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Abstract

In this paper it is proved that all distributional solutions of the non-degenerate, al-
most hypoelliptic (hypoelliptic by the one of variables) equation P(D)u = P(Dy, Ds)u =
0 are infinitely differentiable in the certain strip in £? under a priori assumption that
they and its certain derivatives are square integrable with a certain exponential weight.
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1 Definitions and preliminary facts

After in 1950’s L.Hormander introduced the concept of a hypoelliptic differential equa-
tion P(D)u = f, all distributional solutions « of which with an infinitely differentiable
right hand side f are infinitely differentiable (see. [1] - [2]), a problem arose of find-
ing additional assumptions on solutions u of more general, non hypoelliptic equations
ensuring that these solutions are infinitely differentiable.

This problem is closely related to the problem of finding suitable weight functions
and corresponding weighted Sobolev -type function spaces, where one can study non-
hypoelliptic differential equations. As for that kind of equations, note that such simple
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On interior regularity of solutions of a class of almost-hypoelliptic equations
33%45;3 + g%g =0or g%f‘ — % + gizg = 0 are not hypoelliptic, despite
the fact that corresponding characteristic polynomials (general symbols) P, (D) = D? +
D3D? + D3 and P»(D) = —(D? — DiD3 + D3) of these equations are nondegenerate
(regular) (for the corresponding definition see below).

On the way of the quest for new classes of equations which have more or less large

i _%%u
equations as —55 +

set of infinitely differentiable solutions arose notions of partially hypoelliptic, almost
- hypoelliptic, global hypoelliptic, hypoelliptic in respect to a group of variables and
other classes of differential operators. Several monographs have already been devoted
to this topic (see for example [2] - [4] and [15] - [16]). It was proved interior estimates
for the solutions of some classes of elliptic, hypoelliptic and other equations as well as
estimates near the boundary.

In [5] Ya.S.Bugrov constructed an example of a non-hypoelliptic equation, all solu-
tions of which are infinitely differentiable provided they are square integrable in the
half-space together with some of their derivatives.

In [6] and [17] V.I.Burenkov considered the equation P(D)u = f in the cylinder Q2 =
Q,, x E"™ with 0 < m < n where (2, is an open set in F,, (if m = 0 then Q = E") and
f and all its derivatives are m— locally square integrable on (2, i.e. square integrable on
Qm x E" ™ for all compacts Q,, C 2, (if m = 0 square integrable on £" ). Necessary
and sufficient conditions on P were found ensuring that all solutions « of this equation
with any such f which are m—locally square integrable on 2 together with some of their
derivatives, are of the same class as f (in particular are infinitely differentiable). The
class of such operators is essentially wider than the class of hypoelliptic operators.

General objective laws which may be observed in the algebraic conditions of smooth-
ness of the solutions of differential equations induce us to introduce in [7] - [8] the con-
cept of a hypoelliptic number. It turned out that this numerical characteristic divides
the set of differential operators into different classes. In this classification the hypoel-
liptic operators and the hyperbolic (by Petrovski or by Gording (see [9])) operators take
up the extreme positions.

In the present article we study the interior regularity of the solutions of a class of
equations with the given number of hypoellipticity.

We begin with some notations and definitions: N-is the set of natural numbers, Ny =
N U {0}, N} = Ny x Ny-is the set of 2-dimensional multi - indexes, E? and R? are 2-
dimensional Euclidean spaces. For ¢ € R?, z € E? and a € NZ we put [¢| = /€ + &2,
|| = a1 + an, £ = &M - &2, D* = DY - D3?, where D; = 0/9¢; or D; = 1 - 0/0x;
(i2=-1,7=1,2)

For a linear differential operator with constant coefficients P(D) = > v, - D let

P(§) = > 7. - £~ be its characteristic polynomial (complete symbol), where the sum

extends over a finite collection of multiindexes (P) = {a € N§, 7, # 0}.
The least convex polygon containing the set (P) U {0} is called Newton or character-
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34 H. G. Ghazaryan and V. N. Margaryan

istic polygon of an operator P(D) ( polynomial P(¢), set of multiindexes (P) U {0}) (see
[10]) and is denote by R(P).

A polygon R with vertices from N¢ is called complete, (see [10]), if ® has a vertex in
the origin and other vertices on each coordinate axis of NZ. A complete polygon R is
called regular (totally regular), if the external normals of incoordinate sides of R all have
non-negative (positive) coordinates (see [11] - [12]).

An operator P(D) (a polynomial P(¢)) is called hypoelliptic (see [2]), if all solutions
u e D' (D' = D'(E") is the set of distributions) of the equation P(D)u = f are infinitely
differentiable, where f is infinitely differentiable, what is the same, all solutions u € D’
of the equation P(D)u = 0 are infinitely differentiable.

L.Hormander proved (see [2], theorem 11.1.1 and theorem 11.1.3),that an operator
P(D) is hypoelliptic if and only if the following equivalent conditions are satisfied:

1) For every open set 2 C E"andu € D'(Q) SingSupp u = SingSupp P(D)u

2)IfQ c E",uec D'(Q) and P(D)u = 0, then u € C>(Q)

3) P(€)/P(€) = D*P(€)/P(€) = 0 as || — 00,0 £ v € Nf

4) If dp(¢) - is the distance from ¢ € R" to D(P) = {¢;( € C",P({) = 0}, then
dp(€) — oo when | £| — oc.

Definition 1.1 (see [10]) An operator P(D) (a polynomial P()) is called non-degenerate
(regular) if there exists a constant C' > 0 such that

e <CIPEI+1] VEe R (1.1)

aER(P)

Definition 1.2 ([12] ) A polynomial P(§)) is called almost - hypoelliptic if there exist
positive constants C and c such that

SPE) =) PP < C - P(E)] VEE R ¢ > e

In the work [13] for the polynomials increasing at infinity and in [14] in the general
case it was shown that the polynomial P(¢) is almost hypoelliptic if and only if there
exists a number ¢ > 0 such that Ns(P) C Hg°, where

Ns(P) = {u € D' u(z) - e 1l € Ly(E?), P(D)u =0,z € E?},

HZ ={ue D D%z) e’ e Ly(E?) Vae N2}

If this condition for the characteristic polynomial P({) of operator P(D) is hold,
then the operator P(D) we call almost - hypoelliptic.

It was proved in [12], that the Newton polygon of almost hypoelliptic polynomial is
regular.
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On interior regularity of solutions of a class of almost-hypoelliptic equations 35

Applying embedding theorems for weighted Sobolev spaces ([15]) we conclude that
from the condition Ns(P) C Hy® it follows that Ns(P) C C>(E?)-

Definition 1.3 (see [7]) letk = 1,0ork =2, and my, = ordP,. Apolynomial P(§) =
P(&1,&) s called hypoelliptic by variable &, if

DIP(&)/P(€) =0 as |¢] =00 (j=1,2,---)-

It was proved in [7] (see [7], theorem 0.1) that for the polynomials P(¢) increasing at
infinity this condition is equivalent to condition

DyP(€)/P(§) = 0 as [¢] — oo

We assume once and for all in this paper that k=1 andfor j € N by PU9(D)
we denote the differential operator,which is defined by replacing §, by Dy, = —i.0/0x) k =
1,2 inthe polynomial D!P(¢) = PU 9 (¢).

For T > 0 we denote by Qr = {z € E? |z;| < T,z, € E'} and put

N(P,Qr) = {u e D'(Qr), P(D)u=0,P%(D)u € Ly(Qr), j =0,1,--- ,my }-

Itis proved in [8] that the polynomial P(¢) is hypoelliptic by ¢; if and only if N(P, Q) C
H*>(Q7). In this case the operator P(D) we call hypoelliptic by variable z;.

Through the whole work we also assume that the even natural numbers m,, m, and
my are fixed such that a = (my — m3)/m; > 1, and we shall study non-degenerate (regu-
lar) operator P(D) = P(D,, D) with constant coefficients and with Newton polygon

R =RN(my,my,a) ={a € N, ag <my, a-ay+ag < my} (1.2)

It is obvious that R is a regular polygon with the vertices (0,0), (m1,0), (my,m2) =
(mq1,mg — a-my) and (0, my) and operator P(D) is almost hypoelliptic and hypoelliptic
by variable ;. In this connection, we note that since

DgnZP(S7 0)/‘P(87 0) = m2! : ’7(m17m2)/’y(m170) (S = ]-7 27 e )7

then the polynomial P(¢) is not hypoelliptic by &, while the following inequalities holds
Lemma 1.1 Let P(§) be regular polynomial with the Newton polygon R = R(mq, ms, a)
and a > 1. There exists a number C; > 0 such that

STAH[EMHIPEOEG <D (A + &l + &)%) - [PY O] <
j=0

=0

<Ci-[1+]PE)]], Ve R (1.3)
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36 H. G. Ghazaryan and V. N. Margaryan

Proof. The first part of these inequalities is trivial. In order to prove the second part,
it is sufficient to show that following monomials

gloq—j . §2a2+j~a (] =0,1,--- ’al) VYa € R

are estimated by the right - hand side of (1.3).

V. P. Mikhajlov [10] proved that for polynomial P(¢) satisfying inequality (1.1) and for
any pointo € E2 NR ={x € E*,z; > 0 (j = 1,2)} N R there exists a constant C(c) > 0
such that

€71 < Clo) - [1+|P(E)]] V¢ € R*

On the other hand since a-0% (o) +0b7 () = a-[or — (j—k)]+[aa+(j—Fk)] = a-a14as
for any multi - index o € ® and for each admittable pair (k, j) then o*i(a) € E2 NR-

Let Cy = maz{C(c*7(a)); a € R,k =0,1,---,j; j=0,1,--- ,my} It remained only
to denote by C; = M - Cy, where M is the number of points ¢*7(a); a € R, 0 < k <
J, 0< g <my-

Lemma 1.1 is proved.

The following inequalities will be needed in Section 2 but besides seems to be of
independent interest.

Lemma 1.2 Let a;, by, > 0 (k=0,1,--- ,m) d and t are positive numbers and

Ci1 =2 -max{[t(2d+ 1)]", [t(2d+1)]"}; Co=2(d+1)™-

DIf
k—1
a=bo; ar <bp+d- > t"7-a; (k=1,2,--,m), (1.4)
j=0
then
k=0 k=0
2)If
U = b ax <bp+d- > a; (k=0,1,--- m—1), (1.4)
j=k+1
then

k=0 k=0
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On interior regularity of solutions of a class of almost-hypoelliptic equations 37

Proof If t = 0 inequality (1.5) is obvious. Let¢ > 0and 6 = 1/¢(2d + 1)- Multiplying
inequality (1.4;) by 6% (k=1,---,m) and summarizingby k=0,1,---,m we get

k—1

k=1 7=0

Changing the order of sums in the second item of right hand side in (1.6) we obtain

m

Z ak<29k by +d - Zaj RN A R
-1 k=j+1
Since
m—j 1
d- ;19 t)Ei = 4. ; 2d+ <3
then

Z ak<29k bk+— Zek ak—i—— ao-

k=1

This implies

a+ Y 0" ap <2- (O 0Fbp+bo) =2 0 bray,
k=1 k=1 k=0

then

k=1

k=0
If 6 = 1 then (1.7) leads (1.5) with C; = 2. If 6 € (0, 1) then

Gmiak<i9kak§2i0kbk<2ibk,
k=0 k=0 k=0 k=0

which leads (1.5) with C; = 2.6—™.
If6 > 1, then

zm:ak<§:9k'akSZ'iek'bk<2'0m'zm:bk,
k=0 k=0 k=0 k=0

which leads (1.5) with C; = 2.6™-

Thus, inequality (1.5) is proved.

To prove the inequality (1.5') we denote by § = (2d + 1)~!- Multiplying inequality
(1.4})by 0™ " (k=1,--- ,m) and summarizingby k=0,1,---,m —1 we get
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38 H. G. Ghazaryan and V. N. Margaryan

m—1 m—1 m—1 m
a0 <Y o 0" d > 0 Y ay (1.8)
k=0 k=0 k=0 j=k+1

Repeating the previous argument and using a,, = b,, leads to

m—1 m—1 m 7j—1
a0 <Y b 0" 4 d Y ey 0 =
k=0 k=0 j=1 k=0
m—1 m j—1
=3 b 0" d- ) a0 R <
k=0 j=1 k=0
m—1 1 m—1
< bk . Qmik + = ag om K + bm
k=0 2 k=1

As in the proof of (1.7) and using a,,, = b,, we get

m—1 m—1 m
1 1
a0'9m+§-g ak-Hm_k+§-am§ bk-ﬁm_k—l—bm: E bkﬂm_k-
k=1 k=0

Since § < 1 we have from here

%ZakS%Zakﬁ Z ka<2bk,

which proves the inequality (1.5)-
Lemma 1.2 is proved.

2 Investigation of some weighted function spaces

At first we introduce some function spaces needed below. In future it would be more
convenient to introduce the equivalent smooth weight function ¢ € C* instead of
weight function e~1*l.

Let g € C™ be fixed positive function of one variable ¢t € E', satisfying conditions:

1) there exists a constant x, > 1 such that

rgt e < g(t) < koe M te B,

2) for each j € N, there exists a number x; > 0 such that

gV ()] = D7g(t)] < ryg(t), t€E"

As a function g one can take a regularization of the function G(t) = e~ when |¢| > 1
and G(t) = e~* when |¢| < 1 by the non-negative function ¢ € C§° for which [ ¢(t)dt = 1
(see, for example [15]).
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On interior regularity of solutions of a class of almost-hypoelliptic equations
For 6 > 0 we put gs(t) = g(d t), then
kgl e M < gs(t) < ke M t e B, (2.1)

199 (0] = [D7gs(t)] < ;07 gs(t), t € B, j=1, my (2:2)

Now we present some facts needed below:
Lemma 2.1. Letb > 0,G C (—=b,b), 6 >0 and oy, = k2e°’, 0y = k1 dboy. Then the
inequalities hold

sup gs(t+71) < o1gs (t) Ve EY, (2.3)
T€G
sug\gg(t+7)—g(5(t)| < 0y gs5(t) Vte B (2.4)
TE
Proof. From the inequality |t + 7| > |t| — |7| and from (2.1) it follows that for any
te Bt
sup|gs(t + 7)| < Ko sup e Tl < gy e sup Al < Iig e gs(t),
T€G T€G T€G

which proves (2.3).

For the proof of (2.4) we assume that the numbers ¢,7and ¢ are fixed and denote
by f(z) the function f(z) = gs(t+=z27). Since f is differentiable the following is
obtained for a number 6 = 4(¢t,7) € (0,1)

l95(t+7) = gs() = [f(1) = FO)] = |F (O)] < |gs(t +07)[|7]
Since 6 7 € (—b,b), hence from this and (2.2) - (2.3) it follows that
195(t+7) — g5(t)] < K1bgs(t +07) < K1dborgs(t)-

Since the pair (z, y) is arbitrary it proves (2.4).

Lemma 2.1 is proved.

By now we are in a position to investigate some weighted Sobolev type spaces, where
we will consider our problems.

For § > 0 we will denote by L, s = L, s(E?) the set of functions {u} with finite norms

llz, , = | / ()| 2 31 g] 2 (2.5)
E2

For a domain 2 C FE?, a regular polygon &, a number § > 0 and function g let us
denote
HEQ) = {u; D € Ly 5 Yo € R}-

Firstly notice that from the relation (2.1) it follows that in L, s one can introduce the
following norm, which is equivalent to norm (2.5)
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40 H. G. Ghazaryan and V. N. Margaryan

lullz, 5 = Il gsl|L,: (2.5)

In addition to this we prove the following statement.
Lemma 2.2 In H}(Q) one can introduce the following equivalent norms

lall” = [ull g = 1(D*w) gs1| 220, (2.7)
3 ()
|a|eR
lull " = [lull zy = D 11D*(wgs)llae) (2.8)
) —
|a|eR

Proof. We need to show that there exist positive numbers ¢ and C such that for all
u € HXQ)

elfull” < Jlull” < O Jlull” (2.9)

The left - hand side of inequality (2.9 ) follows immediately from the Leibnitz’s for-
mula, regularity of ® and property (2.2) of the function g. To prove the right - hand side
of (2.9) it is enough for each o € R to find the number C,, > 0 such that

1(D%u) 95| < Callul] " (2.10)

Leta € Rand II(a) = {a* = (ay,k),k = 0,1,--- ,ay}. Since the polygon R is regular
then II(a) C R and Dy € Ly sforall k = 0,1,---, . In the other hand , since the
function ¢ only depend on variable z, hence D* (u gs) = D5(Du g5) and D*’ (u g5) =
(D" u) gs-

Therefore, by the Leibnitz formula we have forall £ = 0,1,--- | ay

o
—

D¥ugs = D" (ugs) — S O D)y glb=9.

<
Il
o

Let d, = max{C} k;; 0 < j <k — 1}. Applying the property (2.2) of function g we get

k—1

ok ok -7 od
1D u gs|| oy < 11D (wgs)l| Loy + di Y ¥ D w gs|| (o
=0

Denote by

ar, = ||[D* u gs||Ly), bk = |[D (wgs)||o) (K=0,1,---, az),

then ag = by and

k—1
ap <bp+dp Y ey (k=1 ).

J=0
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On interior regularity of solutions of a class of almost-hypoelliptic equations 41

Applying here Lemma 1.2 we get inequality (2.10). Lemma 2.2 is proved.

Lemma 2.3 Let P(D) = P(Di, Dy) be an almost - hypoelliptic differential operator
with constant coefficients and with (regular) Newton’s polygon ® = R(P), my = ord,, P,
T >0 andasabove Qr = {z € E? |z,| < T,x, € E'}. Then there exist positive numbers

Ay =A(P) and C=C(Ay,P)=C(P) suchthatforall ¢c (0,A,), v € C(-T1,T)
and u € HF(Qr)

ZH POIND)(urp(x1)) gs(x2) ||1aE2) <

< CLIPD)(uip(x1) 95(22) Loy + 1] wib g ||rae) 1, (2.11)

where as above we assume that the functions u.1) are continued outside of Q1 by zero.
Proof. Since the polygon R is regular then w1 € H}(E?) forany vy € C°(-T,T) and

u € HE(Qr). Applying the generalized Leibnitz formula (see [16], formula (1.1.10)) we

deduce that for all j = 0,1, ,my, ¢ € CX(=T,T) and u € HE(Qr) (below ||| =

[l zac2))
| POI(D) () gs || < || POI(D)(uidgs) |1+

mo—j

+ Z i I POTD D) ) g5 |

In view of property (1.2) of the function g we have from here

| POPD) () gs || < 1| PP (D) (e gs) ||+

+ Z G POID) ) g [l G =0, ma)

—a+1
Summarizing these inequalities by j and changing the order of sums the following
is obtained

ZIIP(OJ )(u) gaII<ZIIP°” D) (utpgs) |1+

7=0

+ZZ S0 POD(D) ) gs || =

7=0 r= ]+1

—ZHPOJ (utp gs) [+

41



42 H. G. Ghazaryan and V. N. Margaryan

mo r—1
Kr—j  opei .
T o I PO DI g =
r=1 j=

—ZHP(OJ (ut) gs) |1+

] :

mo —1
+>_ 1l PO7(D) Z =

r=1 =0
—ZIIP(OJ (ut gs) |1+

£SO PO D)) s HZ(—6
r=1

<Z|IP(°" (u v gs) ||+HZ|IP(OJ D) (up gs) |l,

7=0

where
= iy OF

=3
1) =

Choosing number §; > 0 such that 1 — x(d 1/2, we get from here for all § € (0, ;)

and v € H}Qr)

ZH POD(D)(ut) gy || < 2 ZH PO (D)(u gs) ||

Since operator P(D) is almost hypoelhptlc hence using the Fourier transform and
the Parseval’s equality we can rewrite this inequality as

ZII POI(D)(ut) gs)| <2ZII POIE)F(ut g5)(€) || <
< Cu{[[P(E) F(ut gs) (O + [ F(ut) gs)l] =
= C1[[|P(D)(ut gs)|| + |luv gsll] Vu € H (Qa),

where Cl Cl< )
By the Leibnitz’s formula we obtain

ZHP‘”) )(u ) gs)|| < Ci [||P(D)(u ) gs||+

42



On interior regularity of solutions of a class of almost-hypoelliptic equations

o= 1 . .
3 1 PODN ) )+ [fwy goll] V€ HE ().
j=17"

Applying once more property (2.2) of the function g we conclude that
Y1 POID) () gs)l| < Cr[IIP(D) () gs||+
=0

X K; 0 ,
> ]]—, | POD(D) () go)ll + Il gsll] Yu € H (Qr).
— !
Choosing the number A, € (0, J;) such that

ki A
maz{l — === 1< j <myp} >
Vi

DO | —

we get (2.11) forall 6 € (0,A;). Lemma 2.3 is proved.
In this lemma we assume the operator P(D) be almost hypoelliptic as well regular
Lemma 2.4 Let P(D) be regular almost hypoelliptic operator with Newton'’s polygon
R, m; = ord,, P (j = 1,2), T > 0 and the number A, = A,(P) is defined as in Lemma
1.3. Then, there exists a constant C ; 0 such that for all 6 € (0,A,) ¢ € C(—T,T) and
u € HE(Qr) we have

DD (ud).gsl o) < CLIPD) (we) gs lnaen) + 1wt gs llagem) )

acR
Proof. Since the polygon R is regular then by Lemma 2.2 there exists a constant
C, > Osuch thatforall 6 € (0,A,) (below || - || = || - || £,(E2))

DD wy) gsll < Co Y (1D (wipgs)|| Yu € HY(Qr)-

aER aeR

Since the operator P(D) is regular hence by Parseval’s formula we get the following
inequality with a constant Cy, = C5(P, g) > 0

DD (u) gsll < O Y NIEF(udh gs)| <

aeR aeR

< Co[[|P(&) F(up gs)l| + [|1F(u) gs)ll) =
= Co[||P(D)(utp gs)I + |(ut) g5)II] Vu € H (Qr)-

Applying Leibnitz’ formula, the estimate (2.4) and the Lemma 2.3 we have with a
positive constant C's

> I () gsll < Co [||P(D)(u) gsll+

aeR
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+Z PO () g1 + Ilud gl ) <

< Cs D _NIPOD (ue) gsl| + [fut) gsll) Yu € HY (Qr)-
j=1
Lemma 2.4 is proved.

Letas above 7' > 0,6 > 0, Qr = {z € E? |z1] < T} and Lo 5(Qr) = {u; u.gs(z2) €
Ly(Qr)}. Fore > 0,5, = {z € F? |z| < 1} andthefunctions u € Ly 5(Qr), ¢ € C5°(S1),
© >0, [¢dr=1and ¢ € CF(=T,T) weput p.(z) =2 @(2), u. =uth* ..

Without changing notations as above we may assume that the function w1 is con-
tinued in E£? such that u(z)v¢(z1) =0 when = ¢ Qr, thenitis clear that w1 € Ly 5(E?).

For any k € N, and regular polygon R we denote by &, the Newton polygon of set
{ae N}ya=B+v6,v€ N2,BeR, |yl <k} and put

HY>=(Qr) = () Hy**(Q).
k=0

Notice that : a) the set H)'> does not depend on ®, i.e. H> = H;Rw for any pair
regular polygons R and ®'. Therefore, hereinafter the set H)> we denote by H°, b)
L, s and H})' are Banach spaces and H§° is Frechet space for any § > 0, weight function
¢ and regular polygon .

Lemma 2.5 Let u € Ly 5(Qr), then

1) u. € H°(E?) foranye >0

2)[Jue —u||L, ;2) =0 as e — +o.

Proof. By Lemma 2.2 and the Leibnitz formula we obtain for any regular polygon #

e || ey = Y 11D [/(W)(Z) 9s(|w2 — zaf) ez — 2)dz] || Lym2) <

aeR

SR WAL I [ 1w @6 2 = D] (D) (o = Dl s

acR j=0

Applying properties (2.2 ) and (2.3 ) of function ¢ and the Young’s inequality we ob-
tain from this

| ue || HR(E?) <

< 3030y 61 0, (5) 0t ) (D) <

aeR j=0
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< Cy [luth gslra(m2y [[(D 2 D)1y < Co |[utd gs| Lo

where ', and (s are positive constants.

Since polygon $ is supposed to be an arbitrary regular polygon, it follows that u. €
Hg°(E?). The proof of the first part of lemma is complete.

The proof of the second part concludes from (2.4 ). We deduce that

[ue —ud||L, 52y = [|ue gs(x2) — uth(w1) gs(22)|| L (E2) <
< [[(urp gs)e — (Wt g5)l|a(m2) + [[(we g5)e — e gs| Lo (r2) =

= () g5)e — (ut) 98)l|agey + I / w(y) (1 — 1) gs(w2 — o) e () dy—

- /U(x —y) (v —y1) %(y)%(@)HLQ(m) = [[(uv g5)e — (U¢95)||L2(E2)+

+| / u(x —y) Y(r1 — y1) [95(v2 — y2) — gs(72)] ] ‘Ps(y)dyHLg(E?) <
< (utp gs)e — () g5)|| o)+

| / () dan — )| |g5(2 — 1) — gs(@2)] 02 ()l oy <

< [[(ut) gs)e = (wt g5)|| o) + oa(e) | / () gs) (& = y)| = (Y)dyl| Lo (2) =

= [[(ut gs)e = (w ) g5)l|Lo(m2) + 02() [[ [ut) gs| * el Lo m2)-

Applying here Young’s inequality the following is obtained

Jue —utp||r, ;) < [Sgg [ () gs)(- = y) — (w0 g5) () || o2y +

+0o2(e) [ uth gs || Loy ]| e ||y (2):

The second part of lemma follows since || ¢, ||.,(z2) = 1, u+ g5 € L for any u €
Ly 5(€r) and functions from L, are continuous in mean.

Lemma 2.5 is proved.

Let P(D) be nonnegative operator with the regular Newton polygon R = R(my, ms, a)
( see section 0° ), the domain Q; and the functions ¢, ) be the same as above and in
addition that ¢ (z1) = 1 when |z,| < $.(T + T;) for a number 7} € (0,T)- It is assumed
that the functions v, ).u and P(D)u are continued outside of 21 by zero and
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N(P,6,Q7) = {P(D)u =0, P“Y(D)u € Ly 5(r) (j=0,1,...,m)}.

For future reference we note the following useful properties of sets H)* and N (P, §, Q) :

Lemma 2.6

Du € HE(E?) if we€ HXQr)

2u. € HE(E?) if u€ H¥Qr)

3)uc € N(P,6,Qp,) if ue N(P,6,Qr) and €€ (0,5 (T —Ty)):

Proof The property 1) follows from the Leibnitz formula and the regularity of poly-
gon R.

Since D%u.(z) = [D“(u.v)) * . ](z) for x € E? ( see for example [15], 6.3. (2)) and
HE}(Qr) C Ly 5(Qr) then the property 2) immediately follows from Lemma 1.5 .

Since (x; —y;) = 1if|z1| < T7 bydefinition of¢y and |y;| < e then for any = € Qr,
|z < T}

ua() = / u(e — )Wl — 1) we(y)dy = (u * o) (@)
This implies that

P(D)uc(x) = [(P(D)u) * ¢c) [(x) = 0

for |z1| < T}, which proves point 3). Lemma 2.6 is proved.

Lemma 2.7 Let ¢, be the same functions and operator P(D) be the same as above
and Ty € (0,T)- Then there exists a number C > 0 such that for any 6 € (0, A(P)) and
0<e<i(T-T)

Dllue gz < Cllullgray Yo € HF(Qr)
m1 4
2) > | PY (D) ||y, s00,) + 1 e |2 s(@ry) <
=0

miy
<C Y NI PYND)u |1y s + 1|1y s0r) Yu € N(P,6,Qr)
7=0

Ilue —ullgr@y) =0 as € —+0 Vu € HE (Qr)

mi
)Y || PYOD) (ue — ) |1y s+
j=0

[ ue —ullLy s@p) = 0 as € — +0 Yu € N(P,4,Qr)-

Proof By the first point of Lemma 1.6 and according to the property (1.4 ) of function
g the following inequality is obtained
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ez = D 1D (ud) * o2) gsllaiar) <

aeR

<Y D (wh)-gs) * el | Loy + D (D (uh) gs) * p=—

aeR aeR

—(D*(uth) * 92) Gl | Loy < D (D (uh) o) * @el o2y +

aeR

+02 (S ZH (D*(ur)) gs) * @el|L(B2)-

aeR

By the definition of function ¢ and applying the Young’s inequality the following in-
equality is obtained for a constant C; > 0

H Ue HHW(QT) < HD (u ¢) 96HL2(E2) |’S05|’L1(E2)
5
aeR

+02(S2) YD () gol|1o(p2) 1 pel |1y (52) <
acR

< O YD) gsllragey = Co Y 11D () gsllagrry:

aeR aeR
Because of vy € C§°(—T,T) and the regularity of polygon & we get the inequality 1)
with a constant C' = C(03,v) > 0-
Since PU 9 (D)u.(z) = [(PY ) (D)u) ¢ * . )(z) if |z;| < Ty and e € (0, 3 (I'—T7)) for all
j € Ny (see proof of point 3) of Lemma 2.6 ) then the proof of inequality 2) can be done
in a similar way as it was done in the proof of inequality 1).

Let us prove the relation 3). For given u € HJ(Qr) and e € (0, (T — T1)), applying
point 1) of Lemma 1.6 we have

e = ullgry,) = llue —wllgp@rn) < llve =t |[grg) =

= D () * ¢2) = D*(u)] gol| o)

a€eR

From here applying the estimate (2.4) and Young’s inequality we obtain

lue = ullgpian,) < D 1D () gs)e — D*(wdh) gsl| gy +

aeR
+ 3D () gs)e — (D*(w ). gsllaom) <
aeR
< D™ () gs)e — D (wth) gsl| o2+
acR
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+05(8:) > 1D () gs| * pellom2y || <

aeR

< supl|(D 95)( —y) — D*(uv)) gsll Lo (2 [|9e | Ly (12) +
aE%yESE

+02(5:) Y (D () go)l| a2 e |2, 52

aeR

Since by Lemma 2.6 D*(u1)gs; € Lo(E?) for all « € R, then from here and by the
definition of number o,(S.) we obtain the relation 3).

Because of P(D)u.(z) = [(P(D)u)y * ¢ ](z) if |z1| < Ty, e € (0,1 (T — T1)), by the
definition of function ¢ and by the condition © € N(P,¢,€r), then one can proof the
relation 4) in the same way as relation 3). Lemma 2.7 is proved.

Lemma 2.8 Let P(D) be a differential operator with constant coefficients and with
regular Newton polygon R and let my = ordP,,, § € (0,1)- Then there exists a constant
c > 0 such that for all v € H}(Qr)

Z (P w) 95(2)||La0r) < € Z PO (D)(ugs(2))l| a0 (2.12)

k=0

Proof First of all note that (P®* (D)u) g; and P"*(D)(u gs) belongto Ly(Qr) and
foreach £ =0,1,--- ,ms denote by

ar = |[(POP(D)u) gs(22)||Lacr)s Ok = |[POP(D)(w g5(22)|1a(2r) -

We will prove that the numbers {a; } and {b,} satisfy the conditions of second part of
Lemma 1.2. Indeed, since P(>™2) = const, then a,,, = b,,, and by the Leibnitz formula
for differential operators (see, for example [16], formula 1.1.10 ) we get

—k

3

1 , ;
a, = || PO (D)(u gs) — ;uﬂ”ﬂMme?H@mﬂs
7=1
<m+§j I[POFD (DY) g8 |1 0r)-

From here applying the property (2.2) of function g we get

ak Sbitd Y I PO D] gollpaan Sbe+d Y a

j=k+1 j=k+1
where d = max{x; 0 < j < my}  Thelatest one and Lemma 1.2 are proved Lemma 2.8.
For any regular polygon R, any weight function g, satisfying conditions (2.1) - (2.2)
and domain Q; we introduce the Sobolev- type space H(Q2r) asabove and local space
H},,.(Qr), corresponding to space H;'(r) as follows
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Hi1oe(Qr) = {u € Hf{(Qn) YTy € (0, T)}-

Lemma 2.9 Let P(D) be almost hypoelliptic operator with (regular ) Newton polygon
R and m; = ordP,;, (j = 1,2)- There are exist the numbers Ay = Ay(P) > 0 and C =
C(Az) > 0 such that forany 6 € (0, Ay) ¢ € C°(=T,T) and forall u e HY,,.(Qr)

Y I POPD) (uap(1).95(x2) || racr) <

< Cl P(D)(w-)-gs || Latr) + || w5 || Loy | (2.13)

Proof First we show thatv = ¢ u € H(Qr)foranyy € C°(—=T,T)andu € HY,.(Qr)-
Let suppy C [Ty, T3] (T < T'), and

A= sup {DW(U, (.] =0,1,--- 7m1’>}7

te [—T2,T> ]

then by the Leibnitz formula we get

D 1D gs llrar = D 11 D0 g5 || a(e,) <

aeR a€eR

o]
<35 D@ u) P g5 ||y, <

aeR j=0

aq
< A Z Z CI_|| (D=3 22)y) gg La(0r,) < Arllullaror)

aeR j=0
with a constant A; > 0, which proves that v € HF(Q7)-
Letnow w(z) = v(z) if v € Qp and w(x) = 0if E2\ Q- Itis then clear thatw € HF(E?):
Applying the Parseval equality we get

ma 2
> _IPOOD)(0g5) [ar = D [ P* (D) (w g5) |l 1a(e2) =
k=0 k=0

ma
= || POR(E),F(wgs) l|La(r2) (2.14)
k=0

where F' is the Fourier transform.
Since the operator P(D) is almost hypoelliptic then

m2

D IPOPEI<p[|PE)|+1] Ve R

k=0

with a constant p = p(P) > 0- Then taking into account (2.14) the following is obtained
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D NPOID) g5 nar) < pLIPEF (@ 95) El o) + | F(w 95)|| acr) )
k=0

From here applying once more the Parseval equality and the Leibnitz formula we get
D IPOPD)(gs) llrater) < oI PD)(w 95) llracrey + 11 (w 95) 1oy ] =
k=0

= p I PD)(©5) llat@r) + 1[0 95 |12 ] =

ma
1 k
= p[[1(P(D)) gs || ator) + Y T (PO R (DY).g5| o)+
k=1
+||Ug5 ||L2(QT)]'

Let the number d is the same as in Lemma 2.8 . Then, this inequality together with
property (2.2) of function g leads for any ¢ € (0, 1)

D _IPOID)wGs) llza@r) < oIl (P(D)0) g5) || o)+
k=0

m2
110 g5 | a@ry ]+ pd Y 6 [|(POP (D)) sl agar) <
k=1

< pLII(P(D)v) g5) | Laor) + 11v g5 || o) 1+

ma
+pd 8 Y ||(POF (D)) gil | Loy (2.15)
k=1

Since v = v u € H¥(Qr) then we can apply the Lemma 2.8 to estimate the third item
of the right - hand side of ( 2.15). It leads

Z HP(Q k)<D)(U 95)HL2(QT) < pll[(P(D)v) gs) HL2(QT)+
k=0

m2
0 g5 llraen ] +pded Y [IPO(D) (v g5)l|ar)
k=0

If we choose the number A, such that 1 — pdc Ay, = 1/2, i.e. Ay = 1/(2pdc) then
(2.15) leads (2.13) forall § € (0, As)-

Lemma 2.9 is proved.

In the remainder of this paper we assume that A = min{A;, A,, 1}, where the num-
ber A, is taken from Lemma 2.3 and the number A, from Lemma 2.9.
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3 The main result

In this section our main results are stated and proved. We shall study non-degenerate
differential operators P(D) = P(D,, D,) with constant coefficients and with given regu-
lar Newton polygon R = R(m;, ms, a) such that P(D) is almost hypoelliptic and hypoel-
liptic by variable x; . We establish the interior regularity (smoothness ) of solutions of
equation P(D)u = 0 in the strip Qr C E?.

First of all we show that the contraction of functions from N (P, D, Q) on Qr, for
any 7y < T belong to H}, (Qr) = {u;u € H}(Qp) VI < T} Then we show that
N(P,0,Qr) C H§S,.(Q2r) and finally we prove that Ni,.(P, 6, Qr) C Hg, ()

Applying embedding theorems for Sobolev-type spaces ( see, for example [15], The-
orem 10.4) we get our main result: all solutions u € H}*(7) of non-degenerate hypoel-
liptic by variable z; equation P(D)u = 0 are infinitely differentiable in the strip Q7 C E?.

Theorem 3.1. Let P(D) be a mentioned above non-degenerate operator with constant
coefficients and with regular Newton polygon R = R(mi,mq,a) and let 6 € (0, A(P))-
Then for any Ty < T the contraction of function v € N(P,D,Qr) on Q, belongs to
H}(Qq,).ie. N(P,0,Qr) € HY,.(Qr)-

Proof. Let fix a function v € N(P, D,Q7), numbers 77,7, : 0 < Ty < T, < T and
the functions
weCp- Tt Iy e op B AR,
such that v¢y(t) =1 when |[t| < T,, ¢4 (t) =1 when|t| <T. Denote that ¢,(t) =1 on
the suppin-

Itis assumed that the functions u, D*u « € ® and v = w1y are continued outside
of Qr and put u. = vxyp., where the function ¢ andforagiven ¢ > o the function ¢.
is defined as above .Then by Lemma 2.5 u. € H}(E?) forany ¢ > 0- Since ¢;(x;) =1
if |#1] < T and by Lemma 2.2 the two norms in H}(Q;) are equivalent, then we have

e [gmary = 2 11D (we 95) llna(or,) =

aeR

= 1 D*(ucthr g8) lary) = D1 D* (e 1 95) || Lo

acR acR
Since by regularity of the polygon R D(u.; g5s) € Lo for all « € R and since oper-
ator P(D) is regular, then by the Parseval equality it follows from here with a constant
C1 =Ci(R,P) >0 (here F(w) is Fourier transform of function w )

[l lam g,y < > 1€ Fue 1 g5) |l parz) <

aeR

< Gy P(E) Fuz v 95) [|parey + || F(ue 1 95) | o(r2) ] =
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= Cy[|| P(D) (ue 1 g5) || Lo(e2) + || (ue 1 g5) | o2y |-

Since § € (0, A(P)) then by the Lemma 2.3 and by the generalized Leibnitz formula
(see [16], formula (1.1.10 )) we obtain from here with the positive constants Cs, Cs, C,

e [0y < Ca [l (P(D)(ue 1)) g5 [ Lo(e2) + [ (ue 1 95) [ Lae2) | <

mi1
Cy [Z 1 (P9 O (DY) b gs || o2y + || (ue tn g5) \|L2<Ez)] <
7=0

1
Z | (P(L 0)(D)u5) 9s ||L2(Q(T1+T2)/2)) + || (e g5) ||L2(Q<T1+T2>/2>)] |

Let |z1]| < (1 +12)/2, |y1| < € and ¢ € (0, (T> — T1)/2), then ¢o(z; — 1) = 1-
On the other hand since v € N(P,0,Qr) and p(z,0Q0r) > ¢ if |z, | < (11 + T»)/2 and
e € (0, (T —1T,)/2) (seefor example [15], 6.3. (2)) then P(D)u.(x) = (P(D)u):(z) =0
for |z | < (T1 + T3)/2, and ¢ € (0, T3) = (0, min{(Ty — T1)/2, (T — T3)/2})-

In view of above mentioned we now obtain from last inequality

my
[ e HH?(QTJ < Ci [Z | (P(]’O)<D>u5) 9s ||L2(Q(T1+Tz)/2>)+
j=1

I (e 98) | 2a@r, a2 | (3.1)

Since by definition of set N(P,6,Q7) PU9(D)u € Ly 5(Q7) and PY 9 (D)u.(r) =
(PUOY(D)(up))e(x) (j=1,---,my) for |z | < (Ty +T3)/2, € € (0, (T —1T3)/2), then
we get from (3.1)

e llpir,) < ZH (@ %0))e 95 | Loz, 47y /2) T

+|] (wto)e 95) |’L2(Q(T1+T2)/2))] <

Z [ (( Py 0) D)(uo)) gs)< |1 (Qry419)/2) T
+ Z 1 (PYO(D) (utho) gs)e — (P (D) (wibo))e) 95 || Lar, sy )+

+H(u wO 95)8 - uwo 95 “LQ(Q(T1+T2)/2)) + H(u wO 96)5 HL2(Q(T1+T2)/2)) ]

Applying here estimate (2.4 ) we get
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v 12 0r,) < Caloa(S, Z (P (w1ho)) gs| * Pz || Loy 420+

+Z || | P(] 0 W/Jo)) 95| * Pe ||L2 Q(T1+T2)/2))+
+02(Se) [| ((w o) gs) * e ||L2(Q(T1+T2)/2))+

I (wibo) gsl * e | La@ry 12329 |

Applying here Young’s inequality and then the generalized Leibnitz formula (see [16],
formula (1.1.10)) we obtain with positive constants C5, C

mi
e 1r2c0,) < Cs 1) IHPY (D) (1)) g5 1 La(@ir, 15y )

j=1

+H w o gs HL2(Q(T1+T2)/2))] || Pe HL1(E2) <

m1
1 - k
< G [Z Z k! ] (P(ﬁ_k’())(D)u) ¢(() )96 ||L2(Q<T1+T2)/2>)+

7=1 k>0

+[| w o g5 HL2(Q(T1+T2)/2))] <

< Co[ Y1 PYO(D)ugs|lry@r) + 111 gs Lo I (3.2)
=1
This shows that the set {u. : u € N(P,d,Qr)} is uniformly bounded by ¢ in H}(Qr,)
foranye € (0, T3)-

Let¢,6 € (0, T5)- In the same way, which we applied to get the inequality (3.1), we
can see that

[[ue —uo limir,) < Cal DI PY V(D) (U = o) 95 Loy 41y 207+

FI| (ue — uo) gs || La(@ry s19)/2)° (3.3)

Taking into account the fact that

P O(Dyu(w) = (PYV(D)(uth))e(x)
if|z1| < (T1 +T13)/2 and ¢ € (0, T3) the following is obtained from (3.3)

[lue = ug |20, < ZH (ubo))e—
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_(P(j’ 0)<D)(u 1/}0))9 ] 9s HLZ(Q(T1+T2)/2)+

H[ [ (who)e = (wo)o] 95 | La@ry sy )] <

mi1

<y [Z[ H [(P(j7 0)(D)(u wo))s) — pb O)(D)(u w(l) ] 9s HL2(Q(T1+T2)/2)+

Jj=1

3PS OD) (uto))s — PO (D) (0)] G5 L, sy
j=1

+H [(’LL wO)E - uwo]gis HLQ(Q(T1+T2)/2) + H [(U w0)9 - uwo] 9s HL2(Q(T1+T2)/2) ]

Proceeding as in the proof of the second point of Lemma 2.5 and according to the
fact that w1y, PU9(D)(uvhy) € Lo 5(E?)  (j=1,---,m;) we get

lue —ug g2,y =0 as =40, 0 —+0, (3.4)

i.e. the set {u.; € € (0,73)} is precompact in H¥(Qr, ) foranyu € N(P,d, Qr)-
Because of the space H}*(Q,) is complete, the operator of generalized differentiation
is closed ( see for example [15]) and

|| e —uHL“(QTl) —0 as e&— +0,

then we get from here that for any u € N(P,§,Qr) the sequence {u.} converges to the
contraction of function u on Q7, as e — +0 by the norm of H}(Qy, )- This completes the
proof.

Theorem 3.1 is proved.

Remark 3.1 Note that we have actually proved more ( see estimate (2.1)). Namely
there exists a constant Cy > 0 such thatforall § € (0, A), uw € N(P,6,Qr)andT; € (0, T})

lullapon) < Col DI PY O (D)ulln, () + || ullr, 5(20) - (3.5)
j=1
This means that for any 77 < 7T the space N(P,J,(2r) is topologically included in

HSSR(QT1>
Corollary 3.1 Let
Nloc(P7 0, QT) = {u; u € N(P, 0, QT1> VT, € (O,T)}

It follows from Theorem 2.1 that Ni..(P,6,Qr) C HY,,.(Qr)-
This theorem is a sharpened version of Theorem 3.1
Theorem 3.2 Let the hypotheses of Theorem 3.1 are fulfilled andT > 0- Then
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N(P,6,Qr) C Hg (1)

Proof It is clear that we only need to show that

N(P,5,Q7) C HF(Qg) (3.6)

forallm € Npand 77 € (0, T')-

The proof of (3.6 ) carried out by induction on m- For m = 0 the inclusion (3.6) follows
from Theorem 3.1. Assume that (3.6) holds for m < k; we will prove it for m = k£ + 1-

Let the numbers 73,7,,7 (0 < T3 < Ty < T) and functions vy, ¢4, ¢ are fixed as
in the beginning of proof of the Theorem 3.1, v € N(P,4,Q7) and u. = (uty) * e
(e € (0,min{(T — Ty)/2, (To — T1)/2}) = (0, T3))-

Under this assumption first we prove that the set {u. } is uniformly bounded in Hf’“* Q)
for the ¢ € (0,73)- Then we prove that this set is precompact in H?’” '(Q7,), which
means ( without loss of generality ) that {u.} converges to a function v ase — +0-

Since the space ngk“ (Qr,) is complete and the operator of generalized differentia-
tion is closed then v € H;R’““ (Q7) - On the other hand by Lemma 2.7 {u.} converges to
uwase—+0,ie.u=ve H;R’““(QTI) .

Thus let us prove that the set {u.} ¢ € (0, T3) is uniformly bounded in ng’“* Q)

Let u € N(P,0,T) (C Ly s(Q7,))- Bythe Lemma 2.5 u. € H*(Q)y,) for any ¢ > 0
Moreover, by the inductive assumption u € H,™" (Qy,) forany T, € (0, T) and m < k-
Therefore we get

At = el yren g, ) = > DLy, sy =
OéE§Rk+1
= > D%y sy + Y DMLy si2r,)
aE?Rk_H\?Rk (XE?Rk

Since by the inductive assumption D%u € L, 5(€2p,) forall 7 € (0,7) and o € Ry
then D%u.(z) = D*[ (u.1g) * e |(x) = [D*(uthy) * pc|(x) for z € Qp, and e € (0, T3) (see
[15]], 6.3.(2)). Therefore

A= D D% gsllary) + D (D (ubo) * ©2).gsl| ooy ) (3.7)

OcE§Rk+1\§Rk aERy
In order to estimate the second term of right - hand side of (3.7), we apply the esti-
mate (2.4) and Young’s inequality, which gives

DD (ko) * pe) gal Lo, <

aeRy

< Z [[(D*(w1bo) g5) * e — (D*(uho) * ¢:) 95| 1,2y +
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+ Z [[(D*(w1bo), gs) * PellLy(z2) <

aeRy

< o3(e). Z [ [D*(u-100)-g5| * pel|Lom2)+

aERy
+ 57 (D" (o) gs) * el o) <
aERy
g)+1) Z [[(D*(ubo) g5)||Loe2) [@el|Ly 22y
aERy

Leto = max{oa(c) + 1) || ¢c ||, (52 }; € € (0,T3)- By the definition of function v, and
by the inductive assumption we get from here that with a constant C; > 0

Z [(D*(ubo) * ¢e) 95"L2(QT1) <0 Z || D (u o) 95HL2(Q(T+T1)/2) <

aceRy aERy
<o Z Z Cﬁ1 (D a1—51,a2)u) 1/)(()51)95 ||L2(Q(T+T1)/2) <
aeRy fr1<aa
<C1 Y D) gsllra@prn,, o) Ve € (0,T3)- (3.8)
aeRy

To estimate the first term of right - hand side of (3.7), we apply the definitions of
R,, and ¢); and LemmaZ2.2 about two norms equivalence, which yields with a constant
02 >0

Z HD(XUE gs HLQ(QTl) S Z Z H DB(D’YUE) 9s HLQ(QTl) -

a1\ Ry BER |y|=k+1
=> > IDP[(D"ue) ¥1] g5 || agerr,) <
BER |v|=k+1
<Y Y IDP(Due) ¥ gs) || Lace2)
BER |y|=k+1

By the Lemma 2.5 (D7u.) ¢y gs € Lo(E?) for any v € NZ- On the other hand since the
operator P(D) is regular then applying the Parseval equality get from here that with a
constant C'; > 0

Z [D%uc g5 || y(0ry) < Cs Z Z IEPF[(Dus) ¥1 gs ) | 1arzy <

aG?}%k+1\§Rk |v|=k+1 BeR

<Cs Y [IPE)FID ) Y1 g5 lzore) + || FLD ue) 193] llzare) ] =
Iy|=k+1
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=Cs Y I PD)(D"ue) 1 g5 ] || 1a(z2) + [1(D7ue) 1 g5 || o)

|v|=k+1

Applying Lemma 2.9 and definition of function ¢; we get from here that with a con-
stant Cy > 0

Z [ D%, gs L2y <

aE?Rk+1\§}ek

< (4 Z [HP(D)[(D’YUE) wl] 95"L2(Q(T1+T2)/2)+

ly|=k+1
+[(D7ue) Y1 gs \|L2(Q(T1+T2)/2)]- (3.9)

Since v € R, when v = k£ + 1 then reasoning analogously as in the estimate of the
second term of right - hand side of (3.7 ) we get for the second term of ( 3. 9) with a
constant C5 > 0

Z || (D’YUE) (G0 g5HL2(QT1+T2)/2) < Z || (D’YU'E) g§||L2(Q(T1+T2)/2) <

|v|=k+1 Iy|=k+1

<G5 Y WD) g5l ar, oy Ve € (0,T3): (3.10)

IyI<k+1

Using the Leibnitz formula we have for the first term of right - hand side of (3.9) with
aconstant Cg > 0

Z H P(D)[(DVUE) wl] 9s HLZ(Q(T1+T2)/2) <

[y|=k+1

Z Z 1 H P ? 0) (D7u5> w%]) 9s HL2(Q(T1+T2)/2) <

yi=k+1 j=0

m
Z Z | P O)(D)(D’YUJ 9s HL2(Q(T1+T2)/2) Ve € (0,T3)- (3.11)

f1i=kt1 =0
Since ¢0($1—y1) = lwhene € (O,Tg),I S Q(T1+T2)/2) and |’y2| < ethen P(D)[(D’YUE)KJ}) =

(DYP(D))(wipoxpe)(x) = DY(P(D)(uthoxee)](x) = DY[P(D)(uipo) *¢e(x) = 0- Therefore,
the following inequality with a constant C; > 0 is obtained from (3.11)

> I PD)(D7ue) 195 ] || Loz <

[v|=k+1

G Y Z (D)D) U 5 || oty ey o) <

|“/| k+1 j= 17

Y
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mi
<y Z Z | (PY (D)D) g || Loy 11, 2)°
yl=k+1 j=1
ByLemmal.l a— (j,0)+~v € Ry foranya € R (ay #1), ye NZ:|y|=k+1 and
j =1,2,--- Therefore in view of inductive assumption and proceeding as in the proof
of estimate of second term of right - hand side of (3.7) we get from here with a constant
Cs >0 forany e € (0,T3)

> I PD)(D7ue) g5 || oe2) <

ly|=k+1

<C 30 SOHPY D)D) g5 a@ny 1y o) (3.12)

[v|=k+1 j=1

Applying estimates (3.7) - (3.12 ) and we deduce that with a number Cy > 0 (inde-
pendent of ¢ )

> (D) gsllzaery) < Co e € (0,T3),
ae%k+1
i.e. the set {u.} isuniformly bounded in H?’” '(Qq,) forany 7y € (0,7)-
Proceeding as in the proof of the relation (3.4 ) and estimate (3. 12 ) and applying the
estimate (2.4), we can prove that

||ue — uGHkaH(QT) — 0 as €, — 40,

which means that the set {u.}, ¢ € (0,73) is precompact in H?’““(QT)- Then without
loss of generality one can assume that u. — v as ¢ — +0 by the norm of H;Rk“ (Qr)-
Since this space is complete, the operator of generalized differentiation is closed ( see
for instance [15], Lemma 2.6.2 ) and in view of point 3) of Lemma 2.7

|ue — u||L2’6(QT1) — 0 as ,0 — +0,

we getthat v =u € H?’““(QTI)-
Under inductive assumption this means that

we (H " () = HE(Qq,) ¥ 11 € (0,7)-
k=0

Since u € N(P,0,()r) isarbitrary then this means that N(P,9,Qr) C H(Qp,) VT3 €
(0,7), which completes the proof.
Theorem 3.2 is proved.
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Corollary 3.2 Under the hypotheses of Theorem 3.1
Nioe( P, 0, Q) C Hg0o (1)

Summarizing these results together with embedding theorems for weighted Sobolev
spaces (see for instance [15]) one can now formulate our main result
Theorem 3.3 N,,.(P,6,Q7) C C®°(Qr)-
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