Armenian Journal of Mathematics Volume 3, Number 3, 2010, 97–104

Boolean Centre of a C-algebra

S. Kalesha Vali*, P. Sundarayya** and U.M. Swamy***

- * Department of Basic Sciences and Humanities, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India. vali312@gitam.edu
- ** Department of Basic Sciences and Humanities, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India. psundarayya@yahoo.co.in
- *** Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India. umswamy@yahoo.com

Abstract

There is a precise characterisation of factor congruences on a C-algebra with meet identity T. The characterisation of such congruences on a C-algebra with out T is a difficult task. In this paper, we make such an attempt and we characterise the factor congruences on a C-algebra A and identify these with certain elements or sets of elements of A.

Key Words: C-algebra, Centre, Factor congruence, Balanced Congruence, Boolean centre. *Mathematics Subject Classification* 2000: 03G25, 03G05, 08G05

Introduction

In [2] Guzman and Squier introduced the variety of C-algebras as the variety generated by the three element algebra $C = \{T, F, U\}$, which is the algebraic form of the three valued conditional logic. They proved that C and the two element Boolean algebra $B = \{T, F\}$ are the only subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal cover of the variety of Boolean algebras. Later in [3] G.C.Rao and P.Sundarayya defined different partial orders on a C-algebra and studied their properties and gave a number of equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean Algebra. In [6], Swamy and Murthy have proved that the set of all balanced factor congruences whose direct complements are also balanced, forms a Boolean permutable sublattice of the lattice $\operatorname{Con}(A)$ of congruences on A, called Boolean centre and is denoted by $\mathcal{B}(A)$. In [7] U.M.Swamy et.al.,introduced the concept of the Centre, denoted by $\mathbb{B}(A)$ of a C-algebra A with T. If A is a C-algebra with T, then they proved that every factor congruence on Ais of the form θ_a for some $a \in \mathbb{B}(A)$ also, proved that $a \mapsto \theta_a$ is an isomorphism of $\mathbb{B}(A)$ on to $\mathcal{B}(A)$ of [6] and thus the precise characterization of factor congruences on a C-algebra with T. The characterisation of such congruences on a C-algebra with out T is a difficult task. In this paper, we make such an attempt and we characterise the factor congruences on a C-algebra A and identify these with certain elements or sets of elements of A. Finally we proved that the Boolean algebras $\mathfrak{B} = \{s \in \prod_{a \in A} \mathbb{B}(A_a) \mid \alpha_{a,b}(s_b) = s_a$, whenever $a \leq_* b\}$, $\mathcal{B}(A)$ and $\mathbb{B}(A)$ are all isomorphic to each other.

1 C-algebra

In this section we recall the definition of a C-algebra and some results from [2],[3],[4] and [7]. Let us start with the definition of a C-algebra.

Definition 1.1:[2] By a C-algebra we mean an algebra of type (2, 2, 1) with binary operations \land and \lor and unary operation ' satisfying the following identities.

 $(1) x'' = x (2) (x \land y)' = x' \lor y'$ $(3) (x \land y) \land z = x \land (y \land z) (4) x \land (y \lor z) = (x \land y) \lor (x \land z)$ $(5) (x \lor y) \land z = (x \land z) \lor (x' \land y \land z) (6) x \lor (x \land y) = x$ $(7) (x \land y) \lor (y \land x) = (y \land x) \lor (x \land y).$

Example 1.2:[2] The three element algebra $C = \{T, F, U\}$ with the operations given by the following tables is a C-algebra

\wedge	Т	F	U	\vee	Т	F	U	x	x'
Т	Т	F	U	Т	Т	Т	Т	Т	F
F	F	F	F	F	Т	F	U	F	Т
U	U	U	U	U	U	U	U	U	U

Note 1.3:[2] The identities 1.1(1), 1.1(2) imply that the variety of C-algebras satisfies all the dual statements of 1.1(3) to 1.1(7). \land and \lor are not commutative in C. The ordinary distributive law of \land over \lor fails in C. Every Boolean algebra is a C-algebra.

Note that C always denote the three element C-algebra $\{T, F, U\}$ and B always denote the two element Boolean algebra $\{T, F\}$. B is the only C-algebra of order two. There can be at most one element x satisfying x' = x. This element, if it exists, is denoted by U.If a C-algebra (A, \land, \lor, \prime) has an identity for \land , then it is unique and is denoted by T. In this case we say that A is a C-algebra with T. We denote T' by F.

Now we give some results on C-algebra collected from [2],[3],[4] and [7].

Lemma 1.4: Every C-algebra satisfies the following identities:

 $\begin{array}{ll} (1) \ x \wedge x = x \\ (3) \ x \wedge y \wedge x = x \wedge y \\ (5) \ x \wedge y = (x' \lor y) \wedge x \\ (7) \ x \wedge y = x \wedge (x' \lor y) \\ (9) \ (x \lor y) \wedge x = x \lor (y \wedge x) \end{array} \begin{array}{ll} (2) \ x \wedge x' = x' \wedge x \\ (4) \ x \wedge x' \wedge y = x \wedge x' \\ (6) \ x \wedge y = x \wedge x' \\ (6) \ x \wedge y = x \wedge (y \lor x') \\ (8) \ x \wedge y \wedge x' = x \wedge y \wedge y' \\ (8) \ x \wedge y \wedge x' = x \wedge y \wedge y' \\ (10) \ x \wedge (x' \lor x) = (x' \lor x) \wedge x = (x \lor x') \wedge x = x. \end{array}$

We recollect the fundamental congruence corresponding to an element in a C-algebra, defined in [2].

Definition 1.5:[2] For any element x of a C-algebra A, $\theta_x = \{(a, b) \in A \times A \mid x \land a = x \land b\}$ is a congruence on A.

Lemma 1.6: Let A be a C-algebra and $x, y \in A$. Then the following hold.

 $\begin{array}{ll} (1) \ (x \wedge y, y) \in \theta_x \\ (3) \ (x \wedge y, y \wedge x) \in \theta_x. \\ (5) \ \theta_{x \wedge y} = \theta_{y \wedge x} \end{array} \begin{array}{ll} (2) \ (y \wedge x, y) \in \theta_x \\ (4) \ \theta_x \cap \theta_y \subseteq \theta_{x \vee y} \subseteq \theta_x \\ (6) \ \theta_{x \wedge y} = \theta_x \vee \theta_y = \theta_y \circ \theta_x \circ \theta_y = \theta_x \circ \theta_y \circ \theta_x. \end{array}$

2 Factor Congruences

In this section section we shall discuss various properties of factor congruences on a C-algebra and identify certain elements or set of elements of the C-algebra with the factor congruences. First we recall the following.

Definition 2.1: A congruence θ on a C-algebra is called a factor congruence if there exist a congruence ϕ on A such that $\theta \cap \phi = \Delta_A$ and $\theta \circ \phi = A \times A$; in this case ϕ is called a direct complement of θ .

In [7], they specialized factor congruences on a C-algebra with T, where T is the identity for the operation \wedge in A. We begin with the following which are taken from [7].

Theorem 2.2:[7] Let A be a C-algebra with T and define $\mathbb{B}(A) = \{a \in A \mid a \lor a' = T\}$. Then $\mathbb{B}(A)$ is a Boolean algebra under the operations induced by those on A, in which T and F are largest and least elements respectively.

Definition 2.3:[7] For any C-algebra A with T, $\mathbb{B}(A)$ is called the centre of A.

Theorem 2.4:[7] Let A be a C-algebra with T, and θ is a congruence on A. Then θ is a factor congruence on A if and only if $\theta = \theta_a$ for some $a \in \mathbb{B}(A)$.

Theorem 2.5:[7] Let A be a C-algebra with T. For any $a, b \in \mathbb{B}(A)$, the following hold. (1) $\theta_a \cap \theta_b = \theta_{a \lor b}$ (2) $\theta_a \circ \theta_b = \theta_{a \land b} = \theta_a \lor \theta_b$ (3) $\theta_T = \Delta_A$ (4) $\theta_F = A \times A$.

A congruence θ on an (universal) algebra A is called balanced if

 $(\theta \lor \phi) \cap (\theta \lor \phi') = \theta$ for any direct factor congruences ϕ and any of its direct complements ϕ' on A. In [7] it is proved that if A is a C-algebra with T then the set of all factor congruences on A is a Boolean algebra and is isomorphic with Boolean algebra $\mathbb{B}(A)$. Further, $\theta \circ \phi = \phi \circ \theta$ for all factor congruences θ and ϕ on A also proved that every factor congruence on A is balanced.

Next let us recall the following from [4].

Theorem 2.6:[4] Let A be a C-algebra and $a \in A$. Let

 $A_a = \{x \in A \mid a \land x = x\} = \{a \land y \mid y \in A\}$. Then A_a is closed under the operations \land and \lor . Also, for any $x \in A_a$ define $x^a = a \land x'$. Then $(A_a, \land, \lor, \ ^a)$ is a C-algebra with T (here, a itself is the identity for \land in A_a ; that is T in A_a).

Lemma 2.7: Let θ be a congruence on A. Then $\theta \cap (A_a \times A_a)$ is a congruence on A_a , for each $a \in A$.

Proof: Fix $a \in A$. Since θ is an equivalence relation on A, $\theta \cap (A_a \times A_a)$ is an equivalence relation on A_a . Let $(x, y), (z, t) \in \theta \cap (A_a \times A_a)$.

Since
$$x, y, z, t \in A_a, x \wedge z, y \wedge t \in A_a$$
 and hence $(x \wedge z, y \wedge t) \in \theta \cap (A_a \times A_a)$
Now $(x, y) \in \theta \Rightarrow (x', y') \in \theta$
 $\Rightarrow (a \wedge x', a \wedge y') \in \theta$ and $(a \wedge x', a \wedge y') \in A_a \times A_a$
 $\Rightarrow (a \wedge x', a \wedge y') \in \theta \cap (A_a \times A_a)$
 $\Rightarrow (x^a, y^a) \in \theta \cap (A_a \times A_a)$ (since $x^a = a \wedge x'$ in A_a)

Therefore, $\theta \cap (A_a \times A_a)$ is compatible with the binary operation \wedge and the unary operation a on A_a . By the De Morgan laws and the property that $(x^a)^a = x$ for all $x \in A_a$, it follows that $\theta \cap (A_a \times A_a)$ is compatible with \vee also. Thus $\theta \cap (A_a \times A_a)$ is a congruence on A_a .

Lemma 2.8: Let θ be a factor congruence on a C-algebra A. Then $\theta \cap (A_a \times A_a)$ is a factor congruences on A_a .

Proof: Since θ is a factor congruence on A, there is a congruence θ' on A such that $\theta \cap \theta' = \Delta_A$ and $\theta \circ \theta' = A \times A(=\theta' \circ \theta)$.

Consider, $[\theta \cap (A_a \times A_a)] \cap [\theta' \cap (A_a \times A_a)] = (\theta \cap \theta') \cap (A_a \times A_a)$ = $\Delta \cap (A_a \times A_a)$ = Δ_{A_a} , the diagonal on A_a .

Observe that every element in A_a is in the form $a \wedge x$ for some $x \in A$ Now, let $(a \wedge x, a \wedge y) \in A_a \times A_a$. Then $(a \wedge x, a \wedge y) \in A \times A = \theta' \circ \theta$ which implies that there exists a $z \in A$ such that $(a \wedge x, z) \in \theta$ and $(z, a \wedge y) \in \theta'$.

Now, $(a \land x, a \land z) \in \theta$ and $(a \land z, a \land y) \in \theta'$ and $a \land z \in A_a$. and hence $(a \land x, a \land y) \in \theta'$

 $[\theta' \cap (A_a \times A_a)] \circ [\theta \cap (A_a \times A_a)]$. Therefore $[\theta \cap (A_a \times A_a)] \circ [\theta' \cap (A_a \times A_a)] = A_a \times A_a$. Thus $\theta \cap (A_a \times A_a)$ is a factor congruence on A_a and $\theta' \cap (A_a \times A_a)$ is a direct complement of $\theta \cap (A_a \times A_a)$.

Since A_a is a C-algebra with T every factor congruence is balanced [7]. Hence we have the following.

Theorem 2.9: If θ is a factor congruence on A, then $\theta \cap (A_a \times A_a)$ is a balanced factor congruence on A_a for each $a \in A$ and there exists unique $s_a \in \mathbb{B}(A_a)$ such that $\theta \cap (A_a \times A_a) = \theta_{s_a} := \{(x, y) \in A_a \times A_a \mid s_a \land x = s_a \land y\}.$

Let us recall from [8] that the operation * defined on a C-algebra A by $a * b = (a \land b) \lor (b \land a)$ is associative, commutative and idempotent on A thus (A, *) is a semilattice. \leq_* is an induced partial order of the semilattice (A, *) (that is $x \leq_* y$ if and only if x * y = x.

Lemma 2.10: Let a and b be elements in a C-algebra A such that $a \leq_* b$. Then the following hold.

(1) $a \wedge b = a$

(2) The map $\alpha_{a,b} : A_b \to A_a$ defined by $\alpha_{a,b}(x) = a \wedge x$ for all $x \in A_b$, is a homomorphism of C-algebras.

(3) $\alpha_{a,b}(\mathbb{B}(A_b)) \subseteq \mathbb{B}(A_a)$ (4) If $a \leq_* b \leq_* c$ then $\alpha_{a,b} \circ \alpha_{b,c} = \alpha_{a,c}$ (5) $\alpha_{a,a}$ is the identity map on A_a .

Proof: We have $a \leq_* b$; that is, $a = a * b = (a \land b) \lor (b \land a)$. Now, $a \wedge b = (a * b) \wedge b$ $= [(a \land b) \lor (b \land a)] \land b$ $= (a \land b \land b) \lor [(a \land b)' \land (b \land a) \land b]$ $= (a \wedge b) \vee [(a \wedge b)' \wedge (b \wedge a)]$ $= (a \wedge b) \vee (b \wedge a)$ = a * b = a.(2) Let $x, y \in A_b$. Then $\alpha_{a,b}(x \wedge y) = a \wedge (x \wedge y) = (a \wedge x) \wedge (a \wedge y) = \alpha_{a,b}(x) \wedge \alpha_{a,b}(y).$ and $\alpha_{a,b}(x \lor y) = a \land (x \lor y) = (a \land x) \lor (a \land y) = \alpha_{a,b}(x) \lor \alpha_{a,b}(y)$ Also, $\alpha_{a,b}(x^b) = a \wedge x^b$ $= a \wedge b \wedge x'$ $= a \wedge x'$ (by (1), $a \wedge b = a$) $= a \wedge x' \qquad (by (1), a \wedge b = a)$ $= a \wedge (a' \vee x') \qquad (by \text{ lemma } 1.4(7))$ $= a \wedge (a \wedge x)'$ $= (a \wedge x)^a$ $= (\alpha_{a,b}(x))^a$

Therefore $\alpha_{a,b}$ is a homomorphism of C-algebras. (3) Let $x \in \mathbb{B}(A_b)$. Then $x \lor x^b = b$ and therefore $b = x \lor (b \land x')$ Now, $b = b \land b = b \land (x \lor (b \lor x')) = (b \land x) \lor (b \land x') = b \land (x \lor x') \to (1)$. Now, $\alpha_{a,b}(x) \lor (\alpha_{a,b}(x))^a = (a \land x) \lor (a \land x)^a$ $= (a \land x) \lor (a \land x')$ $= a \land (x \lor x')$ $= a \land (x \lor x')$ $= a \land [b \land (x \lor x')]$ $= a \land b \quad (\text{since by } (1))$ = a, which is the T in A_a . Therefore $\alpha_{a,b}(x) \in \mathbb{B}(A_a)$. Thus $\alpha_{a,b}(\mathbb{B}(A_b)) \subseteq \mathbb{B}(A_a)$. (4) $[\alpha_{a,b} \circ \alpha_{b,c}](x) = \alpha_{a,b}(\alpha_{b,c}(x)) = \alpha_{a,b}(b \land x)) = a \land b \land x = a \land x = \alpha_{a,c}(x)$. Therefore $a \leq_* b \leq_* c \Rightarrow \alpha_{a,b} \circ \alpha_{b,c} = \alpha_{a,c}$.

(5) $\alpha_{a,a}(x) = a \wedge x = x$ for all $x \in A_a$.

Theorem 2.11: Let θ be a factor congruence on a C-algebra A and $a, b \in A$ such that $a \leq_* b$. Let $\theta \cap (A_a \times A_a) = \theta_{s_a}, s_a \in \mathbb{B}(A_a)$ and $\theta \cap (A_b \times A_b) = \theta_{s_b}, s_b \in \mathbb{B}(A_b)$. Then the homomorphism $\alpha_{a,b} : A_b \to A_a$ carries s_b to s_a ; that is, $a \wedge s_b = s_a$.

Proof: Since $\alpha_{a,b}(\mathbb{B}(A_b)) \subseteq \mathbb{B}(A_a)$, it follows that $a \wedge s_b \in \mathbb{B}(A_a)$. By the uniqueness of s_a (theorem 2.9), it is enough if we prove the equality $\theta_{a \wedge s_b} = \theta_{s_a}$ on A_a . First, we have that $(b, s_b) \in \theta_{s_b}$ (since b is the identity for \wedge on A_b) and hence $(b, s_b) \in \theta_{s_b} = \theta \cap (A_b \times A_b) \subseteq \theta$ and therefore $(b, s_b) \in \theta$. This implies that $(b \wedge x, s_b \wedge x) \in \theta$ for all $x \in A$. Now, for any $x \in A_a$, we have $(x, a \wedge s_b \wedge x) = (a \wedge b \wedge x, a \wedge s_b \wedge x) \in \theta$. $\rightarrow (1)$

Therefore, if $(x, y) \in \theta_{a \wedge s_b}$, then $a \wedge s_b \wedge x = a \wedge s_b \wedge y$ and hence $(x, y) \in \theta$ (from (1)). Thus $\theta_{a \wedge s_b} \subseteq \theta \cap (A_a \times A_a) = \theta_{s_a}$. On the other hand,

$$\begin{aligned} (x,y) \in \theta_{s_a} &\Rightarrow (x,y) \in \theta \cap (A_a \times A_a) \\ &\Rightarrow (b \wedge x, b \wedge y) \in \theta \cap (A_b \times A_b) = \theta_{s_b} \\ &\Rightarrow s_b \wedge b \wedge x = s_b \wedge b \wedge y \\ &\Rightarrow s_b \wedge x = s_b \wedge y \\ &\Rightarrow a \wedge s_b \wedge x = a \wedge s_b \wedge y \\ &\Rightarrow (x,y) \in \theta_{a \wedge s_b} \end{aligned}$$
Therefore $\theta_{s_a} \subseteq \theta_{a \wedge s_b}$. Thus $\theta_{s_a} = \theta_{a \wedge s_b}$ and hence $s_a = a \wedge s_b$ that is, $s_a = \alpha_{a,b}(s_b)$.

For each element a in a C-algebra, we know that A_a is a C-algebra with T and $\mathbb{B}(A_a)$ is a Boolean algebra under the operations induced by those in A_a , where $\mathbb{B}(A_a) = \{x \in A_a \mid x \lor x^a = a\}$. Therefore the direct product $\prod_{a \in A} \mathbb{B}(A_a)$ is also a Boolean algebra under the pointwise operations. In the following, we identify a subalgebra of this product.

Theorem 2.12: Let A be a C-algebra and $\mathfrak{B} = \{s \in \prod_{a \in A} \mathbb{B}(A_a) \mid \alpha_{a,b}(s_b) = s_a, \text{ whenever } a \leq_* b\}.$ Then \mathfrak{B} is a Boolean algebra under the pointwise operations.

Proof: We have to simply prove that \mathfrak{B} is a subalgebra of the product $\prod_{a \in A} \mathbb{B}(A_a)$ of Boolean algebras. Recall that a is the largest element (identity for \wedge) in $\mathbb{B}(A_a)$ and hence the identity map i, defined by $i_a = a$ for any $a \in A$, is the largest element in the product $\prod_{a \in A} \mathbb{B}(A_a)$. Also, $i \in \mathfrak{B}$; for, if $a \leq_* b$ in A, then $a \wedge b = a$ and hence $\alpha_{a,b}(i_b) = \alpha_{a,b}(b) = a \wedge b = a$. Further the complement a^a of a in A_a is $a^a = a \wedge a'$. Therefore $a \wedge a'$ is the smallest element in $\mathbb{B}(A_a)$. If $0 \in \prod_{a \in A} \mathbb{B}(A_a)$ is defined by $0_a = a \wedge a'$, for all $a \in A$, then 0 is the smallest element in $\prod_{a \in A} \mathbb{B}(A_a)$. Also, whenever $a \leq_* b$, $\alpha_{a,b}(0_b) = \alpha_{a,b}(b \wedge b') = a \wedge b \wedge b' = a \wedge b \wedge a'(b)$ by lemma $1.4(8) = a \wedge a' = 0_a$.

Therefore $0 \in \mathfrak{B}$. Now, since $\alpha_{a,b} : A_b \to A_a$ is a homomorphism of

C-algebras, its restriction to $\mathbb{B}(A_b)$ is a homomorphism of (Boolean algebras) $\mathbb{B}(A_b)$ into $\mathbb{B}(A_a)$. From this it follows that \mathfrak{B} is a subalgebra of $\prod_{a \in A} \mathbb{B}(A_a)$. Thus \mathfrak{B} is a Boolean algebra under the pointwise operations.

It is known from [6], that $\mathcal{B}(A)$ is a Boolean algebra under the usual operations on the lattice $\operatorname{Con}(A)$ of congruences on A. Infact, $\mathcal{B}(A)$ is a bounded distributive and permutable sublattice of $\operatorname{Con}(A)$ and is closed under complements. Now we prove the following.

Theorem 2.13: Let A be a C-algebra and $\mathcal{B}(A)$ be the Boolean algebra of all balanced factor congruences which admit balanced direct complements. Let \mathfrak{B} be the Boolean algebra described in theorem 2.12. Then $\mathcal{B}(A)$ can be embedded in the Boolean algebra \mathfrak{B} .

Proof: Let θ be a factor congruence on A. Then, by theorem 2.9, for each $a \in A$, there exists unique $s_a \in \mathbb{B}(A_a)$ such that

 $\theta \cap (A_a \times A_a) = \theta_{s_a} = \{(x, y) \in A_a \times A_a \mid s_a \wedge x = s_a \wedge y\}$. Now, define $f : \mathcal{B}(A) \to \mathfrak{B}$ by $f(\theta) = s'$, where $s \in \prod_{a \in A} \mathbb{B}(A_a)$ is given by the relation $\theta \cap (A_a \times A_a) = \theta_{s_a}$ for each $a \in A$. We shall verify that f is an embedding of Boolean algebras. Recall that $a \wedge a'$ and a are respectively the least and greatest elements in $\mathbb{B}(A_a)$, for each $a \in A$. Also, Δ_A and $A \times A$ are respectively the least and greatest elements in $\mathcal{B}(A)$.

Further, for any $a \in A$, $\theta_{a \wedge a'} = A_a \times A_a$ (since $a \wedge a' \wedge x = a \wedge a'$, for all $x \in A_a$) and $\theta_a = \Delta_{A_a}$ (since $a \wedge x = x$, for all $x \in A_a$). All these imply that the least (greatest) element of $\mathcal{B}(A)$ carried to that of \mathfrak{B} . Next, let $\theta, \phi \in \mathbb{B}(A_a)$ and $f(\theta) = s'$ and $f(\phi) = t'$. Then $\theta \cap (A_a \times A_a) = \theta_{s_a}$ and $\theta \cap (A_a \times A_a) = \theta_{t_a}$.

Now, $(\theta \cap \phi) \cap (A_a \times A_a) = \theta_{s_a} \cap \theta_{t_a} = \theta_{s_a \vee t_a} = \theta_{(s_a^a \wedge t_a^a)^a} = \theta_{(s' \wedge t')_a^a}$ and hence $f(\theta \cap \phi) = s' \wedge t' = f(\theta) \cap f(\phi)$. Similarly, we can prove that $f(\theta \vee \phi) = f(\theta) \vee f(\phi)$. Thus, f is a homomorphism of Boolean algebras. Further, let $\theta, \phi \in \mathcal{B}(A)$ be as above such that $f(\theta) = f(\phi)$. Then s' = t' and hence s = t so that $s_a = t_a$ and $\theta \cap (A_a \times A_a) = \phi \cap (A_a \times A_a)$ for all $a \in A$. Now, we shall prove that $\theta = \phi$. Let $(x, y) \in \theta$. Then, for any $a \in A$

 $(a \wedge x, a \wedge y) \in \theta \cap (A_a \times A_a) = \phi \cap (A_a \times A_a) \subseteq \phi$. Therefore $(a \wedge x, a \wedge y) \in \phi$ for all $a \in A$. In particular, $(x, x \wedge y)$ and $(y, y \wedge x) \in \phi \rightarrow (1)$ and hence $(x \vee y, (x \wedge y) \vee (y \wedge x)) \in \phi$. By symmetry, $(y \vee x, (y \wedge x) \vee (x \wedge y)) \in \phi$. Since $(x \wedge y) \vee (y \wedge x) = (y \wedge x) \vee (x \wedge y)$, it follows that $(x \vee y, y \vee x) \in \phi$. $\rightarrow (2)$ Also, since $(x', y') \in \theta$, we get that $((x \wedge y)', (y \wedge x)') =$ $(y' \vee x', x' \vee y') \in \phi$ (by (2)) and hence $(x \wedge y, y \wedge x) \in \phi$. This and (1) gives that $(x, y) \in \phi$. Thus $\theta \subseteq \phi$. Similarly $\phi \subseteq \theta$. Thus $\theta = \phi$. Therefore f is an injection too and hence f is an embedding of $\mathcal{B}(A)$ into \mathfrak{B} . Thus $\mathcal{B}(A)$ is embedded in \mathfrak{B} .

Corollary 2.14: Let A be a C-algebra with T. Then $\mathcal{B}(A)$, \mathfrak{B} and $\mathbb{B}(A)$ are all isomorphic to each other.

Proof: In [7] it is proved that $\mathcal{B}(A)$ and $\mathbb{B}(A)$ are isomorphic to each other. We shall prove that the embedding $f : \mathcal{B}(A) \to \mathfrak{B}$, given in the proof of the above theorem, is a surjection too. Let $s \in \mathfrak{B}$. Then $s' \in \mathfrak{B}$ and $s'_a \in \mathbb{B}(A_a)$ for all $a \in A$ and $a \wedge s'_b = s'_a$ whenever $a \leq_* b$. In particular, since $a \leq_* T$, we have $a \wedge s'_T = s'_a$ for any $a \in A$. Now, $s'_T \in \mathbb{B}(A_T) = \mathbb{B}(A)$ (since $A_T = A$) and the congruence defined by $\theta = \theta_{s'_T}$ is a factor congruence on A and $f(\theta) = s$; for, if $f(\theta) = t \in \mathfrak{B}$, then $\theta_{t'_a} = \theta \cap (A_a \times A_a) = \theta_{s'_T} \cap (A_a \times A_a) = \theta_{a \wedge s'_T} = \theta_{s'_a}$ and hence $t'_a = s'_a$ for all $a \in A$, so that t = s. Thus $f(\theta) = s$. Therefore f is an isomorphism of $\mathcal{B}(A)$ onto \mathfrak{B} .

References

- [1] Birkhoff, G.: Lattice theory, Amer. Math. Soc. Colloquium publications, Vol. 24 (1967).
- [2] Guzman, F. and Squier, C.C.: The algebra of Conditional Logic, Algebra Universalis 27, 88-110 (1990).
- [3] Rao.G.C.and Sundarayya, P.: C-algebra as a Poset, International Journal of Mathematical sciences, Dec 2005, Vol 4, No. 2, 225-236.
- [4] Rao.G.C.and Sundarayya, P.: Decompositions of a C-algebra, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 78981, 1-8.
- [5] Stanley Burris and Sankappanavar.H.P.: A Course in Universal Algebra, The Millennium edition.
- [6] Swamy.U.M.,Murthy ,G.S.,*Boolean centre of a universal algebra*, Algebra Universalis, 13,202-205(1981).
- Swamy, U.M., Rao, G.C. and RaviKumar, R.V.G.: Centre of a C-algebra, Southeast Asian Bulletin of Mathematics 27, 357 - 368(2003).
- [8] Swamy, U.M., Rao.G.C., Sundarayya, P. and Kalesha Vali.S.: Semilattice structures on a C-algebra, Southeast Asian Bulletin of Mathematics, 33, 551 – 561(2009).