mathbb{N} \Big\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. \Box

Theorem 3. Let $\mathcal{M} = (M_k)$ be Musielak-Orlicz function. If $\sup_k [M_k(x)]^{p_k} < \infty$ for all fixed x > 0, then $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$.

Proof. Let $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_m)$. There exists positive number ρ_1 such that

$$\lim_{r\to\infty} \frac{1}{g_r} \sum_{k\in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} = 0, \text{ uniformly in } s.$$

Define $\rho = 2\rho_1$. Since M_k 's are non-decreasing and convex, by using inequality(1), we have $\sup_{r,s} \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$

$$= \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L + L}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$\leq K \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[\frac{1}{2^{p_k}} M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$+ K \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[\frac{1}{2^{p_k}} M_k \left(|| \frac{L}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$\leq K \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$+ K \sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{L}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$< \infty.$$

Hence
$$x = (x_k) \in [c, M_k, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}$$
.

Theorem 4. Let $0 < \inf p_k = h \le p_k \le \sup p_k = H < \infty$ and $\mathcal{M} = (M_k)$, $\mathcal{M}' = (M'_k)$ be Musielak-Orlicz functions satisfying Δ_2 -condition, then we have

$$(i)[c,\mathcal{M}',p,||\cdot,\cdots,\cdot||]_0^{\theta}(\Delta^m)\subset [c,\mathcal{M}\circ\mathcal{M}',p,||\cdot,\cdots,\cdot||]_0^{\theta}(\Delta^m),$$

$$(ii)[\ c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||\]^{\theta}(\Delta^m) \subset [\ c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||\]^{\theta}(\Delta^m),$$

$$(iii)[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^m) \subset [c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^m).$$

Proof. Let $x = (x_k) \in [c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta_m)$. Then we have

$$\lim_{r\to\infty} \frac{1}{g_r} \sum_{k\in I_r} \left[M_k' \Big(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \Big) \right]^{p_k} = 0, \text{ uniformly in } s \text{ for some } L.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_k(t) < \epsilon$ for $0 \le t \le \delta$. Let

$$y_{k,s} = M'_k \left(\left| \left| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \text{ for all } k, s \in \mathbb{N}.$$

We can write

$$\frac{1}{g_r} \sum_{k \in I_r} [M_k(y_{k,s})]^{p_k} = \frac{1}{g_r} \sum_{k \in I_r} \sum_{\substack{k \in I_r \& y_{k,s} < \delta}} [M_k(y_{k,s})]^{p_k} + \frac{1}{g_r} \sum_{\substack{k \in I_r \& y_{k,s} > \delta}} [M_k(y_{k,s})]^{p_k}.$$

So, we have

$$\frac{1}{g_r} \sum_{k \in I_r} \sum_{\& y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k} \le [M_k(1)]^H \frac{1}{g_r} \sum_{k \in I_r} \sum_{\& y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k}
\le [M_k(2)]^H \frac{1}{g_r} \sum_{k \in I_r} \sum_{\& y_{k,s} \le \delta} [M_k(y_{k,s})]^{p_k}$$
(2)

For $y_{k,s} > \delta$

$$y_{k,s} < \frac{y_{k,s}}{\delta} < 1 + \frac{y_{k,s}}{\delta}.$$

Since M_k 's are non-decreasing and convex, it follows that

$$M_k(y_{k,s}) < M_k \left(1 + \frac{y_{k,s}}{\delta}\right) < \frac{1}{2}M_k(2) + \frac{1}{2}M_k \left(\frac{2y_{k,s}}{\delta}\right).$$

Since $\mathcal{M} = (M_k)$ satisfies Δ_2 -condition, we can write

$$M_k(y_{k,s}) < \frac{1}{2} T \frac{y_{k,s}}{\delta} M_k(2) + \frac{1}{2} T \frac{y_{k,s}}{\delta} M_k(2) + \frac{1}{2} T \frac{y_{k,s}}{\delta} M_k(2)$$

= $T \frac{y_{k,s}}{\delta} M_k(2)$.

Hence,

$$\frac{1}{g_r} \sum_{k \in I_r \& y_{k-s} > \delta} [M_k(y_{k,s})]^{p_k} \le \max\left(1, \left(\frac{TM_k(2)}{\delta}\right)^H\right) \frac{1}{g_r} \sum_{k \in I_r \& y_{k-s} > \delta} [(y_{k,s})]^{p_k} \tag{3}$$

from equations (2) and (3), we have

$$x = (x_k) \in [c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m).$$

This completes the proof of (i).

Similarly, we can prove that

$$[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) \subset [c, \mathcal{M} \circ \mathcal{M}', ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$$

and

$$[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^{m}) \subset [c, \mathcal{M} \circ \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^{m}).$$

Corollary 1. Let $0 < \inf p_k = h \le p_k \le \sup p_k = H < \infty$ and $\mathcal{M} = (M_k)$ be Musielak-Orlicz function satisfying Δ_2 -condition, then we have

$$[c, p, ||\cdot, \cdots, \cdot||]_0^\theta(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^\theta(\Delta^m)$$

and

$$[c, \mathcal{M}', p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty} \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^{m}).$$

Proof. Taking $\mathcal{M}'(x) = x$ in the above theorem, we get the required result.

Theorem 5. Let $\mathcal{M} = (M_k)$ be the Musielak-Orlicz function. Then the following statements are equivalent:

(i)
$$[c, p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}_{\infty}(\Delta^m),$$

(ii)
$$[c, p,] | \cdot, \cdots, \cdot |]_0^{\theta}(\Delta^m) \subset [c, \mathcal{M}, p, | | \cdot, \cdots, \cdot |]_{\infty}^{\theta}(\Delta^m),$$

$$(ii) \begin{bmatrix} c, p, || \cdot, \cdots, \cdot || \end{bmatrix}_{0}^{\theta}(\Delta^{m}) \subset \begin{bmatrix} c, \mathcal{M}, p, || \cdot, \cdots, \cdot || \end{bmatrix}_{\infty}^{\theta}(\Delta^{m}),$$

$$(iii) \sup_{r} \frac{1}{g_{r}} \sum_{k \in I_{r}} [M_{k}(\frac{t}{\rho})]^{p_{k}} < \infty \quad (t, \rho > 0).$$

 $\textit{Proof.} \ \ (\mathrm{i}) \Rightarrow (\mathrm{ii}) \ \mathrm{The} \ \mathrm{proof} \ \mathrm{is} \ \mathrm{obvious} \ \mathrm{in} \ \mathrm{view} \ \mathrm{of} \ \mathrm{that} \ [\ c,p,||\cdot,\cdots,\cdot||\]_0^\theta(\Delta^m) \subset [\ c,p,||\cdot,\cdots,\cdot||\]_\infty^\theta(\Delta^m) \cap [\ c,p,||\cdot,\cdots$

(ii) \Rightarrow (iii) Let $[c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$. Suppose that (iii) does not hold. Then for some $t, \rho > 0$

$$\sup_{r} \frac{1}{g_r} \sum_{k \in I} [M_k(\frac{t}{\rho})]^{p_k} = \infty$$

and therefore we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

$$\frac{1}{g_r} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j^{-1}}{\rho} \right) \right]^{p_k} > j, \quad j = 1, 2, \cdots.$$
 (4)

Define the sequence $x = (x_k)$ by

$$\Delta^m x_{k+s} = \begin{cases} j^{-1}, & k \in I_{r(j)} \\ 0, & k \notin I_{r(j)} \end{cases} \text{ for all } s \in \mathbb{N}.$$

Then $x = (x_k) \in [c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$ but by equation(4), $x = (x_k) \notin [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$, which contradicts (ii). Hence (iii) must hold.

(iii) \Rightarrow (i) Let (iii) hold and $x = (x_k) \in [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$. Suppose that $x = (x_k) \notin [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$.

Then

$$\sup_{r,s} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = \infty.$$
 (5)

Let $t = ||\Delta_{x_{k+s}}^m, z_1, \dots, z_{n-1}||$ for each k and fixed s, then by equation(5)

$$\sup_{r} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right] = \infty,$$

which contradicts (iii). Hence (i) must hold.

Theorem 6. Let $1 \le p_k \le \sup p_k < \infty$ and $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

(i)
$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) \subset [c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m),$$

(ii) $[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m) \subset [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m),$
(iii) $\inf_r \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} > 0 \quad (t, \rho > 0).$

Proof. (i) \Rightarrow (ii) is obvious.

 $(ii) \Rightarrow (iii)$ Suppose that (iii) does not hold. Then

$$\inf_{r} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{t}{\rho} \right) \right]^{p_k} = 0 \quad (t, \rho > 0),$$

so we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

$$\frac{1}{g_r} \sum_{k \in I_{r(j)}} \left[M_k \left(\frac{j}{\rho} \right) \right]^{p_k} < j^{-1}, \quad j = 1, 2, \cdots.$$
 (6)

Define a sequence $x = (x_k)$ by

$$\Delta^m x_{k+s} = \begin{cases} j, & k \in I_{r(j)} \\ 0, & k \notin I_{r(j)} \text{ for all } s \in \mathbb{N}. \end{cases}$$

Thus by equation(6), $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$, but by equation(4), $x = (x_k) \notin [c, p, ||\cdot, \cdots, \cdot||]_{\infty}^{\theta}(\Delta^m)$, which contradicts (ii). Hence (iii) must hold.

(iii) \Rightarrow (i) Let (iii) hold and suppose that $x = (x_k) \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$, i.e, $\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} = 0, \text{ uniformly in } s, \text{ for some } \rho > 0.$ (7)

Again, suppose that $x = (x_k) \notin [c, p, ||\cdot, \cdots, \cdot||]_0^{\theta}(\Delta^m)$. Then, for some number $\epsilon > 0$ and a subinterval $I_{r(j)}$ of the set of interval I_r , we have $||\Delta^m x_{k+s}, z_1, \cdots, z_{n-1}|| \ge \epsilon$ for all $k \in \mathbb{N}$ and some $s \ge s_0$. Then, from the properties of the Orlicz function, we can write

$$M_k\Big(||\frac{\Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}||\Big)_k^p \ge M_k\Big(\frac{\epsilon}{\rho}\Big)^{p_k}$$

and consequently by (7)

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\frac{\epsilon}{\rho} \right) \right]^{p_k} = 0,$$

which contradicts (iii). Hence (i) must hold.

Theorem 7. Let $0 < p_k \le q_k$ for all $k \in \mathbb{N}$ and $\left(\frac{q_k}{p_k}\right)$ be bounded. Then, $[c, \mathcal{M}, q, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$.

Proof. Let $x \in [c, \mathcal{M}, q, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$. Write

$$t_k = \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{q_k}$$

and $\mu_k = \frac{p_k}{q_k}$ for all $k \in \mathbb{N}$. Then $0 < \mu_k \le 1$ for $k \in \mathbb{N}$. Take $0 < \mu < \mu_k$ for $k \in \mathbb{N}$. Define sequences (u_k) and (v_k) as follows: For $t_k \ge 1$, let $u_k = t_k$ and $v_k = 0$ and for $t_k < 1$, let $u_k = 0$ and $v_k = t_k$. Then clearly for all $k \in \mathbb{N}$, we have

$$t_k = u_k + v_k, \qquad t_k^{\mu_k} = u_k^{\mu_k} + v_k^{\mu_k}$$

Now it follows that $u_k^{\mu_k} \leq u_k \leq t_k$ and $v_k^{\mu_k} \leq v_k^{\mu}$. Therefore,

$$\frac{1}{g_r} \sum_{k \in I_r} t_k^{\mu_k} = \frac{1}{g_r} \sum_{k \in I_r} (u_k^{\mu_k} + v_k^{\mu_k})
\leq \frac{1}{g_r} \sum_{k \in I_r} t_k + \frac{1}{g_r} \sum_{k \in I_r} v_k^{\mu}.$$

Now for each k,

$$\frac{1}{g_r} \sum_{k \in I_r} v_k^{\mu} = \sum_{k \in I_r} \left(\frac{1}{g_r} v_k\right)^{\mu} \left(\frac{1}{g_r}\right)^{1-\mu} \\
\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{g_r} v_k\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu} \left(\sum_{k \in I_r} \left[\left(\frac{1}{g_r}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu} \\
= \left(\frac{1}{g_r} \sum_{k \in I_r} v_k\right)^{\mu}$$

and so

$$\frac{1}{g_r}\sum_{k\in I_r}t_k^{\mu_k}\leq \frac{1}{g_r}\sum_{k\in I_r}t_k+\Big(\frac{1}{g_r}\sum_{k\in I_r}v_k\Big)^{\mu}.$$

Hence $x \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$.

Theorem 8. (a) If $0 < \inf p_k \le p_k \le 1$ and for all $k \in \mathbb{N}$, then

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m) \subset [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m).$$

(b) If $1 \le p_k \le \sup p_k < \infty$ and for all $k \in \mathbb{N}$. Then

$$[c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m) \subset [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m).$$

Proof. (a) Let $x \in [c, \mathcal{M}, p, ||\cdot, \cdot \cdot \cdot, \cdot||]^{\theta}(\Delta^m)$, then

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0.$$

Since $0 < \inf p_k \le p_k \le 1$. This implies that

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta_{x_{k+s}}^m - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]$$

$$\leq \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k},$$

therefore, $\lim_{r\to\infty} \frac{1}{g_r} \sum_{k\in I} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0.$

This shows that $x \in [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$

Therefore,

$$[c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m) \subset [c, \mathcal{M}, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m).$$

This completes the proof.

(b) Let $p_k \geq 1$ for each k and $\sup p_k < \infty$. Let $x \in [c, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$. Then for each $\rho > 0$, we have

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0 < 1.$$

Since $1 \le p_k \le \sup p_k < \infty$, we have

$$\lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \le \lim_{r \to \infty} \frac{1}{g_r} \sum_{k \in I_r} \left[M_k \left(|| \frac{\Delta^m x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0$$

$$< 1.$$

Therefore $x \in [c, \mathcal{M}, p, ||\cdot, \cdots, \cdot||]^{\theta}(\Delta^m)$.

References

- [1] Gahler, S., Linear 2-normietre Rume, Math. Nachr., 28 (1965), pp. 1-43.
- [2] Gunawan, H., On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Scientiae Mathematicae Japonicae, 5 (2001), pp. 47-54.
- [3] Gunawan, H., The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., **64** (2001), pp. 137-147.
- [4] Gunawan, H. and Mashadi, M., On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), pp. 631-639.
- [5] Kizmaz, H., On certain sequence spaces, Canad. Math-Bull., 24 (1981), pp. 169-176.
- [6] Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Mathematica, 80 (1948), pp. 167-190.
- [7] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), pp. 345-355.
- [8] Maddox, I. J., A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), pp. 61-64.
- [9] Gungor, M. and Et, M., Δ^r -strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math., **34** (2003), pp. 1141-1151.
- [10] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10 (1971), pp. 345-355.
- [11] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [12] Misiak, A., n-inner product spaces, Math. Nachr., **140** (1989), pp. 299-319.
- [13] Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Mathematics, **1034** (1983).
- [14] Et, M. and Colak, R., On some generalized difference sequence spaces, Soochow. J. Math., 21 (1995),377-386.
- [15] Freedman, A. R., Sember, J. J. and Raphael, M., Some Cesaro-type summability spaces, Proc. London Math. Soc., **37** (1978), 508-520.
- [16] A. Wilansky, summability through Functional Analysis, North-Holland Math. stud. 85(1984).