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Abstract

There is a precise characterisation of factor congruences on a C-algebra with meet iden-

tity T . The characterisation of such congruences on a C-algebra with out T is a difficult

task. In this paper, we make such an attempt and we characterise the factor congruences on

a C-algebra A and identify these with certain elements or sets of elements of A.
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Introduction

In [2] Guzman and Squier introduced the variety of C-algebras as the variety generated by

the three element algebra C = {T, F, U}, which is the algebraic form of the three valued

conditional logic. They proved that C and the two element Boolean algebra B = {T, F} are

the only subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal

cover of the variety of Boolean algebras. Later in [3] G.C.Rao and P.Sundarayya defined

different partial orders on a C-algebra and studied their properties and gave a number of

equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean

Algebra. In [6], Swamy and Murthy have proved that the set of all balanced factor congru-

ences whose direct complements are also balanced, forms a Boolean permutable sublattice
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of the lattice Con(A) of congruences on A, called Boolean centre and is denoted by B(A). In

[7] U.M.Swamy et.al.,introduced the concept of the Centre, denoted by B(A) of a C-algebra

A with T . If A is a C-algebra with T , then they proved that every factor congruence on A

is of the form θa for some a ∈ B(A) also, proved that a 7→ θa is an isomorphism of B(A)

on to B(A) of [6] and thus the precise characterization of factor congruences on a C-algebra

with T . The characterisation of such congruences on a C-algebra with out T is a difficult

task. In this paper, we make such an attempt and we characterise the factor congruences

on a C-algebra A and identify these with certain elements or sets of elements of A. Finally

we proved that the Boolean algebras B = {s ∈
∏
a∈A

B(Aa) | αa,b(sb) = sa, whenever a ≤∗ b},

B(A) and B(A) are all isomorphic to each other.

1 C-algebra

In this section we recall the definition of a C-algebra and some results from [2],[3],[4] and

[7]. Let us start with the definition of a C-algebra.

Definition 1.1:[2] By a C-algebra we mean an algebra of type (2, 2, 1) with binary operations

∧ and ∨ and unary operation ′ satisfying the following identities.

(1) x′′ = x (2) (x ∧ y)′ = x′ ∨ y′

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z) (4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(5) (x ∨ y) ∧ z = (x ∧ z) ∨ (x′ ∧ y ∧ z) (6) x ∨ (x ∧ y) = x

(7) (x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y).

Example 1.2:[2] The three element algebra C = {T, F, U} with the operations given by the

following tables is a C-algebra

∧ T F U

T T F U

F F F F

U U U U

∨ T F U

T T T T

F T F U

U U U U

x x′

T F

F T

U U

Note 1.3:[2] The identities 1.1(1), 1.1(2) imply that the variety of C-algebras satisfies all

the dual statements of 1.1(3) to 1.1(7). ∧ and ∨ are not commutative in C. The ordinary

distributive law of ∧ over ∨ fails in C. Every Boolean algebra is a C-algebra.

Note that C always denote the three element C-algebra {T, F, U} and B always denote the

two element Boolean algebra {T, F}. B is the only C-algebra of order two. There can be

at most one element x satisfying x′ = x. This element, if it exists, is denoted by U.If a

C-algebra (A,∧,∨,′ ) has an identity for ∧, then it is unique and is denoted by T. In this

case we say that A is a C-algebra with T . We denote T ′ by F .
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Now we give some results on C-algebra collected from [2],[3],[4] and [7].

Lemma 1.4: Every C-algebra satisfies the following identities:

(1) x ∧ x = x (2) x ∧ x′ = x′ ∧ x
(3) x ∧ y ∧ x = x ∧ y (4) x ∧ x′ ∧ y = x ∧ x′

(5) x ∧ y = (x′ ∨ y) ∧ x (6) x ∧ y = x ∧ (y ∨ x′)
(7) x ∧ y = x ∧ (x′ ∨ y) (8) x ∧ y ∧ x′ = x ∧ y ∧ y′

(9) (x ∨ y) ∧ x = x ∨ (y ∧ x) (10) x ∧ (x′ ∨ x) = (x′ ∨ x) ∧ x = (x ∨ x′) ∧ x = x.

We recollect the fundamental congruence corresponding to an element in a C-algebra, defined

in [2].

Definition 1.5:[2] For any element x of a C-algebra A, θx = {(a, b) ∈ A×A | x∧a = x∧ b}
is a congruence on A.

Lemma 1.6: Let A be a C-algebra and x, y ∈ A. Then the following hold.

(1) (x ∧ y, y) ∈ θx (2) (y ∧ x, y) ∈ θx
(3) (x ∧ y, y ∧ x) ∈ θx. (4) θx ∩ θy ⊆ θx∨y ⊆ θx

(5) θx∧y = θy∧x (6) θx∧y = θx ∨ θy = θy ◦ θx ◦ θy = θx ◦ θy ◦ θx.

2 Factor Congruences

In this section section we shall discuss various properties of factor congruences on a C-algebra

and identify certain elements or set of elements of the C-algebra with the factor congruences.

First we recall the following.

Definition 2.1: A congruence θ on a C-algebra is called a factor congruence if there exist a

congruence φ on A such that θ ∩ φ = ∆A and θ ◦ φ = A×A; in this case φ is called a direct

complement of θ.

In [7], they specialized factor congruences on a C-algebra with T , where T is the identity for

the operation ∧ in A. We begin with the following which are taken from [7].

Theorem 2.2:[7] Let A be a C-algebra with T and define

B(A) = {a ∈ A | a∨ a′ = T}. Then B(A) is a Boolean algebra under the operations induced

by those on A, in which T and F are largest and least elements respectively.

Definition 2.3:[7] For any C-algebra A with T, B(A) is called the centre of A.

Theorem 2.4:[7] Let A be a C-algebra with T, and θ is a congruence on A. Then θ is a

factor congruence on A if and only if θ = θa for some a ∈ B(A).

Theorem 2.5:[7] Let A be a C-algebra with T . For any a, b ∈ B(A), the following hold.

(1) θa ∩ θb = θa∨b (2) θa ◦ θb = θa∧b = θa ∨ θb
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(3) θT = ∆A (4) θF = A× A.

A congruence θ on an (universal) algebra A is called balanced if

(θ∨φ)∩ (θ∨φ′) = θ for any direct factor congruences φ and any of its direct complements φ′

on A. In [7] it is proved that if A is a C-algebra with T then the set of all factor congruences

on A is a Boolean algebra and is isomorphic with Boolean algebra B(A). Further, θ◦φ = φ◦θ
for all factor congruences θ and φ on A also proved that every factor congruence on A is

balanced.

Next let us recall the following from [4].

Theorem 2.6:[4] Let A be a C-algebra and a ∈ A. Let

Aa = {x ∈ A | a∧ x = x} = {a∧ y | y ∈ A}. Then Aa is closed under the operations ∧ and

∨. Also, for any x ∈ Aa define xa = a ∧ x′. Then (Aa,∧,∨, a) is a C-algebra with T (here,

a itself is the identity for ∧ in Aa; that is T in Aa).

Lemma 2.7: Let θ be a congruence on A. Then θ ∩ (Aa × Aa) is a congruence on Aa, for

each a ∈ A.

Proof: Fix a ∈ A. Since θ is an equivalence relation on A, θ ∩ (Aa × Aa)is an equivalence

relation on Aa. Let (x, y), (z, t) ∈ θ ∩ (Aa × Aa).

Since x, y, z, t ∈ Aa, x ∧ z, y ∧ t ∈ Aa and hence (x ∧ z, y ∧ t) ∈ θ ∩ (Aa × Aa)

Now(x, y) ∈ θ ⇒ (x′, y′) ∈ θ
⇒ (a ∧ x′, a ∧ y′) ∈ θ and (a ∧ x′, a ∧ y′) ∈ Aa × Aa

⇒ (a ∧ x′, a ∧ y′) ∈ θ ∩ (Aa × Aa)

⇒ (xa, ya) ∈ θ ∩ (Aa × Aa) (since xa = a ∧ x′ in Aa)

Therefore, θ∩ (Aa×Aa) is compatible with the binary operation ∧ and the unary operation
a on Aa. By the De Morgan laws and the property that (xa)a = x for all x ∈ Aa, it follows

that θ ∩ (Aa × Aa) is compatible with ∨ also. Thus θ ∩ (Aa × Aa) is a congruence on Aa.

Lemma 2.8: Let θ be a factor congruence on a C-algebra A. Then θ∩ (Aa×Aa) is a factor

congruences on Aa.

Proof: Since θ is a factor congruence on A, there is a congruence θ′ on A such that θ∩θ′ = ∆A

and θ ◦ θ′ = A× A(= θ′ ◦ θ).
Consider, [θ ∩ (Aa × Aa)] ∩ [θ′ ∩ (Aa × Aa)] = (θ ∩ θ′) ∩ (Aa × Aa)

= ∆ ∩ (Aa × Aa)

= ∆Aa , the diagonal on Aa.
Observe that every element in Aa is in the form a ∧ x for some x ∈ A
Now, let (a ∧ x, a ∧ y) ∈ Aa × Aa. Then (a ∧ x, a ∧ y) ∈ A × A = θ′ ◦ θ which implies that

there exists a z ∈ A such that (a ∧ x, z) ∈ θ and (z, a ∧ y) ∈ θ′.
Now, (a ∧ x, a ∧ z) ∈ θ and (a ∧ z, a ∧ y) ∈ θ′ and a ∧ z ∈ Aa. and hence (a ∧ x, a ∧ y) ∈

100



Boolean Centre of a C-algebra 101

[θ′ ∩ (Aa × Aa)] ◦ [θ ∩ (Aa × Aa)]. Therefore [θ ∩ (Aa × Aa)] ◦ [θ′ ∩ (Aa × Aa)] = Aa × Aa.

Thus θ ∩ (Aa ×Aa) is a factor congruence on Aa and θ′ ∩ (Aa ×Aa) is a direct complement

of θ ∩ (Aa × Aa).

Since Aa is a C-algebra with T every factor congruence is balanced [7]. Hence we have the

following.

Theorem 2.9: If θ is a factor congruence on A, then θ ∩ (Aa × Aa) is a balanced factor

congruence on Aa for each a ∈ A and there exists unique sa ∈ B(Aa) such that θ∩(Aa×Aa) =

θsa := {(x, y) ∈ Aa × Aa | sa ∧ x = sa ∧ y}.

Let us recall from [8] that the operation ∗ defined on a C-algebra A by

a ∗ b = (a ∧ b) ∨ (b ∧ a) is associative, commutative and idempotent on A thus (A, ∗) is a

semilattice. ≤∗ is an induced partial order of the semilattice (A, ∗) (that is x ≤∗ y if and

only if x ∗ y = x.

Lemma 2.10: Let a and b be elements in a C-algebra A such that a ≤∗ b. Then the

following hold.

(1) a ∧ b = a

(2) The map αa,b : Ab → Aa defined by αa,b(x) = a∧x for all x ∈ Ab, is a homomorphism

of C-algebras.

(3) αa,b(B(Ab)) ⊆ B(Aa)

(4) If a ≤∗ b ≤∗ c then αa,b ◦ αb,c = αa,c

(5) αa,a is the identity map on Aa.

Proof: We have a ≤∗ b; that is, a = a ∗ b = (a ∧ b) ∨ (b ∧ a). Now,

a ∧ b = (a ∗ b) ∧ b
= [(a ∧ b) ∨ (b ∧ a)] ∧ b
= (a ∧ b ∧ b) ∨ [(a ∧ b)′ ∧ (b ∧ a) ∧ b]
= (a ∧ b) ∨ [(a ∧ b)′ ∧ (b ∧ a)]

= (a ∧ b) ∨ (b ∧ a)

= a ∗ b = a.

(2) Let x, y ∈ Ab. Then

αa,b(x ∧ y) = a ∧ (x ∧ y) = (a ∧ x) ∧ (a ∧ y) = αa,b(x) ∧ αa,b(y).

and αa,b(x ∨ y) = a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y) = αa,b(x) ∨ αa,b(y).

Also, αa,b(x
b) = a ∧ xb

= a ∧ b ∧ x′

= a ∧ x′ (by (1), a ∧ b = a)

= a ∧ (a′ ∨ x′) (by lemma 1.4(7))

= a ∧ (a ∧ x)′

= (a ∧ x)a

= (αa,b(x))a
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Therefore αa,b is a homomorphism of C-algebras.

(3) Let x ∈ B(Ab). Then x ∨ xb = b and therefore b = x ∨ (b ∧ x′)
Now, b = b ∧ b = b ∧ (x ∨ (b ∨ x′)) = (b ∧ x) ∨ (b ∧ x′) = b ∧ (x ∨ x′) → (1).

Now,αa,b(x) ∨ (αa,b(x))a = (a ∧ x) ∨ (a ∧ x)a

= (a ∧ x) ∨ (a ∧ x′)
= a ∧ (x ∨ x′)
= (a ∧ b) ∧ (x ∨ x′)
= a ∧ [b ∧ (x ∨ x′)]
= a ∧ b (since by (1))

= a, which is the T in Aa.

Therefore αa,b(x) ∈ B(Aa). Thus αa,b(B(Ab)) ⊆ B(Aa).

(4) [αa,b ◦ αb,c](x) = αa,b(αb,c(x)) = αa,b(b ∧ x)) = a ∧ b ∧ x = a ∧ x = αa,c(x).

Therefore a ≤∗ b ≤∗ c⇒ αa,b ◦ αb,c = αa,c.

(5) αa,a(x) = a ∧ x = x for all x ∈ Aa.

Theorem 2.11: Let θ be a factor congruence on a C-algebra A and a, b ∈ A such that

a ≤∗ b. Let θ ∩ (Aa ×Aa) = θsa , sa ∈ B(Aa) and θ ∩ (Ab ×Ab) = θsb , sb ∈ B(Ab). Then the

homomorphism αa,b : Ab → Aa carries sb to sa; that is, a ∧ sb = sa.

Proof: Since αa,b(B(Ab)) ⊆ B(Aa), it follows that a ∧ sb ∈ B(Aa). By the uniqueness of sa

(theorem 2.9), it is enough if we prove the equality θa∧sb = θsa on Aa. First, we have that

(b, sb) ∈ θsb (since b is the identity for ∧ on Ab) and hence (b, sb) ∈ θsb = θ ∩ (Ab ×Ab) ⊆ θ

and therefore (b, sb) ∈ θ. This implies that (b ∧ x, sb ∧ x) ∈ θ for all x ∈ A. Now, for any

x ∈ Aa, we have (x, a ∧ sb ∧ x) = (a ∧ b ∧ x, a ∧ sb ∧ x) ∈ θ. → (1)

Therefore, if (x, y) ∈ θa∧sb , then a∧ sb ∧x = a∧ sb ∧ y and hence (x, y) ∈ θ (from (1)). Thus

θa∧sb ⊆ θ ∩ (Aa × Aa) = θsa . On the other hand,

(x, y) ∈ θsa ⇒ (x, y) ∈ θ ∩ (Aa × Aa)

⇒ (b ∧ x, b ∧ y) ∈ θ ∩ (Ab × Ab) = θsb
⇒ sb ∧ b ∧ x = sb ∧ b ∧ y
⇒ sb ∧ x = sb ∧ y
⇒ a ∧ sb ∧ x = a ∧ sb ∧ y
⇒ (x, y) ∈ θa∧sb

Therefore θsa ⊆ θa∧sb . Thus θsa = θa∧sb and hence sa = a ∧ sb that is, sa = αa,b(sb).

For each element a in a C-algebra, we know that Aa is a C-algebra with T and B(Aa) is a

Boolean algebra under the operations induced by those in Aa, where B(Aa) = {x ∈ Aa |
x ∨ xa = a}. Therefore the direct product

∏
a∈A

B(Aa) is also a Boolean algebra under the

pointwise operations. In the following, we identify a subalgebra of this product.

Theorem 2.12: Let A be a C-algebra and

B = {s ∈
∏
a∈A

B(Aa) | αa,b(sb) = sa, whenever a ≤∗ b}. Then B is a Boolean algebra under
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the pointwise operations.

Proof: We have to simply prove that B is a subalgebra of the product
∏
a∈A

B(Aa) of Boolean

algebras. Recall that a is the largest element (identity for ∧) in B(Aa) and hence the identity

map i, defined by ia = a for any a ∈ A, is the largest element in the product
∏
a∈A

B(Aa).

Also, i ∈ B; for, if a ≤∗ b in A, then a ∧ b = a and hence αa,b(ib) = αa,b(b) = a ∧ b = a.

Further the complement aa of a in Aa is aa = a∧ a′. Therefore a∧ a′ is the smallest element

in B(Aa). If 0 ∈
∏
a∈A

B(Aa) is defined by 0a = a ∧ a′, for all a ∈ A, then 0 is the smallest

element in
∏
a∈A

B(Aa). Also, whenever a ≤∗ b, αa,b(0b) = αa,b(b∧ b′) = a∧ b∧ b′ = a∧ b∧ a′(

by lemma 1.4(8))= a ∧ a′ = 0a.

Therefore 0 ∈ B. Now, since αa,b : Ab → Aa is a homomorphism of

C-algebras, its restriction to B(Ab) is a homomorphism of (Boolean algebras) B(Ab) into

B(Aa). From this it follows that B is a subalgebra of
∏
a∈A

B(Aa). Thus B is a Boolean

algebra under the pointwise operations.

It is known from [6], that B(A) is a Boolean algebra under the usual operations on the

lattice Con(A) of congruences on A. Infact, B(A) is a bounded distributive and permutable

sublattice of Con(A) and is closed under complements. Now we prove the following.

Theorem 2.13: Let A be a C-algebra and B(A) be the Boolean algebra of all balanced

factor congruences which admit balanced direct complements. Let B be the Boolean algebra

described in theorem 2.12. Then B(A) can be embedded in the Boolean algebra B.

Proof: Let θ be a factor congruence on A. Then, by theorem 2.9, for each a ∈ A, there

exists unique sa ∈ B(Aa) such that

θ ∩ (Aa × Aa) = θsa = {(x, y) ∈ Aa × Aa | sa ∧ x = sa ∧ y}. Now, define f : B(A) → B by

f(θ) = s′, where s ∈
∏
a∈A

B(Aa) is given by the relation θ ∩ (Aa × Aa) = θsa for each a ∈ A.

We shall verify that f is an embedding of Boolean algebras. Recall that a ∧ a′ and a are

respectively the least and greatest elements in B(Aa), for each a ∈ A. Also, ∆A and A× A
are respectively the least and greatest elements in B(A).

Further, for any a ∈ A, θa∧a′ = Aa × Aa (since a ∧ a′ ∧ x = a ∧ a′, for all x ∈ Aa) and

θa = ∆Aa (since a∧ x = x, for all x ∈ Aa). All these imply that the least (greatest) element

of B(A) carried to that of B. Next, let θ, φ ∈ B(Aa) and f(θ) = s′ and f(φ) = t′. Then

θ ∩ (Aa × Aa) = θsa and θ ∩ (Aa × Aa) = θta .

Now, (θ ∩ φ) ∩ (Aa × Aa) = θsa ∩ θta = θsa∨ta = θ(saa∧taa)a = θ(s′∧t′)aa and hence f(θ ∩ φ) =

s′ ∧ t′ = f(θ) ∩ f(φ). Similarly, we can prove that f(θ ∨ φ) = f(θ) ∨ f(φ). Thus, f is

a homomorphism of Boolean algebras. Further, let θ, φ ∈ B(A) be as above such that

f(θ) = f(φ). Then s′ = t′ and hence s = t so that sa = ta and θ∩ (Aa×Aa) = φ∩ (Aa×Aa)

for all a ∈ A. Now, we shall prove that θ = φ. Let (x, y) ∈ θ. Then, for any a ∈ A
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(a∧x, a∧ y) ∈ θ∩ (Aa×Aa) = φ∩ (Aa×Aa) ⊆ φ. Therefore (a∧x, a∧ y) ∈ φ for all a ∈ A.

In particular, (x, x ∧ y) and (y, y ∧ x) ∈ φ → (1) and hence (x ∨ y, (x ∧ y) ∨ (y ∧ x)) ∈ φ.

By symmetry, (y ∨ x, (y ∧ x) ∨ (x ∧ y)) ∈ φ. Since (x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y), it

follows that (x∨y, y∨x) ∈ φ. → (2) Also, since (x′, y′) ∈ θ, we get that ((x∧y)′, (y∧x)′) =

(y′∨x′, x′∨y′) ∈ φ (by (2)) and hence (x∧y, y∧x) ∈ φ. This and (1) gives that (x, y) ∈ φ.

Thus θ ⊆ φ. Similarly φ ⊆ θ. Thus θ = φ. Therefore f is an injection too and hence f is an

embedding of B(A) into B. Thus B(A) is embedded in B.

Corollary 2.14: Let A be a C-algebra with T . Then B(A), B and B(A) are all isomorphic

to each other.

Proof: In [7] it is proved that B(A) and B(A) are isomorphic to each other. We shall prove

that the embedding f : B(A)→ B, given in the proof of the above theorem, is a surjection

too. Let s ∈ B. Then s′ ∈ B and s′a ∈ B(Aa) for all a ∈ A and a∧ s′b = s′a whenever a ≤∗ b.
In particular, since a ≤∗ T , we have a ∧ s′T = s′a for any a ∈ A. Now, s′T ∈ B(AT ) = B(A)

(since AT = A) and the congruence defined by θ = θs′T is a factor congruence on A and

f(θ) = s; for, if f(θ) = t ∈ B, then θt′a = θ ∩ (Aa × Aa) = θs′T ∩ (Aa × Aa) = θa∧s′T = θs′a
and hence t′a = s′a for all a ∈ A, so that t = s.Thus f(θ) = s.Therefore f is an isomorphism

of B(A) onto B.
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