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Abstract. Recently we introduced an extended vector bundle X on which non-Abelian
tensor gauge fields realize a connection. Our aim here is to introduce interaction of non-
Abelian tensor gauge fields with fermions and bosons. We have found that there exist two
series of gauge invariant forms describing this interaction. The linear sum of these forms
comprises the general gauge invariant Lagrangian. Studying the corresponding Euler-
Lagrange equations we found that a particular linear combination of these forms exhibits
enhanced symmetry which guarantees the conservation of the corresponding high-rank
currents. A possible mechanism of symmetry breaking and mass generation of tensor
gauge bosons is suggested.
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1 Introduction

It is appealing to extend Yang-Mills theory [1, 2] so that it will define the interaction
of fields which carry not only non-commutative internal charges, but also arbitrary large
spins. This extension will induce the interaction of matter fields mediated by charged
gauge quanta carrying spin larger than one [3]. In our recent approach these gauge fields
are defined as rank-(s + 1) tensors [3, 4, 5, 6]

Z,\l...,\s(@

and are totally symmetric with respect to the indices A;...\s. A priory the tensor fields
have no symmetries with respect to the first index p. The index s runs from zero to
infinity. The first member of this family of the tensor gauge bosons is the Yang-Mills
vector boson Aj. This is an essential departure from the previous considerations, in
which the higher-rank tensors were totally symmetric [7, 8, 9, 10, 11, 14, 15, 16, 17, 18].



The extended non-Abelian gauge transformation of the tensor gauge fields [3, 4, 5]
is defined by the equation (7) and comprises a closed algebraic structure, because the
commutator of two transformations can be expressed in the form

[0y 0] Apninone = =19 0cAuaing.res

where the gauge parameters {(} are given by the matrix commutators (9). This allows
to define generalized field strength tensors (13) G, \, . which are transforming homoge-
neously (14) with respect to the extended gauge transformations (7). The field strength
tensors Gy, 5, . are used to construct two infinite series of gauge invariant quadratic
forms

L, , L

s s=2,3,...

Each term of these infinite series is separately gauge invariant with respect to the extended
gauge transformations (7). These forms contain quadratic kinetic terms and terms de-
scribing nonlinear interaction of Yang-Mills type. In order to make all tensor gauge fields
dynamical one should add all these forms together. Thus the gauge invariant Lagrangian

describing dynamical tensor gauge bosons of all ranks has the form [3, 4, 5]

LSt + S 0
s=1 s=2

where £1 = Ly is the Yang-Mills Lagrangian.

It is important that: i) the Lagrangian does not contain higher derivatives of tensor
gauge fields ii) all interactions take place through the three- and four-particle exchanges
with dimensionless coupling constant g iii) the complete Lagrangian contains all higher-
rank tensor gauge fields and should not be truncated iv) the invariance with respect to the
extended gauge transformations does not fix the coupling constants g, and g;.

The coupling constants g, and g, remain arbitrary because every term of the sum is
separately gauge invariant and the extended gauge symmetry alone does not fix them.
There is a freedom to vary these constants without breaking the extended gauge symmetry
(7). The main point here is that one can achieve the enhancement of the extended gauge
symmetry properly tuning the coupling constants gs and g;. Indeed, considering a linear
sum of two gauge invariant forms in (1)

g2 Lo + g/2£,27

a

which describe the rank-2 tensor gauge field Aj,,, we found [3, 5] that for

9o = g2

the sum £, + £, exhibits invariance with respect to a bigger gauge group (18). In addition
to the extended gauge group (7), which we had initially, we get a bigger gauge group with
double number of gauge parameters [3, 5, 6]. Considering the second pair of quadratic
forms in (1)

93L3 + g5L4

which describe the rank-3 tensor gauge field A7, ), we found in [19] that for
;4

g3 = 593



the system also has an enhanced gauge symmetry (18). The explicit description of these
symmetries together with the corresponding field equations is given in [19].

Our aim now is to extend this construction to a system of interacting tensor gauge fields
with higher-spin fermion and boson fields. The fermions are defined as Rarita-Schwinger
spinor-tensors [20, 21, 22]

U5, (2)

with mixed transformation properties of Dirac four-component wave function (the index
a denotes the Dirac index) and are totally symmetric tensors of the rank s over the
indices A;...\;. All fields of the {¢} family are isotopic multiplets belonging to the same
representation o of the compact Lie group G (the corresponding indices are suppressed).
The bosons are defined as totally symmetric Fierz-Pauli rank-s tensors [8]

Oar.hs (CU)

all belonging to the same representation 7 of the compact Lie group G.

We shall demonstrate that the gauge invariant Lagrangian for fermions and bosons
also contains two infinite series of quadratic forms and the general Lagrangian is a linear
sum of these forms. For fermions it takes the form

£h = Z Js Loy1y2 + Z f; £;+1/2 (2)
s=0 s=1
and for bosons it is - -
=50, +3 b, LP (3)
s=0 s=1

Again it is important to notice that the invariance with respect to the extended gauge
transformations does not fix the coupling constants fs, f. and b, b,. The coupling con-
stants f, f; and by, b; remain arbitrary. Every term of the sum is separately gauge
invariant and the extended gauge symmetry alone does not define them. The basic prin-
ciple which we shall pursue in our construction will be to fix these coupling constants
demanding realization of enhanced symmetries and unitarity of the theory'.

In the second section we shall outline the transformation properties of non-Abelian
tensor gauge fields, the definition of the corresponding field stress tensors, the general ex-
pression for the invariant Lagrangian and its enhanced symmetries [3, 4, 5]. In the third,
forth and fifths sections we shall incorporate into the theory fermions of half-integer
spins. We shall construct two infinite series of gauge invariant forms (2). The invariant
Lagrangian is a linear sum of all these forms and describes interaction of non-Abelian
tensor gauge fields with half-integer spin fermions. At special values of the coupling con-
stants it shows up enhanced symmetries and therefore defines conserved tensor currents.
In the sixth, seventh and eighth sections the above construction will be extended to in-
clude integer-spin boson fields and a possible symmetry breaking mechanism to generate
masses of tensor gauge bosons is suggested.

'For that one should study the spectrum of the theory and its dependence on these coupling constants.
For some particular values of coupling constants the linear sum of these forms may exhibit symmetries
with respect to a bigger gauge group G O G.



2 Non-Abelian Tensor Gauge Fields

The gauge fields are defined as rank-(s 4 1) tensors [3]
(@), 5=0,1,2,..

and are totally symmetric with respect to the indices A;...\s. A priory the tensor fields
have no symmetries with respect to the first index p. The index a numerates the generators
L® of the Lie algebra g of a compact® Lie group G.

One can think of these tensor fields as appearing in the expansion of the extended
gauge field A, (x,e) over the unite vector ey [5]:

The gauge field A7, , carries indices a, A1, ..., As labeling the generators of extended
current algebra G associated with compact Lie group G. It has infinite many generators
% . = L%, ...e5, and the corresponding algebra is given by the commutator [5]

b - rab
[ il---As’ Lplpk] - Zfa CLil...Aslol...pk' (5)

Because L§, . are space-time tensors, the full algebra includes the Poincaré generators
P,, M,,. They act on the space-time components of the above generators as follows:

B =0,

I

[M ] Mox B = ux Po,

(M, My = 1 Myx —1ux Myp + 1ux My — 10y My,

[Bus L5, 2] =0,

[MW, Lil As | =1 LNAQ = M LZAQ...,\S T + Mo, LZ,\l...,\S_l = Nuxs Lz,\l...,\s_p
LS xe L) = if“bcLh...Asm._.pk- (6)

It is an extension of the Poincaré algebra by generators which contains isospin algebra G.
In some sense the new vector variable e, plays a role similar to the grassmann variable
in supersymmetry algebras [12, 13].

The extended non-Abelian gauge transformations of the tensor gauge fields are defined
by the following equations [4]:

SAY = (670, + gf*"AL)E, (7)
(SAa — (6abau + gfach;)gi + gfachzygb’
5A;u/>\ (6abaﬂ + gfaCbAZ) S)\ + gfaCb(A;iyf)\ + Ac)\gb + Azu)\gb)a

where &5, (z) are totally symmetric gauge parameters. These extended gauge trans-
formations generate a closed algebraic structure. To see that, one should compute the

2The algebra § possesses an orthogonal basis in which the structure constants f®¢ are totally
antisymmetric.

3See also the alternative extensions in [10, 11, 23, 24, 26] and the algebras based on diffeomorphisms
group in [25, 27].



commutator of two extended gauge transformations 4,, and d¢ of parameters n and £. The
commutator of two transformations can be expressed in the form [4]

[ 60, 0¢] Aunidone = — 19 0cAuana.n, (8)

and is again an extended gauge transformation with the gauge parameters {(} which are
given by the matrix commutators

¢ = ¢ (9)
C/\l = [n>€)\1]+[77>\17€]
G = [0,&n] + [, &) + [0, &) + [, €],

Each single field Af, (7), s = 2,3, ... has no geometrical interpretation, but all these
fields together with Af(x) have geometrical interpretation in terms of connection on the
extended vector bundle X [5]. Indeed, one can define the extended vector bundle X whose
structure group is G with group elements

U(§) = expl i&(x,e) |,

where

1 a a
E(r,e) = X €, () Lieren,
Defining the extended gauge transformation of A, (z,e) in a standard way

A, (z,e) = U(€) A (x, U () — ;%U({) U=(¢), (10)
we get the extended vector bundle X on which the gauge field A (z, e) is a connection
[2]. The expansion of (10) over the vector e, reproduces gauge transformation law of
the tensor gauge fields (7). Using the commutator of the covariant derivatives Vzb =
(0, —igA,(z,e))®

Vi, VI = gf**Gy, (11)

we can define the extended field strength tensor
g;w(*Ta 6) = 8uAu(x7 6) - au-A,u(x» 6) - z’g[Au(a:, 6) .A,,(l’, 6)} (12)

which transforms homogeneously: g;w(x, e)) = U(&)G,u(x,e)U1(&). Thus the generalized
field strengths are defined as [4]

Gh, = 0.A) —0A; + gfe AZ A, (13)
o = OuAly = 0 AN+ gf (AL AL+ Ay AT,
Zu,)\p = auAZ)\p - aVAZ)\p + gfabc( AZ AZC/)\p + AZ)\ AIC/p + AZp AZC/)\ + AZ)\p Azcz )7

and transform homogeneously with respect to the extended gauge transformations (7).
The field strength tensors are antisymmetric in their first two indices and are totally
symmetric with respect to the rest of the indices. The inhomogeneous extended gauge

5



transformation (7) induces the homogeneous gauge transformation of the corresponding
field strength (13) of the form [4]

0Gy, = gf™G,E, (14)
0Gh = gl ( Ga& + GLgs),
6GZV,)\p = gfabc( GZV,Ap€C + GZV,)\gg + Gfu/,pg/c\ + GZVgg\p )7

The symmetry properties of the field strength G, ,, , remain invariant in the course of
this transformation.
These tensor gauge fields and the corresponding field strength tensors allow to con-

struct two series of gauge invariant quadratic forms. The first series is given by the formula
[4]:

1
_ a a
‘CSJrl — _1 UV s Guu,)\l...)\s T+
1 2s N \
o s a a Aip Ai 25 125
N _EZ a; G#M/\l--.)\i GLW,MH--.)QS(ZU P2 U/ ) ) (15)
1=0 p's

where the sum ), runs over all nonequal permutations of 7's, in total (25 —1)!! terms and
the numerical coefficient is

s s!
ai - A N -
il(2s —1)!
The second series of gauge invariant quadratic forms is given by the formula [3, 5]:
ﬁ/ — 1 a a +
s+l 4 HALA2. A1 PA2 AL Ag 1 T
1 2541 /
= S a a iy Ad Ai i
= 32 91 Gl Glngiaades Qom0 2 e tize) - (16)
i=1 o

where the sum Z; runs over all nonequal permutations of i's, with exclusion of the terms
which contain ptAi+t,

In order to make all tensor gauge fields dynamical one should add the corresponding
kinetic terms. Thus the invariant Lagrangian describing dynamical tensor gauge bosons
of all ranks has the form

L= gL +> g.L., (17)
s=1 s=2

where £, = Ly .

As we already noticed in the Introduction the invariance with respect to the extended
gauge transformations does not fix the coupling constants g, and g,. Therefore we can
tune these coupling constants demanding maximal possible symmetry of the sum. We
found in [5, 19] that the coupling constants should be chosen as g, = gs, g3 = 393.
The free part of the Lagrangian is invariant with respect to the large gauge group of
transformations with additional gauge parameters (j, (1, :

v
SAT = B,
SAT, = 0,6+ O\CY,
0AL N = Oubon + 0uCuy + (s (18)

6



where the gauge parameters (7, should fulfil the constraint J,(7\, — d\(5, = 0 . The
coupling constants g, and g3 remain arbitrary and define mixing amplitudes between
lower- and higher-rank tensor gauge bosons. They have to be fixed by additional physical
requirements imposed on these amplitudes. We shall return to this problem later.

3 First Series of Gauge Invariant Forms for Fermions

The fermions are defined as Rarita-Schwinger spinor-tensor fields [20, 21, 22]

U3 (2) (19)

with mixed transformation properties of Dirac four-component wave function and are
totally symmetric tensors of the rank s over the indices Aj...\s (the index « denotes the
Dirac index and will be suppressed in the rest part of the article). All fields of the {¢}
family are isotopic multiplets 1} _, (z) belonging to the same representation of; of the
compact Lie group G (the index i denotes the isotopic index). Ome can think of these
spinor-tensor fields as appearing in the expansion of the extended fermion field ¥'(z, ¢)
over the unit tangent vector ey [3, 5]

Wiz, e) = 3 w0 (2) exen (20)
s=0

Our intention is to introduce gauge invariant interaction of fermion fields with non-Abelian
tensor gauge fields. The transformation of the fermions under the extended isotopic group
we shall define by the formula [4]

\If,(:v,e) = U)WV (x,e), (21)

where

UE) = expligt(z,e)), &(z,e) =3 &, 5. (1) 0% .en,
s=0

and o are the matrices of the representation ¢ of the compact Lie group G, according to
which all ¢’s are transforming. In components the transformation of fermion fields under
the extended isotopic group therefore will be [4]

oy = 190"E"Y,
dethn = igo®(§" v + &3 ),
Oehrp = igo®(&" Uap + &3 ¥y + fZ Ux +Exp V), (22)

The covariant derivative of the fermion field is defined as usually:
VU =100,V + gA,(z,e)V, (23)
and transforms homogeneously:

V.U —UV,T, (24)



where we are using the matrix notation for the gauge fields A, = 0%Aj. Therefore the
gauge invariant Lagrangian has the following form:

LF = Uy,[i0,V + gA,V. (25)

Expanding this Lagrangian over the vector variable e, one can get a series of gauge
invariant forms for half-integer fermion fields:

LY =3 fiLorip, (26)
s=0

where f; are coupling constants. The lower-spin invariant Lagrangian is for the spin-1/2
field:

Lijy = ' yu(05i0, + gof A ! = (i @+ g Ay (27)

and for the spin-vector field 1, together with the additional rank-2 spin-tensor v, the
invariant Lagrangian has the form [4]:

- . 1- 1 - .
£3/2 = wAVu(Zau =+ QAM)% + ?ﬂ%(lau + QAM)Q/JM + 5¢A)\’Vu(za,u + gAu)w
_ _ 1 -
+ gAY ALY + gy Aada + §9¢7uz4w¢ , (28)

and it is invariant under simultaneous extended gauge transformations of the fermions
(22) and tensor gauge fields (7):
553/2 - O

The currents are given by the variation of the action over the tensor gauge fields:

_ 1_ 1_
Jo = glac™yn + §¢M0a%¢ + §¢0a%¢xx},
Jh, = g{vo by + oy},

a

1 oa
wWp §9¢0 Y M- (29)

JFrom extended gauge invariance it follows that they are divergenceless with respect to
the first indices:
Oudy = 0uds, = 0udy, = 0. (30)

In the next section we shall see that there exists a second invariant Lagrangian L;) /2
which can be constructed in terms of these spinor-tensor fields and the total Lagrangian is
a linear sum of these two forms f,L3/, + fi Eg /2~ The coupling constants f; and f, remain
arbitrary because every term of the sum is separately gauge invariant and the extended
gauge symmetry alone does not fix them. There is a freedom to vary these constants
without breaking the extended gauge symmetry. We can expect that one can achieve the
enhancement of the extended gauge symmetry properly tuning the coupling constants f;
and f;. And indeed, as we shall see, in this way one can achieve the fermion currents
conservation with respect to all their indices. This property is necessary in order to have
consistent interaction with non-Abelian tensor gauge fields.



4  The Second Series of Invariant Forms for Fermions

The Lagrangian (28) is not the most general Lagrangian which can be constructed in
terms of the above spinor-tensor fields (19). As we shall see, there exists a second invariant
Lagrangian £} which can be constructed in terms of spinor-tensor fields (19), and the
total Lagrangian is a linear sum of the two Lagrangians: f Lp+ f L. For the lower-spin
case we shall demonstrate that the total Lagrangian fi1Ls/5 + f{ﬁ;} /2 exhibits an enhanced
gauge invariance with specially chosen coefficients f;.

First, we shall construct general Lagrangian density for arbitrary higher-rank spinor-
tensor fields which contains two terms: f; L1172 + 1. E; +12 » s=1,2,... Indeed, let us
consider the gauge invariant tensor density of the form [3, 5]

[’le = \I/(:E, 6)791 [iam + go-a'Azg (xa 6)]\II(I’ 6)' (31)

It is gauge invariant tensor density because its variation is equal to zero:

5‘CP102 (ZL’, 6) = Z\I/(£E7 €)§<m7 6)7P1 [iam + g-Apz (LE, 6)]\11(1‘, 6) +
+U(z, e)”yplg(—;)[amﬁ(:c, e) —iglA,,(z,e),&(z, e)]¥(z, e) +
(@, €)1 i0 + 90" AL (1, )€z, €Uz, €) = O,

where A,,(z,¢e) = 0* A5, (z,¢e). The Lagrangian density (31) generates the series of gauge
invariant tensor densities (L, , )x,..x. (), when we expand it in powers of the vector
variable e:

[e.9]
i

EPlPQ(I7€) = Z (Lplpg)Al-n)\s (ZE) Exp-CAg- (32)

s=0
The gauge invariant tensor densities (E;l ) A1, () allow to construct two series of gauge

invariant Lagrangians: L,,1/o and E; +1/2 » 8=1,2,.. by the contraction of the correspond-
ing tensor indices.
The lower gauge invariant tensor density has the form

1 - . - .
(‘Cmpz))\l)\Q = 5{ + ’lvb)qme [Zapz + gAp2]w>\2 + wA27p1 [Zam + gAPQ]wM +

+ ’QE)\1/\2’YP1 [iap2 + gAPQ]w + &Vm [iapz + gAPQ]Qz])\l)\Q +
+ 91/})\1701 APQ>\2¢ + gl/})a’ypl APQ)\lw +
+ ngﬁl AP2/\2w>\1 + gw7p1 AP2/\1¢>\2 + gw7p1 AP2/\1>\2w}7 (33)

and we shall use it to generate Lorentz invariant densities. Performing contraction of the
indices of this tensor density with respect to 7,,,,7x,, We shall reproduce our first gauge
invariant Lagrangian density L3/, (28) presented in the previous section. We shall get
the second gauge invariant Lagrangian performing the contraction with respect to the
N Mpare» Which is obviously different form the previous one:

!

1, - . -
Ly = 5{1%%(25% + gAN)Ux + UA(I0x + gAN) YW +

@Z)/M’VM (i@,\ + gA)\)¢ + 77/;(2'(3)\ + QAA)'YM%M + (34)
GUINANY + g0 AN ON + 90 AN + 90 AN + gy AN T

+ +



One can also prove independently from the above consideration, that these Lagrangian
forms are invariant under simultaneous extended gauge transformations of fermions (22)
and tensor gauge fields (7), calculating their variation:

0Ly, = 0.

The currents are given by the variation of the action over the tensor gauge fields:

’

1 - _ _ _
b= §g{¢u0a%% + Uno Uy + Yro N + Yo nnt, (35)

/ 1 - — _ _
Juau = ig{wuo'a%/w + ¢0a%% + N (%U“Wﬁ + @Daa’YAwA)}?

'a

1 )
D = 19(@@0“%1# Nup + VI Y1 M)

JFrom extended gauge invariance it follows that they are divergenceless with respect to
the first indices:
Opd, = 0ud;, = % = 0. (36)

B puXp

Thus the total Lagrangian is a linear sum of the two Lagrangians: f1Ls3/, + f{ﬁg /2- As
one can see, from the Lagrangians (28) and (34) the interaction of fermions with tensor
gauge bosons is going through the cubic vertex which includes two fermions and a tensor
gauge boson, very similar to the vertices in QED and the Yang-Mills theory.

5 Fuler-Lagrange Equations and Enhanced Symmetry

As we found above, the total Lagrangian is a linear sum of the two Lagrangians f,Ls3/ +
f{ﬁg/Q = [i(Ls2 + dlﬁé/z) and has the form

/ - ) 1- . 1- .
£3/2 + d1£3/2 = ¢A7u(zau + gA,u)w)\ + §¢’m(23u + gAu)w/\)\ + §w)\)\7u(za,u + QA;LW
_ _ 1 -
g A + g9 ANs + S gV Auny + (37)

1 - _
+ d i{wu%(i&\ + gAN)x + a0\ + gAN) YV +

+ uu(i0y + gAY + (i0x + gAN)Vubun +
+ gAY + gy A + 90 Ay + gy A + gy At

Our aim now is to find out, if there exists a linear combination of these forms which will
produce higher symmetry of the total Lagrangian. In the weak coupling limit ¢ — 0 it
will take the form
/ - 1- 1- ,
£3/2 + d1£3/2 - %%ﬂau% + §¢7ulau¢>\)\ + §¢A>\7uzau¢
dy - . - - -,
+ 5{%%@6&% + PNIONYL W p + Vur VIO + VIO YV un T

We have the following free equations of motion:

. 1 1 . .
Vula,uqu) + 5%23;L¢M + dl Z(’Y;ﬂa)\ + ’YAZap,)d}p)\ =0

10



. 1, .
YALONY,, + dli(’hﬂax + i)y = 0 (38)
. 1, . .
m/\%@ap@/) + d1§(7,ﬂ(% + 7A28u>¢ =0

or, in equivalent form:

1 1
P+ 3 P+ dy Z(’YMPA + )Y = 0
1
P+ d1§(wm + )Y = 0 (39)
1
Nux P + di = (yupr + pp)v = 0,

2

where § = v,p, = 7,i0,. The corresponding total currents J"' = J + J " are equal to the
sum of (29) and (35). Calculating the derivatives of these currents and using equations
of motion one can see, that the conservation of the total currents over all indices takes
place, when d; = 2, thus

_ 1- Lo
Jﬁot a _ g(qz,/\gafyuw + §¢>\>\Ja’y,ﬂ/1 + §¢UQVM¢AA +

+ Q_Z;ﬁa’hw,\ +_%a“w% + Pua Y + Yo,
T * = 9oty + oty + ) (40)
+ w,uo'a%/w + i/ﬂfa%lﬂu + 77;11/ (¢A0a’7A¢ + ?/JUQ’YA%\)),

I - - _
stfpa - 59(¢0a7u¢ Mp T Yoyt Nypp + ¢0a7p¢ 77/0\)7

and we have conservation of the total tensor currents over all indices:

aleiOt a 07
5 =0, WLy =0,
150 = 0, W3, =0, 9,05, =0. (41)

This result is essential for the consistency of the interaction between tensor gauge bosons
and fermions.

It is remarkable, that for a different choice of the coefficient d; a new type of gauge
symmetry arises. Let us consider the gauge transformation of the spinors-tensor fields of
the Rarita-Schwinger-Fang-Fronsdal form:

oy = 0
0Py, = Ox€
OUring = OnExny + 006
0Uninods = OnExons T Onn€aing + OrsEain,

The variation of the first equation in (39) will take the form
1 a2
POrex + dy 1(2 POrEN + 210°7xe))

11



and, if we chose d; = —2 and shall limit the spinor-tensor parameter ¢, to fulfil the
traceless condition
e =0,

the first equation will remain unchanged. As one can clearly see, the rest of the equa-
tions in (39) are also invariant with respect to the RSFF transformation, if spinor-tensor
parameters €y, ., fulfil the traceless conditions:

’}/)\a)\ff = 0; YAi€EX A2 A1 — 07 § = 27 37 (43)
In this case the tensor currents will take the form
_ 1- 1-
T = g(hroyun + inaamw + §¢0a%¢»\ -
— 0N — Yo Ny — Va0 b — Yoy,

T = 9oty + oty — _ (44)
— Yo" ) — Yo by — N (VA Y + P yaihy)),
1 - _ _

stfpa = §g<¢aa7u¢ M — Yoyt Nup — ¢0a7p¢ 77M>\)‘

Corresponding fermion currents are not divergence free, but only traceless part of the
divergence vanishes [20, 21, 22].

6 The First Gauge Invariant Lagrangian for Bosons

We are in a position now to introduce the gauge invariant interaction of the tensor gauge
bosons with the boson field ¢y, . (x). This set of tensor fields {¢} contains the scalar
field ¢ as one of its family members. The extended isotopic transformation of the bosonic
matter fields ¢y, ., (x) we shall define by the formulas [3, 4, 5]

0cp = —iT"¢,
Oepr = —iT"(E" or + &3 @),
Oedrp = —IT(E" Pap +EX 0p + &5 A+ E5, 9), (45)

where 7% are the matrices of the representation 7 of the compact Lie group G, according
to which the whole family of ¢’s transforms. There is an essential difference in the trans-
formation properties of the tensor gauge fields A5, .x, versus ¢y, ., . The transformation
law for the bosonic matter fields (45) is homogeneous, whereas the transformation of the
tensor gauge fields (7) is inhomogeneous. The general form of the above transformation
is:

O¢Prr.n, () = —iiZ&l.n,\i Prparna (T), s=0,1,2,... (46)

=0 P’s

and the invariant quadratic form is:

00 2s
U@@) =D AtilUs(9),  Us(®) =D @5 . x Orsronsy 20020zt (47)
s=0 =0 p's
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where Ay are arbitrary coupling constants and the sum 3°, runs over all permutations of
p's and the numerical coefficient a$ = s!/i!(2s —i)!, A\ = 1. Notice that the number of
real gauge parameters &Y, , is proportional to the dimension dimG of the compact Lie
group G, while the number of tensor matter fields ¢, ,_ is proportional to the dimension
of the representation 7% of the group G. Because they are totally symmetric tensors, they
have the same space-time dimensions, thus

dimé = dimG x dimT,  dim¢ = dimt x dimT,
where dimT is the dimension of the totally symmetric rank-s tensor.
The invariant Lagrangian for scalar field is
Ly ==Vlo" Vit —U(9),
where V! = 60, — igri A% and for the rank-one field it has the form [3, 4, 5]:

1 1
_£]19 = VMQZS:{_ vu¢>\ + §Vu¢3\|—)\ vu¢ + ivugb—F VM¢AA +
igvu¢+ A,uA¢A + Zg(é;\rA,u)\ Vmﬁ - ng,u(b;\r Au/\(b + ig¢+AuA V,u¢A +
1. 1.
+ 90T AnAne = 5igVud" Awnd + 5igdT A Vb + U(9). (48)

The variation of the Lagrangian is equal to zero, d£Z = 0. In the next section we shall
see, that there exists a second invariant form which can be constructed in terms of boson
fields and the total Lagrangian is a linear sum.

7 The Second Gauge Invariant Lagrangian for Bosons

The Lagrangian (48) is not the most general Lagrangian which can be constructed in
terms of the above boson fields ¢y, 1. (z). As we shall see, here also exists a second
invariant form £}® which can be constructed in terms of boson fields ¢y, . (x) and the
total Lagrangian is a linear sum of them: b£P + b;L®. The sum exhibits additional
gauge invariance with specially chosen coefficient b/1 .

Let us consider the gauge invariant tensor density of the form [3, 4, 5]

‘Cplpz = lejl (@)(I)+j(x’ 6) Vzp]; (e)q)k (I’ 6)7 (49>

where V¥ (e) = 0”0, — igr)) A%(x,e). The Lagrangian density (49) generates the second
series of gauge invariant tensor densities (L, p,)a;..1, (), when we expand it in powers of
the vector variable ey:

[e.9]

£P1P2(x7 6) = Z (‘CPlpz)M..-)\s (m) SR (50)

s=0

The lower gauge invariant tensor density has the form
(‘CPIP2))\1)\2 =
1
+ 5{ Vm Qﬁl vp2¢>\2 + vm <bj{2vp2 dx + Vpl qb;lAQVngb + vm ¢+vp2¢>\1>\2 (51)

- igvﬂl Qsi—l Apzz\z ¢ - igvm ¢3\’—2 Aﬂz>\1 ¢ - igvm ¢+Ap2/\1 qb)\z - igvm ¢+Ap2)\2 ¢>\1
+ igqbi_l AP1>\2 VP2¢ + Z'g(;ﬁ}; AP1>\1 VP2¢ + ig¢+AP1>\1 VP2 ¢>\2 + ig¢+AP1>\2 VP2 ¢>\1
+ 92¢+AP1)\1A92)\2¢ + 92¢+AP1)\2AP2>\1¢ - igvﬂl ¢+AP2>\1)\2¢ + ig¢+AP1)\1)\2VPQ¢}7
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and by an appropriate contraction of indices generates Lorentz invariant densities. Per-
forming contraction of the indices of this tensor density with respect to 7, ,,71,1, We shall
get our first gauge invariant Lagrangian density £P (48) presented in the previous section.

We shall get the second gauge invariant Lagrangian performing the contraction with
respect to 7,1, Mps2s, Which is obviously different from the previous one:

£ = i{ Vi Vadn + Vb Vady + V@i Vad + V0" Vady (52)
— gV And — igV udx Anud — igV T Axudr — igV 0T Aangy +
+ 190 ANV u0 + 1905 A Vad + igdT A Vada +igdpT AuinVag, +
+ GPOT AL AND + GPOT A AN D — igV b Anind +igdpt Ayn Vo).

Thus the total Lagrangian £F +b(LP 4+ hLP) has a linear sum of two forms and our aim
is to find out, if there exists a linear combination of these forms which admits additional
higher symmetries. In zero coupling limit it will take the form

, h
L+ hLP = — 0,00 0,65+ 5{ 0. b ONdA + 0l Ondu} —

1 1 h
58u¢1_)\ 8u¢ - iaud)—i_ 8u¢AA + 5{ au¢j)\a)\¢ + a,u¢+a/\¢,u)\}-
If we take h = 1, it will reduce to the form
L+ LE = — 0,07 0u0r+ 000y —
1 1 1 1
ia,u(b;\r)\ a,u¢ - iau¢+ au(b)\/\ + §8u¢:)\a)\¢ + EaquJra)\(bu)\ (53)
and become invariant with respect to the gauge transformation of the form

¢ — ¢
by — Ou+ Ow
G — Ou + Ouwy + 0wy, (54)

This symmetry transformation is an enhanced symmetry of the Lagrangian. The original
system was invariant under the gauge transformation (45).

This phenomenon of enhancement of the original symmetries is of the same nature
as we have already observed in the case of tensor gauge fields and fermions, where the
extended gauge transformation (7) and (22) have been enhanced to larger symmetries
(18) and (42). The above enhanced gauge symmetries allow to exclude negative norm

states from our system of tensor fields and in the given case the zero component of the
boson field ¢,,.

8 Symmetry Breaking and Masses of Tensor Gauge Bosons

The Lagrangian £ = LEZ + £P + £/P can be responsible for the mass generation of the
second-rank tensor gauge field Af, . The relevant terms have the following form:

L= — vu¢+ v,qu - U(¢)
1 1
+ bi{=V.oy V.ox+ §VM¢ZVA¢A + §Vu¢fvx¢u
1 1
- g2¢+(A,u)\Au)\ - §A,u,,u,A)\>\ - 514#)\14)\#)925}- (55>
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The first term describes the standard interaction of the charge vector gauge boson with
charged scalar field and with properly chosen scalar potential will generate the mass of the
vector boson (see the end of this section). The next three terms describe the interaction
of the charged vector gauge bosons A, with charged vector boson ¢, and the last three
terms describe the interaction of the charged tensor gauge bosons A,,, with charged scalar
boson ¢. When the scalar field gets the vacuum expectation value (62), the charged tensor
gauge bosons receive the mass term of the form

1 1
b192¢+(Au>\Au)\ - §AuuA>\)\ - iAu)\AAu)Qs -
1 1
big® < ¢'1, >< T > (AZ/\AZ)\ - §AZNA3>\ - §AZAAI;\N)- (56)

Decomposing the tensor gauge field A, into symmetric and antisymmetric parts A,, =
%(AW +A,,)+ %(A,W —A,,) =T,, + S, one can see that the mass term takes the form

m2 m2
TT(T“,\T#,\ — T, + 7SSHAS,\;L, (57)
where the mass matrices are
b b
m% = (g—;)g2 <O, >< T >, m% = 3(9—;)92 < Py >< 1o >, (58)

and we conclude that the coupling constant b; should be positive. As we can see from
above formulas, the symmetric 7}, and antisymmetric S, parts of the tensor gauge
field get different masses: the antisymmetric part gets the mass which is three times
bigger than that of the symmetric tensor gauge boson. The coupling constant b;, as we
discussed earlier, remains arbitrary in this model, therefore the relation between masses
of the tensor gauge bosons and vector gauge bosons m? = 2¢% < ¢'7, >< 7,¢ > is given
by the relations

b b
2 1 2 2 1 2
mp = (—)my,, mg=3(=—)my, 59
b Gomb = 30w (59
with the b;-independent mass ratio
2
s 3, (60)
mr

which is an interesting prediction of this model*.

We have to introduce the invariant self-interaction Lagrangian for the extended scalar
sector. The first two quadratic forms, which are invariant with respect to the extended
homogeneous transformations (45), have the form (47)

U(6) = 616 + Ma(8l6u + 56 0+ 561,0). (61)

Its invariance can be confirmed by direct calculation similar to the one we performed
above. Using this quadratic form we can construct the invariant potential as

U(6) = (V60— + 0616+ daldln + 50T0m + 2ohd  (62)

4These mass formulas are written in preposition that g, # 1 in (17), that is, the kinetic term of the
tensor gauge field A, is normalized to —(1/4)gs.
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so that the vacuum expectation value of the scalar field will be as in the standard model:
< G >pae= 1/ V2.
The Higgs boson mass therefore remains the same as in the standard model:
myg = An.

The vector boson ¢, can also acquire mass through the interaction term:

1 1 A2n?
TN 2N 668k, — A<l ><o>dlo= N 4” Shdu  (63)
and it is proportional to the mass of the standard Higgs scalar:
A
2 2 2

We see that Ay should be positive. This formula is of the same nature as for the ten-
sor gauge bosons (59) and reflects the fact that masses of higher-spin partners can be
expressed through masses of the standard model particles and the coupling constants be-
tween them. In the given case these coupling constants are by (48),(52) and Ay (47),(62).
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