Boolean Centre of a C-algebra

S. Kalesha Vali*, P. Sundarayya** and U.M. Swamy***
* Department of Basic Sciences and Humanities, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India. vali312@gitam.edu
** Department of Basic Sciences and Humanities, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India. psundarayya@yahoo.co.in
*** Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India.
umswamy@yahoo.com

Abstract

There is a precise characterisation of factor congruences on a C-algebra with meet identity T. The characterisation of such congruences on a C-algebra with out T is a difficult task. In this paper, we make such an attempt and we characterise the factor congruences on a C-algebra A and identify these with certain elements or sets of elements of A.

Key Words: C-algebra, Centre, Factor congruence, Balanced Congruence, Boolean centre. Mathematics Subject Classification 2000: 03G25, 03G05, 08G05

Introduction

In [2] Guzman and Squier introduced the variety of C-algebras as the variety generated by the three element algebra $C=\{T, F, U\}$, which is the algebraic form of the three valued conditional logic. They proved that C and the two element Boolean algebra $B=\{T, F\}$ are the only subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal cover of the variety of Boolean algebras. Later in [3] G.C.Rao and P.Sundarayya defined different partial orders on a C-algebra and studied their properties and gave a number of equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean Algebra. In [6], Swamy and Murthy have proved that the set of all balanced factor congruences whose direct complements are also balanced, forms a Boolean permutable sublattice
of the lattice $\operatorname{Con}(A)$ of congruences on A, called Boolean centre and is denoted by $\mathcal{B}(A)$. In [7] U.M.Swamy et.al.,introduced the concept of the Centre, denoted by $\mathbb{B}(A)$ of a C-algebra A with T. If A is a C-algebra with T, then they proved that every factor congruence on A is of the form θ_{a} for some $a \in \mathbb{B}(A)$ also, proved that $a \mapsto \theta_{a}$ is an isomorphism of $\mathbb{B}(A)$ on to $\mathcal{B}(A)$ of [6] and thus the precise characterization of factor congruences on a C-algebra with T. The characterisation of such congruences on a C-algebra with out T is a difficult task. In this paper, we make such an attempt and we characterise the factor congruences on a C-algebra A and identify these with certain elements or sets of elements of A. Finally we proved that the Boolean algebras $\mathfrak{B}=\left\{s \in \prod_{a \in A} \mathbb{B}\left(A_{a}\right) \mid \alpha_{a, b}\left(s_{b}\right)=s_{a}\right.$, whenever $\left.a \leq_{*} b\right\}$, $\mathcal{B}(A)$ and $\mathbb{B}(A)$ are all isomorphic to each other.

1 C-algebra

In this section we recall the definition of a C-algebra and some results from [2], [3], [4] and [7]. Let us start with the definition of a C-algebra.

Definition 1.1: 2] By a C-algebra we mean an algebra of type ($2,2,1$) with binary operations \wedge and \vee and unary operation ' satisfying the following identities.
(1) $x^{\prime \prime}=x$
(2) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$
(3) $(x \wedge y) \wedge z=x \wedge(y \wedge z)$
(4) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
(5) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\prime} \wedge y \wedge z\right)$
(6) $x \vee(x \wedge y)=x$
(7) $(x \wedge y) \vee(y \wedge x)=(y \wedge x) \vee(x \wedge y)$.

Example 1.2: 2] The three element algebra $C=\{T, F, U\}$ with the operations given by the following tables is a C-algebra

\wedge	T	F	U
T	T	F	U
F	F	F	F
U	U	U	U

\vee	T	F	U
T	T	T	T
F	T	F	U
U	U	U	U

x	x^{\prime}
T	F
F	T
U	U

Note 1.3:[2] The identities 1.1(1), 1.1(2) imply that the variety of C-algebras satisfies all the dual statements of $1.1(3)$ to $1.1(7)$. \wedge and \vee are not commutative in C. The ordinary distributive law of \wedge over \vee fails in C. Every Boolean algebra is a C-algebra.

Note that C always denote the three element C-algebra $\{T, F, U\}$ and B always denote the two element Boolean algebra $\{T, F\}$. B is the only C-algebra of order two. There can be at most one element x satisfying $x^{\prime}=x$. This element, if it exists, is denoted by U.If a C-algebra $\left(A, \wedge, \vee,{ }^{\prime}\right)$ has an identity for \wedge, then it is unique and is denoted by T. In this case we say that A is a C-algebra with T. We denote T^{\prime} by F.

Now we give some results on C-algebra collected from [2, [3, [4] and [7].
Lemma 1.4: Every C-algebra satisfies the following identities:
(1) $x \wedge x=x$
(2) $x \wedge x^{\prime}=x^{\prime} \wedge x$
(3) $x \wedge y \wedge x=x \wedge y$
(4) $x \wedge x^{\prime} \wedge y=x \wedge x^{\prime}$
(5) $x \wedge y=\left(x^{\prime} \vee y\right) \wedge x$
(6) $x \wedge y=x \wedge\left(y \vee x^{\prime}\right)$
(7) $x \wedge y=x \wedge\left(x^{\prime} \vee y\right)$
(8) $x \wedge y \wedge x^{\prime}=x \wedge y \wedge y^{\prime}$
(9) $(x \vee y) \wedge x=x \vee(y \wedge x)$
(10) $x \wedge\left(x^{\prime} \vee x\right)=\left(x^{\prime} \vee x\right) \wedge x=\left(x \vee x^{\prime}\right) \wedge x=x$.

We recollect the fundamental congruence corresponding to an element in a C-algebra, defined in [2].

Definition 1.5: [2] For any element x of a C-algebra $A, \theta_{x}=\{(a, b) \in A \times A \mid x \wedge a=x \wedge b\}$ is a congruence on A.

Lemma 1.6: Let A be a C-algebra and $x, y \in A$. Then the following hold.
(1) $(x \wedge y, y) \in \theta_{x}$
(2) $(y \wedge x, y) \in \theta_{x}$
(3) $(x \wedge y, y \wedge x) \in \theta_{x}$.
(4) $\theta_{x} \cap \theta_{y} \subseteq \theta_{x \vee y} \subseteq \theta_{x}$
(5) $\theta_{x \wedge y}=\theta_{y \wedge x}$
(6) $\theta_{x \wedge y}=\theta_{x} \vee \theta_{y}=\theta_{y} \circ \theta_{x} \circ \theta_{y}=\theta_{x} \circ \theta_{y} \circ \theta_{x}$.

2 Factor Congruences

In this section section we shall discuss various properties of factor congruences on a C-algebra and identify certain elements or set of elements of the C-algebra with the factor congruences. First we recall the following.

Definition 2.1: A congruence θ on a C-algebra is called a factor congruence if there exist a congruence ϕ on A such that $\theta \cap \phi=\Delta_{A}$ and $\theta \circ \phi=A \times A$; in this case ϕ is called a direct complement of θ.

In [7], they specialized factor congruences on a C-algebra with T, where T is the identity for the operation \wedge in A. We begin with the following which are taken from [7].

Theorem 2.2:[7] Let A be a C-algebra with T and define $\mathbb{B}(A)=\left\{a \in A \mid a \vee a^{\prime}=T\right\}$. Then $\mathbb{B}(A)$ is a Boolean algebra under the operations induced by those on A, in which T and F are largest and least elements respectively.

Definition 2.3:[7] For any C-algebra A with $T, \mathbb{B}(A)$ is called the centre of A.
Theorem 2.4: [7] Let A be a C-algebra with T, and θ is a congruence on A. Then θ is a factor congruence on A if and only if $\theta=\theta_{a}$ for some $a \in \mathbb{B}(A)$.

Theorem 2.5:[7] Let A be a C-algebra with T. For any $a, b \in \mathbb{B}(A)$, the following hold.
(1) $\theta_{a} \cap \theta_{b}=\theta_{a \vee b}$
(2) $\theta_{a} \circ \theta_{b}=\theta_{a \wedge b}=\theta_{a} \vee \theta_{b}$
(3) $\theta_{T}=\Delta_{A}$
(4) $\theta_{F}=A \times A$.

A congruence θ on an (universal) algebra A is called balanced if $(\theta \vee \phi) \cap\left(\theta \vee \phi^{\prime}\right)=\theta$ for any direct factor congruences ϕ and any of its direct complements ϕ^{\prime} on A. In [7] it is proved that if A is a C-algebra with T then the set of all factor congruences on A is a Boolean algebra and is isomorphic with Boolean algebra $\mathbb{B}(A)$. Further, $\theta \circ \phi=\phi \circ \theta$ for all factor congruences θ and ϕ on A also proved that every factor congruence on A is balanced.

Next let us recall the following from [4].
Theorem 2.6: 4 Let A be a C-algebra and $a \in A$. Let
$A_{a}=\{x \in A \mid a \wedge x=x\}=\{a \wedge y \mid y \in A\}$. Then A_{a} is closed under the operations \wedge and \vee. Also, for any $x \in A_{a}$ define $x^{a}=a \wedge x^{\prime}$. Then $\left(A_{a}, \wedge, \vee,^{a}\right)$ is a C-algebra with T (here, a itself is the identity for \wedge in A_{a}; that is T in $\left.A_{a}\right)$.

Lemma 2.7: Let θ be a congruence on A . Then $\theta \cap\left(A_{a} \times A_{a}\right)$ is a congruence on A_{a}, for each $a \in A$.

Proof: Fix $a \in A$. Since θ is an equivalence relation on $\mathrm{A}, \theta \cap\left(A_{a} \times A_{a}\right)$ is an equivalence relation on A_{a}. Let $(x, y),(z, t) \in \theta \cap\left(A_{a} \times A_{a}\right)$.
Since $x, y, z, t \in A_{a}, x \wedge z, y \wedge t \in A_{a}$ and hence $(x \wedge z, y \wedge t) \in \theta \cap\left(A_{a} \times A_{a}\right)$
$\operatorname{Now}(x, y) \in \theta \quad \Rightarrow \quad\left(x^{\prime}, y^{\prime}\right) \in \theta$
$\Rightarrow \quad\left(a \wedge x^{\prime}, a \wedge y^{\prime}\right) \in \theta$ and $\left(a \wedge x^{\prime}, a \wedge y^{\prime}\right) \in A_{a} \times A_{a}$
$\Rightarrow \quad\left(a \wedge x^{\prime}, a \wedge y^{\prime}\right) \in \theta \cap\left(A_{a} \times A_{a}\right)$
$\Rightarrow \quad\left(x^{a}, y^{a}\right) \in \theta \cap\left(A_{a} \times A_{a}\right) \quad\left(\right.$ since $x^{a}=a \wedge x^{\prime}$ in $\left.A_{a}\right)$
Therefore, $\theta \cap\left(A_{a} \times A_{a}\right)$ is compatible with the binary operation \wedge and the unary operation ${ }^{a}$ on A_{a}. By the De Morgan laws and the property that $\left(x^{a}\right)^{a}=x$ for all $x \in A_{a}$, it follows that $\theta \cap\left(A_{a} \times A_{a}\right)$ is compatible with \vee also. Thus $\theta \cap\left(A_{a} \times A_{a}\right)$ is a congruence on A_{a}.

Lemma 2.8: Let θ be a factor congruence on a C-algebra A. Then $\theta \cap\left(A_{a} \times A_{a}\right)$ is a factor congruences on A_{a}.

Proof: Since θ is a factor congruence on A, there is a congruence θ^{\prime} on A such that $\theta \cap \theta^{\prime}=\Delta_{A}$ and $\theta \circ \theta^{\prime}=A \times A\left(=\theta^{\prime} \circ \theta\right)$.
Consider, $\left[\theta \cap\left(A_{a} \times A_{a}\right)\right] \cap\left[\theta^{\prime} \cap\left(A_{a} \times A_{a}\right)\right]=\left(\theta \cap \theta^{\prime}\right) \cap\left(A_{a} \times A_{a}\right)$
$=\Delta \cap\left(A_{a} \times A_{a}\right)$
$=\Delta_{A_{a}}$, the diagonal on A_{a}.
Observe that every element in A_{a} is in the form $a \wedge x$ for some $x \in A$
Now, let $(a \wedge x, a \wedge y) \in A_{a} \times A_{a}$. Then $(a \wedge x, a \wedge y) \in A \times A=\theta^{\prime} \circ \theta$ which implies that there exists a $z \in A$ such that $(a \wedge x, z) \in \theta$ and $(z, a \wedge y) \in \theta^{\prime}$.
Now, $(a \wedge x, a \wedge z) \in \theta$ and $(a \wedge z, a \wedge y) \in \theta^{\prime}$ and $a \wedge z \in A_{a}$. and hence $(a \wedge x, a \wedge y) \in$
$\left[\theta^{\prime} \cap\left(A_{a} \times A_{a}\right)\right] \circ\left[\theta \cap\left(A_{a} \times A_{a}\right)\right]$. Therefore $\left[\theta \cap\left(A_{a} \times A_{a}\right)\right] \circ\left[\theta^{\prime} \cap\left(A_{a} \times A_{a}\right)\right]=A_{a} \times A_{a}$. Thus $\theta \cap\left(A_{a} \times A_{a}\right)$ is a factor congruence on A_{a} and $\theta^{\prime} \cap\left(A_{a} \times A_{a}\right)$ is a direct complement of $\theta \cap\left(A_{a} \times A_{a}\right)$.
Since A_{a} is a C-algebra with T every factor congruence is balanced [7]. Hence we have the following.

Theorem 2.9: If θ is a factor congruence on A, then $\theta \cap\left(A_{a} \times A_{a}\right)$ is a balanced factor congruence on A_{a} for each $a \in A$ and there exists unique $s_{a} \in \mathbb{B}\left(A_{a}\right)$ such that $\theta \cap\left(A_{a} \times A_{a}\right)=$ $\theta_{s_{a}}:=\left\{(x, y) \in A_{a} \times A_{a} \mid s_{a} \wedge x=s_{a} \wedge y\right\}$.

Let us recall from [8] that the operation $*$ defined on a C-algebra A by $a * b=(a \wedge b) \vee(b \wedge a)$ is associative, commutative and idempotent on A thus $(A, *)$ is a semilattice. \leq_{*} is an induced partial order of the semilattice $(A, *)$ (that is $x \leq_{*} y$ if and only if $x * y=x$.

Lemma 2.10: Let a and b be elements in a C-algebra A such that $a \leq_{*} b$. Then the following hold.
(1) $a \wedge b=a$
(2) The map $\alpha_{a, b}: A_{b} \rightarrow A_{a}$ defined by $\alpha_{a, b}(x)=a \wedge x$ for all $x \in A_{b}$, is a homomorphism of C-algebras.
(3) $\alpha_{a, b}\left(\mathbb{B}\left(A_{b}\right)\right) \subseteq \mathbb{B}\left(A_{a}\right)$
(4) If $a \leq_{*} b \leq_{*} c$ then $\alpha_{a, b} \circ \alpha_{b, c}=\alpha_{a, c}$
(5) $\alpha_{a, a}$ is the identity map on A_{a}.

Proof: We have $a \leq_{*} b$; that is, $a=a * b=(a \wedge b) \vee(b \wedge a)$. Now,

$$
\begin{aligned}
a \wedge b & =(a * b) \wedge b \\
& =[(a \wedge b) \vee(b \wedge a)] \wedge b \\
& =(a \wedge b \wedge b) \vee\left[(a \wedge b)^{\prime} \wedge(b \wedge a) \wedge b\right] \\
& =(a \wedge b) \vee\left[(a \wedge b)^{\prime} \wedge(b \wedge a)\right] \\
& =(a \wedge b) \vee(b \wedge a) \\
& =a * b=a
\end{aligned}
$$

(2) Let $x, y \in A_{b}$. Then
$\alpha_{a, b}(x \wedge y)=a \wedge(x \wedge y)=(a \wedge x) \wedge(a \wedge y)=\alpha_{a, b}(x) \wedge \alpha_{a, b}(y)$.
and $\alpha_{a, b}(x \vee y)=a \wedge(x \vee y)=(a \wedge x) \vee(a \wedge y)=\alpha_{a, b}(x) \vee \alpha_{a, b}(y)$.
Also, $\alpha_{a, b}\left(x^{b}\right)=a \wedge x^{b}$
$=a \wedge b \wedge x^{\prime}$
$=a \wedge x^{\prime} \quad($ by $(1), a \wedge b=a)$
$=a \wedge\left(a^{\prime} \vee x^{\prime}\right) \quad$ (by lemma 1.4(7))
$=a \wedge(a \wedge x)^{\prime}$
$=(a \wedge x)^{a}$
$=\left(\alpha_{a, b}(x)\right)^{a}$

Therefore $\alpha_{a, b}$ is a homomorphism of C-algebras.
(3) Let $x \in \mathbb{B}\left(A_{b}\right)$. Then $x \vee x^{b}=b$ and therefore $b=x \vee\left(b \wedge x^{\prime}\right)$

Now, $b=b \wedge b=b \wedge\left(x \vee\left(b \vee x^{\prime}\right)\right)=(b \wedge x) \vee\left(b \wedge x^{\prime}\right)=b \wedge\left(x \vee x^{\prime}\right) \rightarrow(1)$.
Now, $\alpha_{a, b}(x) \vee\left(\alpha_{a, b}(x)\right)^{a}=(a \wedge x) \vee(a \wedge x)^{a}$
$=(a \wedge x) \vee\left(a \wedge x^{\prime}\right)$
$=a \wedge\left(x \vee x^{\prime}\right)$
$=(a \wedge b) \wedge\left(x \vee x^{\prime}\right)$
$=a \wedge\left[b \wedge\left(x \vee x^{\prime}\right)\right]$
$=a \wedge b \quad$ (since by (1))
$=a$, which is the T in A_{a}.
Therefore $\alpha_{a, b}(x) \in \mathbb{B}\left(A_{a}\right)$. Thus $\alpha_{a, b}\left(\mathbb{B}\left(A_{b}\right)\right) \subseteq \mathbb{B}\left(A_{a}\right)$.
(4) $\left.\left[\alpha_{a, b} \circ \alpha_{b, c}\right](x)=\alpha_{a, b}\left(\alpha_{b, c}(x)\right)=\alpha_{a, b}(b \wedge x)\right)=a \wedge b \wedge x=a \wedge x=\alpha_{a, c}(x)$.

Therefore $a \leq_{*} b \leq_{*} c \Rightarrow \alpha_{a, b} \circ \alpha_{b, c}=\alpha_{a, c}$.
(5) $\alpha_{a, a}(x)=a \wedge x=x$ for all $x \in A_{a}$.

Theorem 2.11: Let θ be a factor congruence on a C-algebra A and $a, b \in A$ such that $a \leq_{*} b$. Let $\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}}, s_{a} \in \mathbb{B}\left(A_{a}\right)$ and $\theta \cap\left(A_{b} \times A_{b}\right)=\theta_{s_{b}}, s_{b} \in \mathbb{B}\left(A_{b}\right)$. Then the homomorphism $\alpha_{a, b}: A_{b} \rightarrow A_{a}$ carries s_{b} to s_{a}; that is, $a \wedge s_{b}=s_{a}$.

Proof: Since $\alpha_{a, b}\left(\mathbb{B}\left(A_{b}\right)\right) \subseteq \mathbb{B}\left(A_{a}\right)$, it follows that $a \wedge s_{b} \in \mathbb{B}\left(A_{a}\right)$. By the uniqueness of s_{a} (theorem 2.9), it is enough if we prove the equality $\theta_{a \wedge s_{b}}=\theta_{s_{a}}$ on A_{a}. First, we have that $\left(b, s_{b}\right) \in \theta_{s_{b}}$ (since b is the identity for \wedge on A_{b}) and hence $\left(b, s_{b}\right) \in \theta_{s_{b}}=\theta \cap\left(A_{b} \times A_{b}\right) \subseteq \theta$ and therefore $\left(b, s_{b}\right) \in \theta$. This implies that $\left(b \wedge x, s_{b} \wedge x\right) \in \theta$ for all $x \in A$. Now, for any $x \in A_{a}$, we have $\left(x, a \wedge s_{b} \wedge x\right)=\left(a \wedge b \wedge x, a \wedge s_{b} \wedge x\right) \in \theta . \quad \rightarrow(1)$
Therefore, if $(x, y) \in \theta_{a \wedge s_{b}}$, then $a \wedge s_{b} \wedge x=a \wedge s_{b} \wedge y$ and hence (x, y) $\in \theta$ (from (1)). Thus $\theta_{a \wedge s_{b}} \subseteq \theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}}$. On the other hand,

$$
\begin{aligned}
(x, y) \in \theta_{s_{a}} & \Rightarrow(x, y) \in \theta \cap\left(A_{a} \times A_{a}\right) \\
& \Rightarrow(b \wedge x, b \wedge y) \in \theta \cap\left(A_{b} \times A_{b}\right)=\theta_{s_{b}} \\
& \Rightarrow s_{b} \wedge b \wedge x=s_{b} \wedge b \wedge y \\
& \Rightarrow s_{b} \wedge x=s_{b} \wedge y \\
& \Rightarrow a \wedge s_{b} \wedge x=a \wedge s_{b} \wedge y \\
& \Rightarrow(x, y) \in \theta_{a \wedge s_{b}}
\end{aligned}
$$

Therefore $\theta_{s_{a}} \subseteq \theta_{a \wedge s_{b}}$. Thus $\theta_{s_{a}}=\theta_{a \wedge s_{b}}$ and hence $s_{a}=a \wedge s_{b}$ that is, $s_{a}=\alpha_{a, b}\left(s_{b}\right)$.
For each element a in a C-algebra, we know that A_{a} is a C-algebra with T and $\mathbb{B}\left(A_{a}\right)$ is a Boolean algebra under the operations induced by those in A_{a}, where $\mathbb{B}\left(A_{a}\right)=\left\{x \in A_{a} \mid\right.$ $\left.x \vee x^{a}=a\right\}$. Therefore the direct product $\prod_{a \in A} \mathbb{B}\left(A_{a}\right)$ is also a Boolean algebra under the pointwise operations. In the following, we identify a subalgebra of this product.

Theorem 2.12: Let A be a C-algebra and
$\mathfrak{B}=\left\{s \in \prod_{a \in A} \mathbb{B}\left(A_{a}\right) \mid \alpha_{a, b}\left(s_{b}\right)=s_{a}\right.$, whenever $\left.a \leq_{*} b\right\}$. Then \mathfrak{B} is a Boolean algebra under
the pointwise operations.
Proof: We have to simply prove that \mathfrak{B} is a subalgebra of the product $\prod_{a \in A} \mathbb{B}\left(A_{a}\right)$ of Boolean algebras. Recall that a is the largest element (identity for \wedge) in $\mathbb{B}\left(A_{a}\right)$ and hence the identity map i, defined by $i_{a}=a$ for any $a \in A$, is the largest element in the product $\prod_{a \in A} \mathbb{B}\left(A_{a}\right)$. Also, $i \in \mathfrak{B}$; for, if $a \leq_{*} b$ in A, then $a \wedge b=a$ and hence $\quad \alpha_{a, b}\left(i_{b}\right)=\alpha_{a, b}(b)=a \wedge b=a$.
Further the complement a^{a} of a in A_{a} is $a^{a}=a \wedge a^{\prime}$. Therefore $a \wedge a^{\prime}$ is the smallest element in $\mathbb{B}\left(A_{a}\right)$. If $0 \in \prod_{a \in A} \mathbb{B}\left(A_{a}\right)$ is defined by $0_{a}=a \wedge a^{\prime}$, for all $a \in A$, then 0 is the smallest element in $\prod_{a \in A} \mathbb{B}\left(A_{a}\right)$. Also, whenever $a \leq_{*} b, \alpha_{a, b}\left(0_{b}\right)=\alpha_{a, b}\left(b \wedge b^{\prime}\right)=a \wedge b \wedge b^{\prime}=a \wedge b \wedge a^{\prime}($ by lemma $1.4(8))=a \wedge a^{\prime}=0_{a}$.
Therefore $0 \in \mathfrak{B}$. Now, since $\alpha_{a, b}: A_{b} \rightarrow A_{a}$ is a homomorphism of
C-algebras, its restriction to $\mathbb{B}\left(A_{b}\right)$ is a homomorphism of (Boolean algebras) $\mathbb{B}\left(A_{b}\right)$ into $\mathbb{B}\left(A_{a}\right)$. From this it follows that \mathfrak{B} is a subalgebra of $\prod_{a \in A} \mathbb{B}\left(A_{a}\right)$. Thus \mathfrak{B} is a Boolean algebra under the pointwise operations.

It is known from [6], that $\mathcal{B}(A)$ is a Boolean algebra under the usual operations on the lattice $\operatorname{Con}(A)$ of congruences on A. Infact, $\mathcal{B}(A)$ is a bounded distributive and permutable sublattice of $\operatorname{Con}(A)$ and is closed under complements. Now we prove the following.

Theorem 2.13: Let A be a C-algebra and $\mathcal{B}(A)$ be the Boolean algebra of all balanced factor congruences which admit balanced direct complements. Let \mathfrak{B} be the Boolean algebra described in theorem 2.12. Then $\mathcal{B}(A)$ can be embedded in the Boolean algebra \mathfrak{B}.

Proof: Let θ be a factor congruence on A. Then, by theorem 2.9, for each $a \in A$, there exists unique $s_{a} \in \mathbb{B}\left(A_{a}\right)$ such that
$\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}}=\left\{(x, y) \in A_{a} \times A_{a} \mid s_{a} \wedge x=s_{a} \wedge y\right\}$. Now, define $f: \mathcal{B}(A) \rightarrow \mathfrak{B}$ by $f(\theta)=s^{\prime}$, where $s \in \prod_{a \in A} \mathbb{B}\left(A_{a}\right)$ is given by the relation $\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}}$ for each $a \in A$. We shall verify that f is an embedding of Boolean algebras. Recall that $a \wedge a^{\prime}$ and a are respectively the least and greatest elements in $\mathbb{B}\left(A_{a}\right)$, for each $a \in A$. Also, Δ_{A} and $A \times A$ are respectively the least and greatest elements in $\mathcal{B}(A)$.
Further, for any $a \in A, \quad \theta_{a \wedge a^{\prime}}=A_{a} \times A_{a}\left(\right.$ since $a \wedge a^{\prime} \wedge x=a \wedge a^{\prime}$, for all $\left.x \in A_{a}\right)$ and $\theta_{a}=\Delta_{A_{a}}$ (since $a \wedge x=x$, for all $x \in A_{a}$). All these imply that the least (greatest) element of $\mathcal{B}(A)$ carried to that of \mathfrak{B}. Next, let $\theta, \phi \in \mathbb{B}\left(A_{a}\right)$ and $f(\theta)=s^{\prime}$ and $f(\phi)=t^{\prime}$. Then $\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}}$ and $\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{t_{a}}$.
Now, $(\theta \cap \phi) \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{a}} \cap \theta_{t_{a}}=\theta_{s_{a} \vee t_{a}}=\theta_{\left(s_{a}^{a} \wedge t_{a}^{a}\right)^{a}}=\theta_{\left(s^{\prime} \wedge t^{\prime}\right)_{a}^{a}}$ and hence $f(\theta \cap \phi)=$ $s^{\prime} \wedge t^{\prime}=f(\theta) \cap f(\phi)$. Similarly, we can prove that $f(\theta \vee \phi)=f(\theta) \vee f(\phi)$. Thus, f is a homomorphism of Boolean algebras. Further, let $\theta, \phi \in \mathcal{B}(A)$ be as above such that $f(\theta)=f(\phi)$. Then $s^{\prime}=t^{\prime}$ and hence $s=t$ so that $s_{a}=t_{a}$ and $\theta \cap\left(A_{a} \times A_{a}\right)=\phi \cap\left(A_{a} \times A_{a}\right)$ for all $a \in A$. Now, we shall prove that $\theta=\phi$. Let $(x, y) \in \theta$. Then, for any $a \in A$
$(a \wedge x, a \wedge y) \in \theta \cap\left(A_{a} \times A_{a}\right)=\phi \cap\left(A_{a} \times A_{a}\right) \subseteq \phi$. Therefore $(a \wedge x, a \wedge y) \in \phi$ for all $a \in A$. In particular, $(x, x \wedge y)$ and $(y, y \wedge x) \in \phi \rightarrow(1)$ and hence $(x \vee y,(x \wedge y) \vee(y \wedge x)) \in \phi$. By symmetry, $(y \vee x,(y \wedge x) \vee(x \wedge y)) \in \phi$. Since $(x \wedge y) \vee(y \wedge x)=(y \wedge x) \vee(x \wedge y)$, it follows that $(x \vee y, y \vee x) \in \phi . \quad \rightarrow(2)$ Also, since $\left(x^{\prime}, y^{\prime}\right) \in \theta$, we get that $\left((x \wedge y)^{\prime},(y \wedge x)^{\prime}\right)=$ $\left(y^{\prime} \vee x^{\prime}, x^{\prime} \vee y^{\prime}\right) \in \phi \quad($ by $(2))$ and hence $(x \wedge y, y \wedge x) \in \phi$. This and (1) gives that $(x, y) \in \phi$. Thus $\theta \subseteq \phi$. Similarly $\phi \subseteq \theta$. Thus $\theta=\phi$. Therefore f is an injection too and hence f is an embedding of $\mathcal{B}(A)$ into \mathfrak{B}. Thus $\mathcal{B}(A)$ is embedded in \mathfrak{B}.

Corollary 2.14: Let A be a C-algebra with T. Then $\mathcal{B}(A), \mathfrak{B}$ and $\mathbb{B}(A)$ are all isomorphic to each other.

Proof: In [7] it is proved that $\mathcal{B}(A)$ and $\mathbb{B}(A)$ are isomorphic to each other. We shall prove that the embedding $f: \mathcal{B}(A) \rightarrow \mathfrak{B}$, given in the proof of the above theorem, is a surjection too. Let $s \in \mathfrak{B}$. Then $s^{\prime} \in \mathfrak{B}$ and $s_{a}^{\prime} \in \mathbb{B}\left(A_{a}\right)$ for all $a \in A$ and $a \wedge s_{b}^{\prime}=s_{a}^{\prime}$ whenever $a \leq_{*} b$. In particular, since $a \leq_{*} T$, we have $a \wedge s_{T}^{\prime}=s_{a}^{\prime}$ for any $a \in A$. Now, $s_{T}^{\prime} \in \mathbb{B}\left(A_{T}\right)=\mathbb{B}(A)$ (since $A_{T}=A$) and the congruence defined by $\theta=\theta_{s_{T}^{\prime}}$ is a factor congruence on A and $f(\theta)=s$; for, if $f(\theta)=t \in \mathfrak{B}$, then $\theta_{t_{a}^{\prime}}=\theta \cap\left(A_{a} \times A_{a}\right)=\theta_{s_{T}^{\prime}} \cap\left(A_{a} \times A_{a}\right)=\theta_{a \wedge s_{T}^{\prime}}=\theta_{s_{a}^{\prime}}$ and hence $t_{a}^{\prime}=s_{a}^{\prime}$ for all $a \in A$, so that $t=s$.Thus $f(\theta)=s$. Therefore f is an isomorphism of $\mathcal{B}(A)$ onto \mathfrak{B}.

References

[1] Birkhoff,G.: Lattice theory, Amer.Math.Soc.Colloquium publications, Vol. 24 (1967).
[2] Guzman,F. and Squier,C.C.: The algebra of Conditional Logic, Algebra Universalis 27, 88-110 (1990).
[3] Rao.G.C.and Sundarayya,P.: C-algebra as a Poset, International Journal of Mathematical sciences, Dec 2005, Vol 4, No. 2, 225-236.
[4] Rao.G.C.and Sundarayya,P.: Decompositions of a C-algebra, International Journal of Mathematics and Mathematical Sciences, Vol. 2006,Article ID 78981, 1-8.
[5] Stanley Burris and Sankappanavar.H.P.: A Course in Universal Algebra, The Millennium edition.
[6] Swamy.U.M.,Murthy ,G.S.,Boolean centre of a universal algebra, Algebra Universalis, 13,202-205(1981).
[7] Swamy,U.M., Rao,G.C. and RaviKumar,R.V.G.: Centre of a C-algebra, Southeast Asian Bulletin of Mathematics 27, 357 - 368(2003).
[8] Swamy,U.M.,Rao.G.C., Sundarayya,P. and Kalesha Vali.S.: Semilattice structures on a C-algebra, Southeast Asian Bulletin of Mathematics,33, 551 - 561(2009).

