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On the invertibility of one integral operator

G. A. Kirakosyan

Abstract. The present paper considers an integral operator
defined on the entire real axis, which differs from the Hilbert
transform with terms where kernels are constructed using inte-
gral exponential functions. The considered operator has similar
properties with respect to the Hilbert transform. The form of
the inverse operator is obtained.
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Introduction

Suppose w : R→ [0;∞) is a weight function from class Ap(R), 1 < p <∞,
i.e., a function satisfying the following condition:

sup


 1

|I|

∫
I

w p(x) dx

1/p

·

 1

|I|

∫
I

w−q(x) dx

1/q
 <∞

where I ranges over all bounded intervals of real axis R, |I| is the length of
interval I, and 1/ p + 1/ q = 1.

By Lp(R, w), 1 < p < ∞, we denote Lebesgue space with the following
norm:

‖f‖p.w :=

∫
R

|f(x)|pw p(x) dx

1/p

.

Suppose S : Lp(R, w) → Lp(R, w) is a Hilbert transform, that is, a
singular integral operator with the Cauchy kernel on the axis:

(Sy)(x) = lim
r→0

1

πi

∫
|s−x|>r

1

s− x
y(s) ds, x ∈ R.
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It is well-known [1, 2] that operator S is bounded in Lp(R, w) if and only if
w ∈ Ap(R).

Let m and µ are arbitrary positive numbers, ξ = 1/2µ ln(m
2
/2µ), d ∈ C.

We define function ϕ by the following expression:

ϕ(x) :=
meµξ

2 ch(µ (x− ξ))
=

2µmeµx

m2 + 2µ e2µx
. (1)

The main goal of the present work is to inverse the integral operator
Td : Lp(R, w)→ Lp(R, w), 1 < p <∞, which acts as follows:

(Tdy)(x) := (Sy)(x)−

− 1

πi

∞∫
−∞

(Ei(µ(s− x))− Ei(µ(x− s))) ϕ(x)ϕ(s) y(s) ds+ (2)

+dϕ(x)

∞∫
−∞

ϕ(s) y(s) ds,

where

Ei(x) =

x∫
−∞

et

t
dt

is the exponential integral function. Note that for x > 0, we have Cauchy
principal value integral. In (2), the integral in the second term is defined as

∞∫
−∞

Ei(±µ(x− s))ϕ(s) y(s) ds = lim
N→∞

N∫
−N

Ei(±µ(x− s))ϕ(s) y(s) ds

in the meaning of convergence in Lp(R, w).

The technique of the inversion of operator Td is based on the theory
of L-convolution operators which was developed in [3]–[9]. In particular, in
Theorem 1 below, it is proved that operator Td is realized as an L-convolution
operator with symbol equal to v(x) = −sgn (x), and for a specific L it
corresponds to some reflectionless potential of the Sturm-Liouville equation
(see [10]-[15]). From this fact it follows that operator T+

d : Lp(R+, w
′) →

Lp(R+, w
′) (R+ = {x > 0 : x ∈ R}, w′ = w|R+

) defined by the formula:
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(T+
d y)(x) :=

1

πi

∞∫
0

1

s− x
y(s) ds−

− 1

πi

∞∫
0

(Ei(µ(s− x))− Ei(µ(x− s))) ϕ(x)ϕ(s) y(s) ds+

+dϕ(x)

∞∫
0

ϕ(s) y(s) ds,

is the L-Wiener-Hopf operator. The Fredholm theory of a class of operators
involving operator T+

d is constructed in [8].
Wiener-Hopf integral equations with kernels containing the integral ex-

ponential function Ei(±µ(s − x)) are often found in applications (see, for
example, [16]–[18]). These equations are known in literature as Khvolson-
Milne equations. They are usually found in study of physical processes in
isotropic environments (see [19]).

1 L-convolution operator

Let L be a selfadjoint operator generated by the following differential ex-
pression:

(`y)(x) = −y′′ − 2µ2

ch2(µ(x− ξ))
y(x) .

Operator L has only one eigenvalue λ = (iµ)2. This eigenvalue is simple.
Function ϕ defined by (1) is a normal eigenfunction corresponding to this
eigenvalue (see [8]).

Let us define functions:

u−(x, λ) = eiλx
λ+ iµ

λ− iµ

(
1− me−µx

µ− iλ
ϕ(x)

)
,

u+(x, λ) = e−iλx
λ+ iµ

λ− iµ

(
1− 2µ

m

eµx

µ− iλ
ϕ(x)

)
,

x, λ ∈ R. It is obvious that potential v(x) = −2µ2
/ch2(µ(x− ξ)) satisfies

the following condition:

∞∫
−∞

(1 + |x|) v(x) dx <∞

and is a reflectionless potential (see [10]–[15]).
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Functions u∓(x, λ) generate integrals

(U∓y) (λ) =

∞∫
−∞

u∓(x, λ) y(x) dx, λ ∈ R.

For a ∈ L∞(R), by m(a) we denote the operator of multiplication by a
function a (m(a)y := ay) acting in functional spaces, and by J : L2(R, w)→
L2(R, w) we denote the operator acting by the formula (Jy)(x) = y(−x).
Under the spectral transform of an operator L, we consider the following
operator:

U := m(χ+)U− +m(χ−)JU+ : L2(R, w)→ L2(R, w)

where χ+ (χ−) is the characteristic function of R+ (R−).
It is well-known (see [6, 3, 8]) that this operator is bounded and satisfies

the equalities
U∗U = I − P, UU∗ = I, (3)

where I is the identity operator and P is the orthogonal projector in L2(R)
onto the span{ϕ}

(Py)(x) = ϕ(x)

∞∫
−∞

ϕ(τ) y(τ) dτ. (4)

Operator defined by (4) is bounded in space Lp(R, w). Indeed, from Hölder
inequality, we obtain∣∣∣∣∣∣

∞∫
−∞

ϕ(τ) y(τ) dτ

∣∣∣∣∣∣ ≤ ‖ϕ‖q,w−1 ‖y‖p,w .

From here it follows that

‖Py‖p,w ≤ ‖ϕ‖p,w ‖ϕ‖q,w−1 ‖y‖p,w .

Since Lp(R, w) ∩ L2(R) is a dense subset of Lp(R, w), we obtain P 2 = P in
Lp(R, w).

We call function a ∈ Lp(R) a U -multiplicator and write a ∈ Mp,w,L if
the map f 7→ U∗m(a)Uf acts from L2(R) ∩ Lp(R, w) to L2(R) ∩ Lp(R, w)
and there exists a constant c > 0 such that for all f ∈ L2(R)∩Lp(R, w), we
have

‖U∗m(a)Uf‖p,w ≤ c ‖f‖p,w .

It means that we can expand U∗m(a)U by continuity to the whole Lp(R, w).
We denote this operator by W ◦

L(a) and call it an L-convolution operator
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on Lp(R, w) with symbol a (see [8]). If, in this definition, U is replaced by
Fourier transform F :

(Fy)(λ) =
1√
2π

∞∫
−∞

eiλxy(x) dx,

then we obtain multiplicators class Mp,w and a classic convolution operator
W ◦(a) (see [2]).

Lemma 1 Let w ∈ Ap(R). Then function a(x) = −sgn (x) belongs to
Mp,w,L.

Proof. It is well-known (see Theorem 17.1 in [2]) that a piecewise-continuos
function with bounded variation belongs toMp,w. According to Theorem 5.1
in [8], we obtain Mp,w ⊂Mp,w,L. �

2 Inversion formula

Theorem 1 In case d 6= 0, operator Td is bounded and invertible in Lp(R, w),
1 < p <∞. Moreover T−1d = Td−1. In case d = 0, operator T0 is generalized
invertible, i.e., T0T0T0 = T0. Equation

T0 = f, f ∈ Lp(R, w)

has a solution if and only if

∞∫
−∞

f(x)ϕ(x) dx = 0.

If this condition is satisfied, the general solution has the form:

y = T0f + αϕ,

where α is an arbitrary complex number.

Proof. Let us show that

Td = W ◦
L(−sgn). (5)

Note that by Lemma 1, operator W ◦
L(−sgn) is bounded in Lp(R, w). It is

known (see Theorem 3.1 in [5]) that in L2(R), it holds

W ◦
L(−sgn) = S −m (ϕψ)SV+ −m (ϕψ−1)SV−, (6)
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where operators V+ and V− are defined as folllows:

(V+y)(x) = ψ−1(x)

+∞∫
x

ϕ(τ) y(τ) dτ,

(V−y)(x) = ψ(x)

x∫
−∞

ϕ(τ) y(τ) dτ,

and ψ(x) = me−µx, x ∈ R.
Let us define functions

f±(λ) =
1

µ± iλ
, λ ∈ R.

These functions belong toMp,w (see Proposition 5.1 in [8]), hence, operators
W ◦(f±) are bounded in Lp(R, w), 1 < p <∞. On the other hand, it is not
difficult to obtain from function convolution properties that the following
equations:

W ◦(f+)m (ϕψ−1) = V+ ,

W ◦(f−)m (ϕψ−1) = V−

are true in L2(R). From the above equations, it follows that these operators
permit extention by continuity to the whole Lp(R, w).

Assuming the possibility of integrals order change, we obtain

(m (ϕψ)SV+y)(x) = ϕ(x)e−µx
1

πi

∞∫
−∞

1

τ − x
eµτ

+∞∫
τ

ϕ(s) y(s) ds dτ =

= ϕ(x)e−µx
1

πi

∞∫
−∞

eµx
s∫

−∞

eµ(τ−x)

µ(τ − x)
µ dτ ϕ(s) y(s) ds =

= ϕ(x)
1

πi

∞∫
−∞

µ(s−x)∫
−∞

et

t
dt ϕ(s)y(s) ds = ϕ(x)

1

πi

∞∫
−∞

Ei(µ(s− x))ϕ(s)y(s) ds.

Analogously,

(m (ϕψ−1)SV−y)(x) = −ϕ(x)
1

πi

∞∫
−∞

Ei(µ(x− s))ϕ(s) y(s) ds.

Hence, we conclude that equality (5) is true for the functions which have
compact support, on the other hand, we have obtained that W ◦(f±) allows
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extention by continuity on the whole Lp(R, w). Therefore, we can do this
with Td, and equation (5) becomes obvious.

It remains verify that we can change the integrals order.
Let us define

I =

∞∫
−∞

1

τ − x
eµ(τ−x)

+∞∫
τ

ϕ(s) y(s) ds dτ

I ′ =

∞∫
−∞

Ei(µ(s− x))ϕ(s) y(s) ds

and prove that I = I ′. For this purpose, we use the approach suggested in
§ 7.1 in [20]. First we assume that supp y ⊂ [−N,N ] for some sufficiently
large N . Then we can write

I =

∫
R\(x−δ,x+δ)

1

τ − x
eµ(τ−x)

+∞∫
τ

ϕ(s) y(s) ds dτ+

+

x+δ∫
x−δ

eµ(τ−x)

τ − x

+∞∫
τ

ϕ(s) y(s) ds dτ = I0 + Iδ;

I ′ =

∞∫
−∞

ϕ(s) y(s)

∫
(−∞,s)\(x−δ,x+δ)

eµ(τ−x)

τ − x
dτ ds+

+

∞∫
−∞

ϕ(s) y(s)

x+δ∫
x−δ

eµ(τ−x)

τ − x
dτ ds = I ′0 + I ′δ,

because in I0 and I ′0 we have ordinary integrals so by Fubbini’s theorem they
equal to each other. Hence,

|I − I ′| = |Iδ − I ′δ| ≤ |Iδ|+ |I ′δ|.

Let Γ(τ, x) satisfy Hölder condition due to both variables. Then

x+δ∫
x−δ

Γ(τ, x)

τ − x
dτ → 0, when δ → 0.

From here it follows that both Iδ and I ′δ converge to zero, i.e., I = I ′.
Further, we have:

Td = T0 + P = W ◦(f±) + dP = U∗m(−sgn)U + dP 2 =

=
(
U∗ P

)( m(−sgn) 0
0 m(d)

)(
U
P

)
.
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Similarly,

T−1d =
(
U∗ P

)( m(−sgn) 0
0 m(d−1)

)(
U
P

)
.

Using (3), we conclude that:

Td Td−1 = Td−1 Td = I and T0 T0 T0 = T0.

Besides, T 2
0 = U∗U = I − P .

Due to the properties of generalized inversion equation, T0y = f has a
solution if and only if T 2

0 y = (I − P ) y = y, i.e., P y = 0.

If this condition is satisfied the general solution is given by

y = T0 f + u− T 2
0 u = T0 f + P u,

where u is an arbitrary element of Lp(R, w). �

Remark 1 One can consider the case m = 0. Then Td = S, and its inverse
is also equals to S.

Remark 2 Operator T1, like operator S, is involutive, i.e., T 2
1 = I.
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