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Abstract

In this paper, a good A estimate for the multilinear commutator associated to the singu-
lar integral operator on the spaces of homogeneous type is obtained. Under this result, we
get the(LP(X), LY(X))-boundedness of the multilinear commutator.
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1 Introduction

Let T be the Calderén-Zygmund operator, Coifman, Rochberg and Weiss [9] proves that
the commutator [b,T](f) = bT(f) — T(bf)(where b € BMO(R"™)) is bounded on LP(R"™)
for 1 < p < oo. Chanillo [5] proves a similiar result when T is replaced by the fractional
operators. In [I5], [18], Janson and Paluszynski study these results for the Triebel-Lizorkin
spaces and the case b € Lipg(R"™), where Lipg(R") is the homogeneous Lipschitz space.
The main purpose of this paper is to establish the good A estimate for the multilinear
commutator associated to the singular integral operator on the spaces of homogeneous type,
where b € Lipg(X) or b € BMO(X). Under this result, we get (LP(X), L9(X))-boundedness

of the multilinear commutator.
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2 Preliminaries and Theorems

Give a set X, a function d : X x X — R™ is called a quasi-distance on X if the following
conditions are satisfied:

(i) for every x and y in X, d(x,y) > 0 and d(z,y) = 0 if and only if x = y,

(ii) for every x and y in X, d(z,y) = d(y, =),

(iii) there exists a constant k > 1 such that
d(x,y) < k(d(z, 2) +d(z,y)) (1)

for every x,y and z in X.
Let 1 be a positive measure on the o-algebra of subsets of X which contains the r-balls
B(z,r) ={y : d(z,y) < r}. We assume that u satisfies a doubling condition, that is, there

exists a constant A such that
0 < u(B(z,2r)) < Au(B(z,r)) < o0 (2)

holds for all x € X and r > 0.
A structure (X, d, 1), with d and p as above, is called a space of homogeneous type. The

constants k and A in (1) and (2) will be called the constants of the space.

Then let us introduce some notations [3], [13] il ] Throughout this paper, B will denote
a ball of X , and for a ball B let fg = u(B)™"' [, f B ) and the sharp function of f is
defined by
(@) = sup—z [ 116) = foldn(v)
B3z M

It is well-known that [13]

#(x) ~ f / — Cldu(
(@)~ sup inf T | () = Cldpdy).

We say that f belongs to BMO(X) if f# belongs to L>(X) and define || f||srro = ||.f7 |1~
It has been known that[13]

I|f — farsllBro < CEl|f||Bro-

For1<p<ooand 0 <y <1,let

zeB

M, p(f)(x) = sup (ﬁ/glf(y)lpdu(y))l/p.

If v =0, M,,(f) = Mpy(f) which is the Hardy-Littlewood maximal function when p = 1.
For 0 < 8 < 1, the Lipschitz space Ag(X) is the space of functions f such that

Iflls, = sup p(Af”lf(I))/p(aHh,x)ﬁ<oo,
z,h e X
h+£0
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where AF denotes the k-th difference operator [18] and the existence of p is guaranteed by
the following Lemma 1.

In this paper, we will study some multilinear commutators as follows.

Definition. Suppose b; (j = 1,---,m) are the fixed locally integrable functions on
X. Let T be the singular integral operator as

Tmm:LK@mmwm

where K is a locally integrable function on X x X\ {(z,y) : © = y} and satisfies the following
properties:
(1) [K(z,y)| <

C
FB T (w3 o
z,y) — Kz, ) — ' x Y.y
when d(z,y) > 2d(y,y’), with some ¢ € (0, 1].

The multilinear commutator of the singular integral operator is defined by

1)@ = [ 110 = b)K @) w)dn(o).

and T(f)(x) = sup.. |T2(f)(z)|, where

-

@ = [ T b6 K ety

j=1

Note that when by = - - - = by,, Ty is just the m order commutator. It is well known
that commutators are of great interest in harmonic analysis and have been widely studied by
many authors[1] — [6], [12] — [14], [19] — [2I]. Our main purpose is to find the good A estimate
for the multilinear commutator 77, and with this result to find (LP(X), LY(X))-boundedness
for the multilinear commutator 7j.

Given some functions b; (j = 1,---,m) and a positive integer m and 1 < j < m,
we set ||b]|zip, = T Ibs]]zinss 110]l83i0 = TT7%, lIbsl| a0 and denote by C? the family
of all finite subsets 0 = {o(1),---,0(j)} of {1,---,m} of j different elements, |o| = j is
the element number of 0. For o € Cf*, set 0 = {1, - -, m} \ 0. For b = (by,- - -, bm)
and 0 = {o(1),- - 0(j)} € CF", set be = (bo(r)s * b))y b = oty =+~ boiys |[Bolli, =
oo )llas -+ [1boiy |14, and [|bs||Baro = [1bor)llBM0 -+ - |[boii) || BATO-

In what follows, C' > 0 always denotes a constant that is independent of main parameters
involved but whose value may differ from line to line. For any index p € [1, o0, we denote
by p’ its conjugate index, namely, 1/p + 1/p" = 1.

Now we state our results as following.
Theorem 1. . Let 0 < f <1 and b; € Ag(X) forj=1,--- ,m.
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(a). Suppose 1 < r < p < oco. Then there exists & > 0 such that, for any 0 < £ < &
and \ > 0,

u({o e X THN@ > 30 Myl < 0}
< C€ul{r € X T](f)(x) > A})
(b). Ty is bounded from LP(X) to LY(X) for 1 <p <1/mf and 1/q¢=1/p —mp.

Theorem 2. . Let b; € BMO(X) forj=1,--- ,m.
(a). Suppose 1 < r < p < oo. Then there exists & > 0 such that, for any 0 < & < &
and \ > 0,

u({o e X TN @ > 3 Lm0 d(7)(0) < 1))

< O¢ul{r € X TI(f)(@) > A})
(b). Tj is bounded on LP(X) for 1 < p < occ.

3 Proofs of Theorems

To prove the theorems, we need the following lemmas.

Lemma 1. [16] Let d be a quasi-distance on a set X. Then there exists a quasi-distance d'
on X, a finite constant C and a number 0 < a < 1, such that d’ is equivalent to d and, for

every x, y and z 1 X
(2, y) = d'(z,y)| < Cd'(z,2)*(d (z,y) + d'(z,9)) .
Lemma 2. ifx € B*C B C Q) C X, then

/5 — [

L) < C|B|° inf fF (u),
1
where fif (z) = SUp By /B |f(z) = [pldu(z).

1
Proof. Since || fg||r=) < C’—/ |f(x)|du(z), so we have
1(B) Jg

f5 — f5

Loy < ||(f = fB)B

C
Lo(B*) < W/B |f — feldu(x)

C -
< 5 | 1= folduta) < CuB)? inf F(w)
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Lemma 3. [11)],[77] Let 0 < f < 1,1 < p < o0, then
fllA, = S%PW . |f(z) = fsldu(x)

1/p
~ sup— (L ) - fBlpdu(ﬂﬂ))

B m(B)? \u(B) Jg
. 1
~ Sl;plng/BV(?ﬁ)—ddM(I)

Proof. Step 1. We first show
1
[ fllAs < CS%P (BB /B |f(x) = fBldu(x)

The difference A¥ is defined for each = such that z,--- , 2+ kh € Q C X. Let Q, be the
set of all points x such that there is a ball B, C Q with x +ih € B,, 1 =0,1,--- k. Fix h
and set Q) = {x € Qp:x,-,x+ kh are Lebesgue points of f}, then €, \ @), has measure
zero. If © € @y, is fixed, set y; = © + ih with ¢ = 0,1,--- , k. Choose B as the smallest ball
with {yo,v1, -+ ,yx} C B C Q. Since each y; is a Lebesgue point of f, if we choose balls
B* | {y:}, then fp«(y;) — f(y;) and so according to Lemma 2,

/(i) = fyi)l = s /B (y) = fo ()| < CFF (yi)u(B)°.

Since AF(f5) = 0, we have
BRS0) = AL = fm,0)| < € max |f () = fi(i) < C max 7 (i) |nl”.
Therefore i
(A, 2) <O @+ i)k ae. x € Q.
i=0
Step 2. Then we prove

1 1 1 ) Vp
sup s [ 1(0) = falduto) < Cowp s (s [ 11(0) = fabauto))

By Holder’s inequality, we have

— ! P v 1-1/p
M(B)1+5/3|f($)_f3|dﬂ($) < C’W</B|f(x)—f3| d,u(a:)) u(B)

= O (o [ - fglpdu(l‘))l/p-

Taking a sup over B > x in both sides of the above inequality, we finish the step 2.
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109



110 ZHANG QIAN AND LIU LANZHE

Step 3. Last we get

1 1 ) e .
sup i (s [ V@) = fabdut)) < €l

Set wy(f,t) = sup ||AF(F)]| L (), then A, = suptPwi(f,t). We claim that
[h|<t t>0

1f = follz=m) < Cu(B)°|If]]4,- (3)

It is enough to verify (3) for the unit ball By since the case of arbitrary B then follows from
a linear change of variables. Now suppose (3) does not hold for By. In this case, there is a

sequence of functions (f,,) such that

inf [ fin = [BllLoo(Bo) = M| finll,-

If we let (fg).,, denote best L>(By) approximate to f,,, m = 1,2,---, then by rescaling if

necessary, we find functions ¢,, = A\ (frn — (fB)m) such that
L= inf{lgm — fallree(so) = [lgmllr2e(80) = ml|gml[4,-

Thus {gm}7° is precompact in L>°(By) and for an appropriate subsequence, g, — g with
g € L>®(By). It follows that

9llAs(B0) = }ggo | gm; 1| As(B0) = 0
On the other hand, i%f llg = finl|L=(By) = 1 and so we have a contradiction.
For the case of general ball B, we note that if f is defined on B and A is the linear

transformation which maps By onto B, then the function f = f o A has a modulus of

smoothness which satisfies
wk(fa t) = l_l/pwk(f7 lt)

with [ the radius of B. Thus ||f||/\3(30) = lﬁfl/p||f||AB(B).
For any ball B 5 x, we have

1 1/p
(M/BU’— fB|pdu(as)) < Clf = IBllz=m),

therefore
1

1 p 1/p R
sup i (s [ )~ b)) < €l

The proofs of the third and fourth parts of Lemma 3 are similar, so we omit the details.
And this completes the Lemma 3. O
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Lemma 4. [10] Let f € L'(X) and a > 0, and assume that u(X) > o Y| f||z1. Then f
may be decomposed as f = g + b where

(1) ll9ll7= < Callfl|r,
(2)b=>_b;, where each b; is supported on some ball B(x;,1;),

(3)[ bjdp =0,
ANbille < Cap(B(xj, 7)),
(5) 325 1m(B(zj,15)) < Ca | f]lLs.

Lemma 5. [J] Let 0<v <1, 1<r<p<1l/vandl/q=1/p—v, then
Mo ()l|2e < ClIf|]2e-
Proof. We first show that

C r/(1—vr)
o o) >0 < (SHA)
Let us consider the set E, where
E={x:M,,(x) > A}

By the Lemma 4, it follows that there exists a sequence of balls B;, with bounded overlap
so that F' C U72, B; and so that on each Bj, we have

#/B |fI"du(y) > A"

/4
Now p(E)1 < (Z,u( )) < S u(By)4, g = r/(1 — vr); the last inequality is true
because r/q < 1.
Now pu(Bj)' ™" < &= fB |fI"du(y) and r/q =1 —vr, so

CEE ur (X v Jautr
Hence

S uBy < il

and
W(E) < SIS
Note now that if r < p < 1/v, then using Holder’s inequality

M, (x) < M, ().

Therefore, by the preceeding arguments, we have

C p/(1—-vp)
ue) < (Sl )

The Lemma 5 follows by the Marcinkiewicz interpolation theorem in homogeneous spaces.
m
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112 ZHANG QIAN AND LIU LANZHE

Proof. Theorem 1(a). When m = 1, by the Whitney decomposition, {z € X : T’ (f)(z) >
A} may be written as a union of balls { By} with mutually disjoint interiors and with distance
from each to X \ |, By comparable to the diameter of By. It suffices to prove the good A
estimate for each By. There exists a constant C' = C'(n) such that for each k, the cube B
intersects X \ U, Bx, where By, denotes the ball with the same center as By and with the
diam Bk = C diam By. Then, for each k, there exists a point z¢o = z(k) € Bk such that

T2 (f) (o) < A

Now, we fix a ball By. Without loss of generality, we may assume there exists a point
z = z(k) with
[1011]4, M p(f)(2) < EA.

Set Bj, = ék and write f = fi+ f2 for fi = fxp, and fo = fxx\5,. We turn to the estimates
on fl and fQ.
The estimates on f;. Forz € B, 1/r=1/p+1/g<1

1/r
T (Fller < c( /( § !(bl(w)—bl(y))K(x,y)fl(y)Vdu(y))

1/p

< cus ([ o) - bl(y)lqdu(y)>1/q ( 3 P

1/p
B, (R \8t1l/a , B, \1/p-8 1 P
< CulB) w(B il u B (i [ 1wt )
< CuB ol Man ().

Let n > 0, we have

p{z € X -T2 (f)(2) >nA}) < CONTIT ()L
< CON) bl Map(£) ()] 1(Bi) "
< CmN) (€N 1(Br)
< C(&/n)" 1(Br).

The estimates on f,. Let H = H(X) be a large positive integer depending only on X.
We consider the following two cases:

Case 1. diam(By,) < ¢ < Hdiam(By,). Set V(z,y) = (bi(z) — b1 (y)) K (z, ) f(y). Choose
To € By, such that 7o € X \ U, Bx. For € By, following [8], we have

Tbl 2 S Lo, Y)|J2 V[L'(), d
T2 (f2)( I/my V(o y)lf2(y)d (y)l+/R(m)| (o, y)f (y)|du(y)

4 / IV (w0, 9)f () duy) + [T (F) (o)
R(zo)
= [+ I+ IIT+1V,
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where R(u) = {y € X : diam(By,) < p(u,y) < Hdiam(By)}. Now let us treat I, 11 and I1T

respectively. For I, we write

V(z,y) = V(zo,y)| = [(bi(z) = b1(y)) K (z,y)f2(y) — (br(zo) — b1(y)) K (z0, y) f2(y)]
= |bi(z)K(z,y) f2(y) — bi(y) K (z,y) fo(y) — bi(z0) K (20,y) f2(y)
+b1(y) K (0, y) f2(y) — bi(z0) K (,y) fo(y) + bi(zo) K (2, y) f2(y)]
[(b1(z) — bi(2o)) K (z,y) f2(y)]
+((b1(z0) — b1(y)) (K (z,y) — K(z0,y)) f2(y)]
= L+ I

VAN

For I, by Lemma 3, Holder’s inequality and the following inequality, for b € Ag

b() — b < @ / bl — ylPdpu(y) < 1Blls, (B,

we have

[e.9]

Ld < C bi(z) — by(zo)|| K (z, d
[ ) = e[ e b IK )

v=

IN

o 1/p
Clibulla,1(Br)® Y p(Baoc(o)) ™ ( /B ()If(y)l”du(y)) pu(Byosic(0)) 7P

v=1

IN

CHblH/\ﬁH Bk Z BQU+1 ,1'0 —14+1-1/p+1/p—8

1/p
1 p
. (M(BQTH-la(‘rO))lﬁp /BQU+16(m0 |f(y)| du(y))
(

)
Cllbulla,1(Br)® Y m(Bavic(wo)) ™ Mgy (f)(2)

v=

IN

IN

Cl[b ] I/\BZ2 M (f)(2)

OHblHAﬁMﬁp(f)( 2)
CEN.

VAN VAN

For I, by K'’s properties, u’s doubling condition, Holder’s inequality and Lemma 3 , we
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obtain
/(  hduly) = cz / oo r(a0) =B 2) — Ko )]0t
d(w0, 2)|]° 1
: Cz/ oy 1 0) b(”'[u(x y>|] (Bao, dwo,y] | W)
dea
<X [ it -l
[e%e) 1/17/
M(Bk) P
= C; M<B2v+1s<x0)l+6 </B2v+1 (xo)lbl(xO) _bl( )| dlu( )>
1/p
x ( / ) )\f(y)\pdu(y)>
< CZM (Baenr2) (o) T8 by LMy (£)(2)
< O3 2l My (D)
< Clbilln, Map(f)(2)
< CEN

Therefore I < CEN.
For IT and II1, note that, for y € R(z),

plz,y) < Hdiam(By),

we get, by Lemma 3 and Holder’s inequality,

I < ¢ /H lbr(ro) = bWl )] £ ()

. . 1/p 1/p
< Cu(HB)" ( [ ) = m) du(y)) ( /| If(y)|”du(y))
Cu(HB g /’k P=B|p ! ; v
< L) LB LB ) - P
< CpHB) Iy (g Pt
< Cllnlln, Msp()(2)
< Cen

Similar 111 < CEN.
Thus I + 11+ 111 < CEN.
For IV, since x ¢ |, Bx, then [T (f)(zo)| < A. For x € By,

sup |12 (fo)(2)] < CEA+ N

e~diam(By,)
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Case 2. ¢ > Hdiam(By). Let B denote the ball with the same center as B, and with
the diam Bj = ¢. Similar to the proof of Case 1, we get

sup |12 (fo)(2)] < CEA+ N

e>diam(By,)

Thus, we have shown that for x € By,
Ty (f2)(2) < CEX+ .

Now, choose &, such that C¢; < 1, let » = 1 and combine the estimates on f; with f,, we
get

u({o e B (@ > 30 il My () < 0}
<l € By TH (@) > 20— CEA) + e € X = TH(f)(x) > A+ CE})
< plfe € By TV (@) > A} < € u(By).

When m > 1, similar to the case m = 1, there exists a point 2o = xo(k) € By such that

T2(f) () < A

Now, we fix a ball By. Without loss of generality, we may assume there exists a point
z = z(k) with
10115, Mimp.p(f)(2) < EX.

Set B), = ék and write f = fi+ fo for fi = fxp, and fo = fxx 5, We turn to the estimates
on fi; and fs.
The estimates on f;. Forz € B, 1/r=1/p+1/g<1

r 1/r
TP (f)ller < c( / du@))
p(zy)>e

< (/B |Hb y)|?duy ))1/‘1( - |f(y)|pdu(y)>l/p

k ] 1

m

H(bj () = bj(y)) K (z,y) f1(y)

o _ 1/p
< Cp(By) ™ u(Bi) "4 [b] |5, (By) /PP (ﬁ/ !f(’y)\pdﬂ(y))
:u( P JB,

< Cu(Bi) " M1bl1 s, Mg (f)(2)-

Let n > 0, we have

u({z € X TP(f1)(x) > nA})

< ClpA)” ||Tb(f1)||Lr

< OO (I1Bl13, Minsp (F) () (Bi) "
< C(nA)7"(EN) 1(Br)

< C(&/n)" 1(Br).
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116 ZHANG QIAN AND LIU LANZHE

The estimates on f,. Let H = H(X) be a large positive integer depending only on X.
We consider the following two cases:

Case 1. diam(B;) < ¢ < Hdiam(By). Set U(x,y) = [17y(b;(x) — bj(y)) K (x,9) f(y)-

~ ‘]_1
Choose zy € By, such that zg € X \ |, By. For x € By, following [8], we have

2 < x Zo,Y)|J2 U(xg, d
T @) < '/WE ) — Ulzoy)) foly)d @)'*/R(x)'( 97 ()ldu(y)
[ 0G0 @)ldn() + 1T o)
R(xo)

= J+JJ+JIJT+JJJJ,

where R(u) = {y € X : diam(By) < p(u,y) < Hdiam(By)}. Now let us treat .J,.JJ and
JJJ respectively. For J, we write

p(z,y)>e
5 S (@) — Bwo))or / () e (K ,9) Ko ) (o))
j=1 ceCm plz.y)>e
= S+ )

For J;, we have

ho< I mZ / 1K (2, )£ ()| dp()

j=1 Byy+1,(20)\Bave(0)

IA

00 1/17
C[8][3,,14(Br)™ Y~ 1 Bave ()~ (/B ( )|f(y)!”du(y)> p(Byoirc (o)) P

v=1

IN

C| |b| |/\BM(B]€)m6 Z M(Bgv+15($0))_1+1_1/p+1/p—m/8

v=1

1/p
! p
X <,U(BQU+15(:L’O))1—mﬁp /B2U+16(x0) |f(v)] du(y))

C[B]13,1(Be)™ > i Byvric(wo)) ™™ Mg (£)(2)

v=1

IN

o

ClIBlla, D27 Mg (£)(2)

v=1

Cl1B] 1, Mg (f)(2)
CEN.

IA

ININA

116



A GOOD A ESTIMATE FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL ...

For Js, let 7,7/ € N such that 7 + 7/ = m, and 7/ # 0, we get

J, < b(z) — b)) e b(y) — b(20))y (K (z,y) — K (zo, d
, < ZZK (2) — B(ao)) /B (m)\Bw)< () — B(x0))o (K (2, 9) — K (20, 9) f () dpw)
< C;oezcm'b ol Y s [ 106 =) St

- 1/p’
__’ - /’L(Bk>§ 7 __’ p’
< C;U§m| b(x0))oe ;#(32%(%))1% (/BQU-HE(Q?O) [(b(y) — b(w0))o] du(y))
1/p
Fy)Pd
y ( [ u(y)>
< C S el (BN w(Bywsre ()~ B B s () (2)
T+7'=m v=1
< C Y Bla (B i(Boveac(w0)) ™ Ming,p (£)(2)
T+7'=m v=1
< ClIBla, Y27 D M () (2)
v=1
< CYBlln, Mg (£)(2)
< CEN.

Therefore J < C¢N. For JJ and JJJ, note that, for y € R(x),

we get, by Lemma 3 and Hoélder’s inequality,

wecf |Hb 20) — b )IIK (2, )| £ (0)ldiy)
1/p 1/p
< Cu(HB) ( /H k'jHlb o) — by ()P da(y >) (f . Pt
. ) . 1/p
< Cp(HB) I, (e )Pty
< CIWln, Musp(£)(2)
< Cen

Similar JJJ < CEN.
Thus J+ JJ + JJJ < CEN
For J.JJJ, since x ¢ |J, By, then |T?(f)(zo)| < A. For z € By,

sup  |T2(f2) ()] < CEX+ A,

erdiam(By,)
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Case 2. ¢ > Hdiam(By). Let B denote the ball with the same center as By and with
the diam Bj = . Similar to the proof of Case 1, we get

sup  |TP(fo)(2)| < CEN+ .

e>diam(By,)

Thus, we have shown that for x € By,
TY(f2)(x) < CEA+ A,

Now, choose & such that C'§y < 1, let n = 1 and combine the estimates on f; with f5, we

get
u({x & B TH(1)(w) > 3\ Bl Moo () () < € })
< p({z € Bt (i) (@) > 20 — CEN}) + u({z € X - TV (f2)(x) > A+ CEN})
< l{r € By THR)@) > M) < € (B,
This completes the proof of Theorem 1(a). (b) follows from (a) and Lemma 5. O

Proof. Theorem 2(a). When m = 1, by the Whitney decomposition, {z € X : T (f)(z) >
A} may be written as a union of balls { B} with mutually disjoint interiors and with distance
from each to X \ J, Br comparable to the diameter of By. It suffices to prove the good A
estimate for each By. There exists a constant C' = C'(n) such that for each k, the cube B
intersects X \ (U, B, where By denotes the ball with the same center as By and with the
diam By, = C diam By. Then, for each k, there exists a point g = zo(k) € By, such that

T2 (f) (o) < A

Now, we fix a ball By. Without loss of generality, we may assume there exists a point
z = z(k) with
|1b1][Baro My (f)(2) < EA.

Set B, = ék and write f = fi+ fa for fi = fxp, and f2 = fxx\5,- We turn to the estimates
on fi and fs.
The estimates on f;. For z € By, 1/r = 1/p+1/q < 1, we have

1/r
Il < € ([ ) = h) K ) A ) )

cu@pw-l (/- bl<y>\qdu<y>)l/q (f If(y)\pdu(y))l/p

1/p
Cu(Br) u(Be) | 1bs | asop(Be) 7 (m%) /B If(y)!”du(y)>
OM(Ekz)l/T_leﬂ|BMOMp(f>(Z)'

IN

IN

IN
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Let n > 0, we have

p({z € X T (fi)(z) > nA})

< CoN) NI ()l

< CoN bl a0 My(£)(2)) p(Br) '~
< C(\) (€N u(By)

< C@E/n)" m(By).

The estimates on f,. Let H = H(X) be a large positive integer depending only on X.

We consider the following two cases:

Case 1. diam(By,) < ¢ < Hdiam(By,). Set V(z,y) = (bi(x) — bi(y)) K (z,y) f(y). Choose
zo € By, such that zp € X \ Uy Bi. For x € By, following [8], we have

T (@) < | / B V(e o)) + [ IVl f)liuty

/R ( )|V($07 ) F () lda(y) + 1T (F)(xo)|
= I’+II’+II]'+IV’,

where R(u) = {y € X : diam(By) < p(u,y) < Hdiam(By)}. Now let us treat I’, 11" and

I11" respectively. For I, we write

[V(z,y) = V(zo,y)|

= |(bi(z) = bi(y)) K (z, y) f2(y) — (b1 (z0) — br1(y)) K (20, y) f2(y)]

= [bi(x)K(z,y) f2(y) — bi(y) K (z,y) f2(y) — bi(z0) K (20, y) [2(y)
+01(y) K (20, y) f2(y) — bi(wo) K (2, y) f2(y) + b1 (o) K (2, y) fo(y)]

< (@) = bi(2o)) K (2, y) f2(y)| + |(br(zo) — b1(y)) (K (z,y) — K (20, y)) f2(y)]
- I+

For I7, by Holder’s inequality and the following inequality, for b € BMO(X)

1
) = by < / b(z) — bsldu(a) < [Bllso.
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we have

/ Lduly) <
p(z,y)>e

IN

IN

IN

<

ZHANG QIAN AND LIU LANZHE

oz/ b1 (2) = b w0) | K (2, ) 1/ ()l da(y)

Byv+1,(0)\B2ve (o)

1/p
C||b1||BMOZ:u(B2Us(xO))_1 (/B ( )\f(y)l”du(y)> 1By () P

v=1

Cllb1]|Bmo Z (1( Bowsr (1)) "1/t /P

v=1

1/p
1 p
. (M(B2v+1a(l'0)) /BQU+15(360) 17)! dﬂ(y))

Cl|b1||BrroMy(f)(2)
CEN.

For I}, similar to I5, we obtain

/ Ldu(y) <
p(x,y)>e

IN

IN

IA

IN

IN

IA

<

Therefore I' < CEN.

o0

C b1 Zo —b1 K Z, - K Zo, d
S ) B )~ Ko ) )
iz, 2)]” 1

CZ/ | et
2 wwob@mﬁagmnww

Byt (20)

1/p'
Z b — b (y)|"'d
¢ B2”+1 (wo)110 </Bgv+15($0)| (o) W ’u(y)>

1/p
x(@ (ﬂﬂwmwwﬂ

CZum (Byver2) () " H2 by | aso My £) (2)

|f(W)|du(y)

|b1(0) — b1(y)] {

Byy+1.(20)

32 hnllsaio My (1))

v=1
Cllbr|| a0 My(f)(2)
CEN.

For I1" and I1I', note that, for y € R(x),

p(x,y) < Hdiam(By,),

120



A GOOD A ESTIMATE FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL ...

we get, by Holder’s inequality,

< c /H bu(xo) — b1 (2 9) 1 @) dpy)

By,

) / 1/p’ 1/p
< Cu(HBy)" ( /| |b1<xo>—b1<y>|pdu<y>) ( | !f(y)\pdu(y))
/ —1+1/p/+1jp 1 P ¥
< Cu(HBy) |1b1]| Baio (M(Hék)lf(y)l du(y)>
< CllallswoMy()(2)
< Cen

Similar I1I" < CEN.
Thus I' + I[I'+ I[1I' < CEN.
For IV, since = ¢ |, B, then |T?*(f)(zo)| < X. For z € By,

sup |12 (fo)(2)] < CEA + A

exdiam(By,)

Case 2. ¢ > Hdiam(By). Let BS denote the ball with the same center as B, and with
the diam Bj = ¢. Similar to the proof of Case 1, we get

sup TP (fo)(x)| < CEXN+ A

e>diam(By,)
Thus, we have shown that for x € By,

T2 (fa)(x) < CEN+ .

Now, choose &, such that C'§, < 1, let n = 1 and combine the estimates on f; with fo, we
get

u({o e B (@ > 3 Inllavod (7)) < €1}
pl{x € B TV (f1)(x) > 20— CEND) + u({ € X TV (F)(w) > A+ CEN)
pl{e € B TV (F)(w) > \}) < € (By).

IAINA

When m > 1, similar to the case m = 1, there exists a point xg = xo(k) € Bk such that

T2(f)(wo) < .

Now, we fix a ball Bx. Without loss of generality, we may assume there exists a point
z = z(k) with
18] Brr0 My () () < €A
Set By, = ék and write f = fi+ fo for fi = fxp, and fo = fxx 5, We turn to the estimates
on fi; and fs.
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m

The estimates on fi. Forx € By, 1/r=1/p+1/¢; <1,j=1,---,m
H(bj(l") = bj(y)) K (. y)f1(y)

r 1/r
b
Tl < 0( /(w) I du<y>>

( i |Hb D)1 duly >)qu ( [ \f(y)l”du(y)>1/p

IN

1
1u(Bx)

IN

. - 1/p
Cu(B) (B llmsion(B (= [ \r(wrautn))

CM(Fk)l/PlHB\ |BroM,(f)(2).

IN

Let n > 0, we have

u({z € X TV f1)(2) > nA))

< O\ T )

< CON 1Bl a0 My (f) ()] w(Bi) "
< CN) T (EN) 1(Br)

< C(&/n)"w(By).

The estimates on f,. Let H = H(X) be a large positive integer depending only on X.

We consider the following two cases:
Case 1. diam(B;) < ¢ < Hdiam(By). Set U(x,y) = [17,(0;(z) — bj(y)) K (x,9) f(y)-

~ 7j=1
Choose zg € By, such that zy € X \ |, By. For x € By, following [8], we have

b
T @) < | / W) Uyl + /R WU )ln)
/R 100 9) Sldnt) + 157 o)

= J+JJ+JJJ +JJIT,

where R(u) = {y € X : diam(By,) < p(u,y) < Hdiam(By,)}. Now let us treat J’,.J.J and
JJJ' respectively. For J', we write

I ) =) ) bl [ K ) )

S () - B /p(x’y)xa?(y)—E<xo>>a<f<<x,y> K (20, 9) fol)duly)

J=1 UGCm

= J)+ J.
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For J{, we have

m

J < b(x) — by DIF)Id
L < ITim xo|z/w o Kty
0 1/p
< Cllbllzyo Y p(Bere(wo)) ™! </ If(y)lpdu(y)> pu(Byosio(10)) 7P
v=1 Byu+1(20)
< Clilloao S plBavsse(aw) 111
;1 1/p
- rd
. (M(Bgu+15(:)so)) /1;2U+15(mo) )l u(y))
< OlbllzmoM,(f)(2)
< Cen

For Ji, we get

5 < ZZ| (b(x) — (o)) / o ) = B C.0) = K0, 0) S ) )|
oo S 1u(By)° 2oy
< C;U;m’ (b(z b (@0))oe 21 11 Bave (x0)) 10 /32v+1 (o0) |(b(y) — b(wo))o f (y)dp(y)]
- 1/p’
2oy > /,L(Bk)‘s I o
= Cjzlgezcm’ b b xo ” ; M(BQve(IO))l_HS (/Bgv-q-la(xo) |( (y> b<x0))a| du(y))
1/p
Pd
>< ( / ) u(y)>
< Cllboellrort(Be)® > i(Byvrc(wo)) ™ V7 by | paso M ()(2)
v=1
< CHEHBMOMBMZu(Bzu+la<xo>>—5Mp<f><z>
v=1
< CllEllsmo > 27 My(f)(2)
v=1
< CllbllpaoM,(f)(=)
< CEA

Therefore J" < C&X. For JJ' and JJJ', note that, for y € R(x),

p(x,y) < Hdiam(By),
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124 ZHANG QIAN AND LIU LANZHE
we get, by Holder’s inequality, for 1/p) +---1/p,, +1/p=1

wesef ITTbs(e0) — B OIK @ )1 Wlduty)

Bkjl

< Cp(HB) ( /H Bk'Hf’ o) — by () Py >>1/p3 (f Bk|f<y>rpdu<y>)l/p
)P <>)1/p

IN

C}L(Hék)_1+1/p/1+'“1/p;n+1/p||g||BMO (M( )

< C||bl|BaoM,(f)(2)
< CEN

Similar JJJ" < CEN.
Thus J' + JJ' + JJJ < CEN.
For J.JJJ', since x ¢ |J, By, then |T?(f)(xo)] < A. For z € By,

sup  |T2(f2)(x)] < CEA+ A

e~diam(By,)

Case 2. ¢ > Hdiam(By). Let B denote the ball with the same center as By and with
the diam Bj = . Similar to the proof of Case 1, we get

—

sup  |TP(f2)(x)] < CEXN+ A

e>diam(By,)

Thus, we have shown that for x € By,
TY(f2)(x) < CEX+ A,

Now, choose &, such that C&y < 1, let n = 1 and combine the estimates on f; with f,, we
get

u({o e B T80 > 3 Lo () < 1} )

< pl{r € By TUf)(@) > 20— OO + pl{r € X THf)(2) > A+ CEA)
< u({z € Be: TV fi)(2) > A}) < € p(By).

This completes the proof of Theorem 2(a). (b) follows from (a) and Lemma 5. O
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