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Abstract

In the present paper we introduced generalized difference sequence spaces combining
lacunary sequences and Musielak-Orlicz function M = (M}) over n-normed spaces and ex-

amine some properties of the resulting sequence spaces.
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1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Géhler[1] in the mid of 1960’s,
while that of n-normed spaces one can see in Misiak[12]. Since then, many others have
studied this concept and obtained various results, see Gunawan ([2],[3]) and Gunawan and
Mashadi [4]. Let n € N and X be a linear space over the field K of dimension d, where
d > n > 2 and K is the field of real or complex numbers. A real valued function ||-,--- ,-||

on X" satisfying the following four conditions:

1. |Jzy, @, -+ ,x,|| = 0 if and only if x1,xs,- - |z, are linearly dependent in X;
2. ||z, z2, -+, xy,|| is invariant under permutation;

3. |Jaxy, xo, -+ || = || |21, 22, -+, x,]| for any a € K; and

4. |z + 2 ze, - x| < |z, @, -+ x|+ |2, 22, 2|
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is called a n-norm on X and the pair (X, ||-,--- ,-||) is called a n-normed space over the field
K.

For example, we may take X = R" being equipped with the n-norm ||xy, o, -, z,||p =
the volume of the n-dimensional parallelopiped spanned by the vectors x1, xs, - - , x, which

may be given explicitly by the formula

w1, 2o, -+l = [ det(wy)]
where z; = (241, T2, ,xi;n) € R" for each ¢ = 1,2,--- ,n. Let (X,||-,---,-||) be an n-
normed space of dimension d > n > 2 and {ay,as, - - ,a,} be linearly independent set in X.
Then the following function ||-,- -+ , || on X"~ ! defined by
bex%”' 7xn|’oo :maX{HIl,IQ,"' 7xn—17ai|’ t1= 1727"' 7n}

defines an (n — 1)-norm on X with respect to {aj,as, - ,a,}.
A sequence (zy) in a n-normed space (X, ||-,--- ,||) is said to converge to some L € X if

lim ||xp — L, 21, ,2,]| =0 for every zy,---, 2z, € X.

k—o0
A sequence (z) in a n-normed space (X, ||-,--,-||) is said to be Cauchy if

im ||z — 2,21, ,2,|| =0 for every z,---,2, € X.

k,l—oc0

If every Cauchy sequence in X is convergent then X is said to be complete with respect to
the n-norm. Any complete n-normed space is said to be n-Banach space.
Let X be a linear metric space. A function p : X — R is called paranorm if it satisfies the

following :

1. p(z) > 0 for all z € X
2. p(—x) = p(x) for all x € X
3. plz+y) <plz)+p(y) for all z,y € X and

4. if (\,) is a sequence of scalars with \,, — X as n — oo and (x,,) is a sequence of vectors
with p(z, —x) — 0 as n — oo, then p(A,z, — Ax) — 0 asn — oc.

A paranorm p for which p(z) = 0 implies z = 0 is called total paranorm and the pair (X, p)
is called a total paranormed space. It is well known that the metric of any linear metric
space is given by some total paranorm (see [16], Theorem 10.4.2, pp. 183).

Let {, ¢ and ¢y denotes the sequence spaces of bounded, convergent and null sequences
respectively. A sequence x = (z1) € £ is said to be almost convergent if all Banach limits
of (xy) coincide. In [6] it was shown that

n

1
¢ = {w = (zx) : 7}1};10 - Zw;ﬁs exists, uniformly in s}.
k=1
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In ([7],[8]) Maddox defined strongly almost convergent sequences. Recall that a sequence

x = (zy) is strongly almost convergent if there is a number L such that
li L i| LI =0 iformly i
Jim — 2 This =0, uniformly in s.

By a lacunary sequence 6 = (i,), 7 = 0,1,2,---, where iy = 0, we shall mean an increasing
sequence of non-negative integers g, = (i, —i,_1) — 00 as r — 0o. The intervals determined
by 6 are denoted by I = (i,_1,4,] and the ratio i, /i,_; will be denoted by ¢,.. The space Ny

of lacunary strongly convergent sequences was defined by Freedman [15] as follows:

.1
Ny = {x = (x1) : rlggo . Z |z, — L] =0 for some L}.

" kel,
In [5] Kizmaz defined the sequence spaces

Z(A) = {$ = (z1) : (Axy) € Z} for Z =10y,c and ¢,

where Az = (Azg) = (2 — 2x11). Et and Colak [14] generalized the difference sequence

spaces to the sequence spaces
Z(A™) = {x = (zg) : (AMay) € Z} for Z =/{,,c and co,
where m € N, A% = (x1,), Az = (2 — 2111),
A"z = (A™x) = (A™ o — A" o).
The generalized difference sequence has the following binomial representation

Aml‘k = zm:(—l)v ( T: > Lhto-

v=0

An orlicz function M is a function, which is continuous, non-decreasing and convex with
M(0) =0, M(x) >0 for x >0 and M(x) — 00 as x — 0.
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following se-

quence space. Let w be the space of all real or complex sequences x = (xy), then

= {rew () <o)

p

which is called as an Orlicz sequence space. The space ¢, is a Banach space with the norm

llz|| = inf{p >0 iM<@> < 1}.
k=1

P

It is shown in [10] that every Orlicz sequence space £); contains a subspace isomorphic to
l,(p > 1). The Ay-condition is equivalent to M(Lz) < kLM (z) for all values of x > 0, and
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for L > 1. A sequence M = (M},) of Orlicz function is called a Musielak-Orlicz function see
([11],[13]). A sequence N = (Ny) defined by
Nk<v) = sup{|v|u - (Mk) S u Z 0}7 k= ]-727 e

is called the complementary function of a Musielak-Orlicz function M. For a given Musielak-
Orlicz function M, the Musielak-Orlicz sequence space ty and its subspace hs are defined
as follows:

tvm = {x cw: Iy(cr) < oo for some ¢ > O},

hM:{wa:IM(cx)<oo for all c>0},

where Iy, is a convex modular defined by

[e. o]

Im(x) =) (M) (zx), o= (1) € tu

k=1

We consider ¢y equipped with the Luxemburg norm

lz|| = 1nf{k >0 IM(k> < 1}

or equipped with the Orlicz norm

2| = inf{%(l ¥ Lu(ke)) k> 0},

Let M be an Orlicz function and p = (pg) be any sequence of strictly positive real numbers.

Gungor and Et [9] defined the following sequence spaces

%) = o= o i LS () g

p

uniformly in s, for some p >0 and L > 0},

e M, plo(A™) = { = (a2« Jim — Z [M(%)}” —0,

uniformly in s, for some p >0 },

[C,M,p]oo(Am):{x— Tk) sup Z[ <’A ajkﬂ‘)rk < oo for some p>0}.

Let (X,||-,---,||) be a n-normed space and w(n — X) denotes the space of X-valued se-
quences. Let p = (py) be any bounded sequence of positive real numbers and M = (M) be

a Musielak-Orlicz function. In this paper, we define the following sequence spaces
[ C7M7p7 H> T H ]0<Am)

= {x = (xx) € w(n — X) : lim iz [Mk(HW,Zb'“ ,anlHﬂpk =0,
kel,

uniformly in s, 2y, ---,2,1 € X for some p>0 and L > O},
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DIFFERENCE SEQUENCE SPACES IN n-NORMED SPACES 131

e Mop, [l A1 18A™) = {2 = (@) € win - X)

uniformly in s, 21,---,2,.1 € X for some p >0 },

[07M7p7||'7"' ||] (Am)

(a:k)Ew(n—X):supizn:[ (

s T k=1

Il
=

Pk
,zn_1||>] < 00,21, ,2n—1 € X for some p>0}.
When, M(z) = z, we get
el A 7Am) = {2 = (@) € win - X)

AMxp s — L Pk
TILI{.IO;Z<||—7Z17." 7Zn—1||) _07

kel,

uniformly in s, zy,---,2,.1 € X forsome p>0 and L > 0},

el A = {o = (@) € win - X) 1 = 37 (220 5y

T—00 P
kel

Pk
zn,1||) = 0, uniformly in s, 2, ,2,.1 € X for some p >0 },

[c,p,n',m,~\|1&<Am>={x=<xk>ew(n—X>:supiZ(uA

78 g’l‘ k=

Pk
zn,1|\> < 00,21, ,2p—1 € X for some p>0}.

If we take pp = 1 for all k, then we get

e Ml AT = (o = (@) € wln = X)
. 1 Amxk+s—L .
S oY (o)
uniformly in s, 21,---, 2,1 € X for some p >0 and L>O},
o1 AN T
e, Ml AT = o= (@) € wln = X) - lim =37 [ (120222,
T‘—>OOgT ol p
zn_1||>} = 0, uniformly in s, 2z,---,2,_1 € X for some p >0 },
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Amxk—&—s

oMl ™) = {2 = () € wln — X) s sup =3 M=

anlH>i| < 0, 21,00

T8

The following inequality will be used throughout the paper

| + el < K (g™ =+ [ye™),

T k=1

,Zn—1 € X for some p > O}.

where z’s and y,’s are complex numbers, K = max(1,2771) and H = sup py < oo.
k

2 Some properties of difference sequence spaces

In this section we prove some results on difference sequence spaces defined in the present

paper.

Theorem 1. Let M = (M) be Musielak-Orlicz function and p = (py) be a bounded sequence

of strictly real numbers. Then [c¢, M,p,||., -+ || 1°(A™), [ ¢, M,p, |-, -+, || S(A™) and
[e, Mp, ||+ || 1% (A™) are linear spaces over the set of complex numbers C.
Proof. Let x = (21.),y = (yx)€[ ¢, M, p, ||+, -+ ;|| |5(A™) and «, 3 € C. Then there exist

positive numbers p; and py such that

and

1 A" Tps
lim — " [M’“O’&’Zl’ o

T e, 1
1 A"z
lim — 3" [Mk(|’¢7
"I e, P2

2’17.--

Pk
7Zn71|’>] = 07

Pk
7Zn—1||)] :07

uniformly in s,

uniformly in s.

Let p3 = max(2|a|p1, 2|8|p2). Since My’s are non-decreasing convex functions, by using in-
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DIFFERENCE SEQUENCE SPACES IN n-NORMED SPACES
equality (1), we have
Ofx s+ 6 s Pk
_Z[ ( Kt yk+)’21’___7znlu)}
kel, ps
1 A" (g A™ s Pk
<= [Mk<|lﬂ,zhm ||+ ||M)Zh... 7Zn_1||>]
9r et P3 P3
1 1 A" (x Pk
<k Y o [ () )]
" kel P1
1 s Pk
_Z [ ( M’Zh... ,Zn_1||)}
ol P2
xk—&—s) Pk
< K- Z[Mk(u ...,zn,lnﬂ
s Pk
+K Z[Mk<|| (ykJF) yR1, 7Zn—1||>:|
" kel,
— 0 as r —> oo, uniformly in s.
Thus, we have ax + Sy € [ ¢, M,p, ||+, || 5(A™). Hence [ ¢, M, p, |-, || ]5(A™) is a
linear space.
Similarly, we can prove that [ ¢, M,p, ||-,-- || |°(A™) and [ ¢, M, p, ||, , || % (A™) are
linear spaces. O

Theorem 2. For any Musielak-Orlicz function M = (My,) and a bounded sequence p = (py,)

of strictly positive real numbers, [ ¢, M, p, |-, || |5(A™) is a topological linear space para-
normed by
r 1 AmSL‘ s Pk =
g(:z:):mf{ppﬁ : <_Z|:Mk(’| s y Rl >Zn—1||)] >H §17T7S€N}7
r kel, p

where H = max (1, sup,, px) < oo.

Proof. Clearly g(z) >0 for x = (x3) € [ ¢, M,]|]-,--- ]| J§(A™). Since M (0) = 0, we get
g(0) = 0. Again, if g(z) = 0, then

. Pr. 1 A" s P\ 77
1nf{pH <Q_ZT|:M]€<H pk+>z17”'7zn—1H>:| )HSLTaSEN}:O-

" kel

This implies that for a given € > 0 there exists some p.(0 < p. < €) such that

3| M) S LA

kel, Pe

Thus

gr kel, TkEIr €

IN
“H
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for each r and s. Suppose that wk # 0 for each k € N. This implies that A"z, # 0, for
cach k,s € N. Let € — 0, then ||2-2kts x’““ 21, 5 Zn—1|| — oo. It follows that

1 A™zp Pr\ T
(_Z[Mk(H €k+ yR1y """ 7zn—1||>:| >H — Q0
Yr kel,

which is a contradiction. Therefore, A™x;., = 0 for each k and s and thus x; = 0 for each
k € N. Let p; > 0 and ps > 0 be such that

1 r A"y 1Pk
o (1 e snll) 7)<
1 e

Gr kel,

o=

and

=

(_Z Mk(HA J;HS Z1,"',zn_1|]>:pk) <1

kel

for each r and s. Let p = p; + pa. Then, by Minkowski’s inequality, we have

(gi Z [Mk<”Am(ivk+;+ yk—&-s)’Zl’ o ’anH)rk>}{

" kel,

< (L3 (A e F A ) ]

grkelr /01+)02
A" (s
< (X [ (135 )
kel p1 T P2 P1
Am < pk 1
+ P2 Mk(” (yk-‘r ),Zl,“' ,Zn,1|‘>:| >H
p1+ p2 P2
1 A"™(Tpgs PE\ B
< (L) (A3 [ (1R )]
p1+p2/ NGy i P1
1 A™(Ypers PR\ 77
+( P2 ><_Z|:Mk<|| (yk+)7zla"'azn—1||>i| >H
p1+p2 grkelr P2

<1

Since p , p; and py are non-negative, so we have

g(x +y) = inf {p% : <i2 [Mk<HAm(xk+s +yk+s),zl,'-- ,anlH)]pk)ﬁ <l,rse N},

Ir kel P
pr 1 s PR\ 77
Sinf{p{’ :(—Z[ <|| (:EH) 21,---,Zn_1||)] k)Hﬁl,r,SEN}
9r el
pr 1 A™ B Pr\ 7
+1nf{ 0. <_Z |:Mk<||M,Zl7'.' ,Zn—1||>:| k>H S 17r78 GN}
r kel, p2
Therefore,

glx+y) < glz)+9(y).
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DIFFERENCE SEQUENCE SPACES IN n-NORMED SPACES 135

Finally, we prove that the scalar multiplication is continuous. Let A be any complex number.
By definition,

g(Ax) = inf {p% : <gl Z []\/[k<“%’zh... ,anHﬂpk)Il{ <1l,rse N}.
" kel,
Then
o) =it {0+ (3 (1522 )] ) < s ),
" kel,

where ¢ = £ Since |A[Pr < max(1, |A[*"PP"), we have

g(r) < max(1, |A|Suppr)mf{t%’“ : ( ! 3 [m(“A Tiks e ,zn_1||)}p’°>’5 <lrse N}.

" kel,

So, the fact that scalar multiplication is continuous follows from the above inequality. [

Theorem 3. Let M = (My) be Musielak-Orlicz function. If sup|My(x)]Pt < oo for all fized
k
x>0, then [ ¢, M, p, ||7 T 7|| ]g(Am) - [ ¢, M, p, ||7 T 7|| ]go(Am)

Proof. Let x = (x3) € [¢, M,p,||-,-- || I5(A,). There exists positive number p; such that

ATy s p
lim — Z [Mk<|| Tt BITREE ,zn_1||>} f o 0, uniformly in s.
r—00 gr 1

Define p = 2p;. Since M}’s are non-decreasing and convex, by using inequality(1), we have

1 A"z Pk
Sup_z |:Mk(|| s yR1y "t 7Zn—1||)i|

" kel

r,s Jr kel, P
1 1 Am‘r s L Pk
< Ksup — [TMIg(H s 121,y R 1””
rs Qr kel, 2Pk P1
1 L Pk
—l—Ksup—Z [EMk<H 3 215 Zn 1||)]
r,s Jr kel,
1 A"y — L Pk
<Ksup—Z[Mk<|| k+ 21, n 1||>]
rs Jr kel P1
1 L Pk
—|—KSUP—Z[MI~:<H s 215 Zn, 1H>]
7,8 T keIr
< Q.
Hencex:(xk)é[C,Mk,paH‘f"a'H]Zo' =
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Theorem 4. Let 0 < infp, =h <pp <suppy = H < oo and M = (M), M’ = (M]) be

Musielak-Orlicz functions satisfying As-condition, then we have

@l e, Mp I CLRA™) € Le, Mo M p, I+ [ J§(A™),
@) e, M p Il L P(A™) C [e, Mo M p, [+ | 17(A™),
(@d)[ ¢, Myp, [ I TG (A™) € [e, Mo MY p [+ o[ J5(A™).
Proof. Let x = (1) € [e, M',p, ]|+ ,-[[J3(An). Then we have
rlirgloglz [M,;(HW,ZI, ,zn_1||>}pk =0, uniformly in s for some L.
" kel

Let € > 0 and choose § with 0 < § < 1 such that M (t) < e for 0 <t < 4. Let

A"y o — L
Yk,s = Mlg(||$+a Rly "t 7zn—1||> for all k,s € N.
We can write
1 1 1
— Z[Mk(yk,s)]pk = — Z [ M (Yr,s)]"* + — Z [ M (Y, )"
g?" kEIr gT‘ ke]r & Yk,s<5 gT ke[?‘ & Yk,s>6
So,we have
1 1
— Y My ) < M) = > (M)
gr k€l & yy,s<6 r kel & yy <8
1
<[M@))F = > My
I vel, &y <o
For yy, s > 0
Yrs < y’;’s <1+ y’gs.

Since M,’s are non-decreasing and convex, it follows that

s 1 1 2k
Mi(ys) < Mi(1+ 555 ) < SM(2) + 5 M (F52).

Since M = (M) satisfies Ag-condition, we can write

1 Yk,s 1 Yk, s 1 Yk, s
M s —T==M,(2) + =T=2M(2) + =T M, (2
k(o) < 5T=5"Mi(2) + 5T==Mi(2) + 5T=5Mi(2)
= 1% 0,(2).
)

Hence,
1 TM,(2)\H\ 1
— 3 Mg < max (1, ( ;< )) )= > I
I rer, ' Yk.s>6 I rer s Yk, s >0
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DIFFERENCE SEQUENCE SPACES IN n-NORMED SPACES 137

from equations (2) and (3), we have
T = (xk) S [ ¢, Mo M, p, ||7 B ||]8<Am)

This completes the proof of (i).

Similarly, we can prove that
[CaM/’p7 ||7 o 7||]8(Am) - [CaM OMI? ||’ e 7|| ]g(Am)

and

[C’M,>pv ||a 7|| ]Zo(Am) C [C>M OM,vp’ H> a|| ]Zo(Am)
L]

Corollary 1. Let 0 < infpp = h < pr, < suppr = H < 00 and M = (My) be Musielak-Orlicz

function satisfying As-condition, then we have

[C,p, H? 7“ ]S(Am) - [C’M>p’ H? 7“ ]g(Am)
and
[C>M/>p7 H> aH }Zo - [CaMap’ H? ?H ]Zo(Am)
Proof. Taking M'(z) = z in the above theorem, we get the required result. O

Theorem 5. Let M = (My,) be the Musielak-Orlicz function. Then the following statements
are equivalent:

(Z) [C,p, ||’ 7|| ]&(Am) - [C>M7p7 ||7 >|| ]go(Am)a
(ii) [C7p7 ||’ 7“ ]S(Am) - [CvM7pv ||’ 7” ]fx;(Am)»

1 t
(iii) sup — > _[Mp(=)]* < 00 (t,p > 0).
v 9r el P

Proof. (i) = (ii) The proof is obvious in view of the fact that [ ¢, p, ||, , || [5(A™) C [ e, p, ||+, || ]% (A"

[e.o]

(i) = (iii) Let [c,p, ||+ [ JA™) € [, M,p |-+ || Jo(A™)- Suppose that (i) does
not hold. Then for some t, p > 0

1 t
sup — Z[Mk(—)]p’“ =00
r I et P

and therefore we can find a subinterval I,(;) of the set of interval I, such that

1 Iy
=3 ()] s =2 (4)
gr e P

r(5)
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Define the sequence x = (zy) by

Amkars — j_17 ke [T(j)
0, k¢l foral scN.

Then x = (1) € [, p, ||, -+ || ]§(A™) but by equation(4),

x=(zx) &[c, M,p,||-,- - ,H 1% (A™), which contradicts (ii). Hence (iii) must hold.
(iii) = (i) Let (iii) hold and = = (x3) € [¢,p, ||+, -+, || ]%(A™). Suppose that

L= (xk) € [ CaMapa ||7 T || }Zo(Am)

Then

1 A"y s Pr
sup - 30 [ (117 )] = o

r,s Yr kel,
Let t = |[A7,, 21, -+, 2p—1]| for each k and fixed s, then by equation(5)
1 t
w5 ()] -
r Gr kel P

which contradicts (iii). Hence (i) must hold.

Theorem 6. Let 1 < pp < suppr < oo and M = (M) be a Musielak-Orlicz function.

the following statements are equivalent:

(i) [e; Mp - '|| Jo(a™) < Lep, [l [ 15(A™),
(4) [ ¢, M Pl ]%Am) Lespo [l TS (A™),
(iii) ll;lf; r[ ( )] >0 (t,p>0).

Proof. (i) = (ii) is obvious.

(ii) = (iii) Suppose that (iii) does not hold. Then

inf - 3 [Mk(%)]p'“ —0 (t,p>0),

)
gr kel,

so we can find a subinterval I, ;) of the set of interval I, such that
1 I\ 1P
L @ < oo

p

Define a sequence = = () by

Amxk+ — j’ ke IT(j)
° 0, k¢l foral seN.

138
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DIFFERENCE SEQUENCE SPACES IN n-NORMED SPACES 139

Thus by equation(6), = = (zx) € [ ¢, M,p,||-,- -+ || [§(A™), but by equation(4),
x=(z1) € e, || 50| 1% (A™), which Contradlcts (ii). Hence (iii) must hold.
(iii) = (i) Let (iii) hold and suppose that = = (x3,) € [ ¢, M, p, [|-,- -+ || 5(A™), i.e
1 AN T P
lim — Z [Mk(“ Tt 21, 7ZTL—1H>:| "o 0, uniformly in s, for some p > 0. (7)
"I e, p
Again, suppose that z = (z) € [ ¢,p, ||, , || [5(A™). Then, for some number ¢ > 0 and a
subinterval ,;, of the set of interval I, we have ||[A"zy s, 21, -, 2p-1|| > € for all k € N

and some s > so. Then, from the properties of the Orlicz function, we can write
Am$k+ p €\ Pk
Mk(H 87217"'727171“) sz<_)
P k P

and consequently by (7)

"I e, p
which contradicts (iii). Hence (i) must hold. O
Theorem 7. Let 0 < pr < qi for all k € N and Z—’Z be bounded. Then,
e, Mgl P(A™) € [e Mop |l o[ ]P(A™).
Proof. Let z € [¢, M, q,]|-,--+,-|| |?(A™). Write

A"xp o — L ax
= [ M (150 )

and pp = Z—: for all k£ € N. Then 0 < pux <1 for ke N. Take 0 < pp < py for k€ N.
Define sequences (uy) and (vg) as follows: For t > 1, let uy, =t and v, = 0 and for 5 < 1,
let up, = 0 and vy = t;. Then clearly for all £ € N, we have

te = up + vg, thF =l 4 vl

Now it follows that u}* < uj <t and v}* < v;’. Therefore,

—zw:—z

" kel, " kel
" kel, " kel,

Now for each k,

a2t =T () ()

gr kel kel,

<(ZIGW TSI
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and so 1 1 1
n
_Ztgk < _Ztk+ <—ka> .
I er, Ir ke, Ir et
Hence z € [ ¢, M,p,[[-,-- || ]P(A™). -

Theorem 8. (a) If 0 < infp, < p, <1 and for all k € N, then

[e, Mo [ ([ 19A™) € ey ML [117(A™).
(b) If 1 < pp <suppy < oo and for all k € N. Then

[e, Ml l1PA™) € ey Mop ]y - |117(A™).

PT’OOf. (a) Let z € [C’Mapa ||7 o a|| ]H(Am)’ then

1 A"xp o — L P
hm—Z Mk(HLazlaaznfﬂ’)] k:O
T gr kel, P

Since 0 < inf pr, < pr < 1. This implies that

1 A" —L
lim —Z |:Mk<”k+azla 7Zn—1‘|>:|

r—00 gT‘
kel
1 A™ - L P
< gim — 3 (M (|5 )]
=00 (, kel P

1 A"ppy — L
therefore, lim — S [ (| =222 22 y1)] =0,
p

"I e,
This shows that € [ ¢, M, |-, ,-|| ]°(A™)-
Therefore,

[e, Mo [ [ T0A™) € ey Moo [117(A™).
This completes the proof.

(b) Let pp > 1 for each k and suppy, < oco. Let @ € [¢,p,||-,-++ || ]P(A™). Then for each
p > 0, we have

1 A"xp o — L P
hm—z|:Mk<HL,Zl,"',Zn,1H>:| k:O<1
"I e, p

Since 1 < p, < sup pp < 00, we have

1 A"z o — L Pk o1 A"y o — L
i -3 [ (1= ) < i S [ (1 )

T—>00
Gr kel, kel,

Therefore = € [ ¢, M, p, ||, || ](A™). =
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