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Abstract

We fill in a gap discovered in the proof of Theorem A, on weighted Sobolev type

boundedness for potential operators in variable exponent Lebesgue spaces, in the pa-

per of the authors ”Weighted Sobolev theorem in Lebesgue spaces with variable expo-

nent”, J. Math. Anal. and Applic., 2007, vol. 335, No 1, 560-583. The proof remains the

same in the case where the Matuszewska-Orlich indicesm(w) andM(w) of the weightw

are both positive or negative, but in the case where they have different signs, the proof

needs some additional arguments and requires a slightly different formulation of the

result.
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1 Introduction

Let Ω be an open set in ℝn, p : Ω → [1,∞) a measurable function on Ω with inf
x∈Ω

p(x) >

1, sup
x∈Ω

p(x) <∞ and

Lp(⋅)(Ω, �) =
{
f : �(x)∣f(x)∣p(x) ∈ L1(Ω)

}
,

where �(x) = w(∣x − x0∣) with x0 ∈ Ω. We assume that w is in the generalized Bary-

Stechkin-type class, Definition 2.2 in [1]. We refer also to Definition 2.3 there on Matuszewska-

Orlich indices m(w) and M(w) of the weight. Recall that

−∞ < m(w) ≤M(w) <∞

for weights in such class. In [1], within the frameworks of the spaces Lp(⋅)(Ω, �), we stud-

ied the potential type operator

I�(⋅)f(x) =

∫
Ω

f(y) dy

∣x− y∣n−�(x)
, x ∈ Ω. (1.1)

of variable order �(x), where inf
x∈Ω

�(x) > 0. The paper [1] contains the following theorem.

Theorem A. Let p(x) and�(x) satisfy local log-condition in Ω and the condition sup
x∈Ω

�(x)p(x) <

n. If the indices m(w) and M(w) of the weight satisfy the condition

�(x0)p(x0)− n < m(w) ≤M(w) < n[p(x0)− 1]. (1.2)

Then ∥∥I�(⋅)f
∥∥
Lq(⋅)

(
Ω,w

q
p (∣x−x0∣)

) ≤ C ∥f∥Lp(⋅)(Ω,w(∣x−x0∣)) . (1.3)

However, the proof of this theorem given in [1] contains a gap. We correct the proof.

This correction led to a certain modification of the statement. Namely, the statement of

Theorem A and its proof remain without changes when the indices are both positive or

negative:

�(x0)p(x0)− n < m(w) ≤M(w) < 0 or 0 < m(w) ≤M(w) < n[p(x0)− 1], (1.4)

while in the case of different signs:

�(x0)p(x0)− n < m(w) ≤ 0 ≤M(w) < n[p(x0)− 1], (1.5)

the correction of the proof led to some modification of the weight on the left-hand side

of inequality (1.3). The corrected version of Theorem A runs as follows.
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Theorem Acorr. Let p(x) and �(x) satisfy local log-condition in Ω and the condition

supx∈Ω �(x)p(x) < n. If the indices m(w) and M(w) of the weight satisfy the condition

(1.4), then inequality (1.3) is valid. If (1.5) holds, then∥∥I�(⋅)f
∥∥
Lq(⋅)

(
Ω,'(∣x−x0∣)w

q
p (∣x−x0∣)

) ≤ C ∥f∥Lp(⋅)(Ω,w(∣x−x0∣)) , (1.6)

where '(t) is any bounded weight function such that
ℓ∫

0

'(t)
t
dt <∞, ℓ = diamΩ.

2 Proof of Theorem Acorr

2.1 The case (1.4); the proof contained in [1]

We start with the part which does not need changes, to underline some points. As in [1],

we take x0 = 0. First we note that estimate (5.8) in [1] may be rewritten in the form

∣Br(x)∣ ≤ C r−
n
q(x) [w(r + x)]−

1
p(x) , (2.7)

where we replaced rx = max{r, ∣x∣} by r+ ∣x∣, which is possible whenw has finite indices

m(w) and M(w), since rx ≤ r + ∣x∣ ≤ 2rx. Therefore, inequality (5.9) in [1] holds in the

form

I�(⋅)f(x) ≤ C
[
r�(x)ℳf(x) + [w(r + ∣x∣)]−

1
p(x) r−

n
q(x)

]
(2.8)

in all the cases, that is, independently of the signs of the indices m(w) and M(w). By the

almost monotonicity properties of w(r), from (2.8) it follows that

I�(⋅)f(x) ≤ C
[
r�(x)ℳf(x) + [w(∣x∣)]−

1
p(x) r−

n
q(x)

]
when m(w) > 0, (2.9)

because functions w with positive index m(w) are almost increasing, see for instance

[1], Theorem 2.4. Then all the arguments remain the same as in [1] after formula (5.9)

there. This covers the case 0 < m(w) ≤ M(w) < n[p(0) − 1]. The case �(0)p(0) − n <

m(w) ≤M(w) < 0 is covered by the standard dual arguments, as on pages 575-576 of [1]

in section 20 of the proof.

We recall that the minimizing value of r for the right-hand side of (2.9) is

r = r0 := [w(∣x∣)]−
1
n [ℳf(x)]−

p(x)
n . (2.10)

Note that

r0 ≤ ∣x∣ ⇐⇒ℳf(x) ≥ v(x), (2.11)

r0 ≥ ∣x∣ ⇐⇒ℳf(x) ≤ v(x), (2.12)
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where

v(x) = ∣x∣−
n
p(x) [w(∣x∣)]−

1
p(x)

Note also that w(∣x∣)[v(x)]p(x) = 1
∣x∣n , so that v /∈ Lp(⋅)(Ω, w). This means that the possibil-

ity (2.11) in fact cannot happen.

3 The case (1.4); the added proof

We transform the right-hand-side of (2.8) as follows

r−
n
q(x) [w(r + ∣x∣)]−

1
p(x) = r−

n
q(x) [w(r + ∣x∣)(r + ∣x∣)a]−

1
p(x) (r + ∣x∣)

a
p(x) ,

where a is a number from formula (5.2) in [1], a < n. Since w(t)ta is almost increasing,

we obtain

r−
n
q(x) [w(r + ∣x∣)]−

1
p(x) ≤ r−

n
q(x) [w(∣x∣)]−

1
p(x)

(
r + ∣x∣
∣x∣

) a
p(x)

.

Therefore, from (2.8) we obtain

I�(⋅)f(x) ≤ C
(
r�(x)ℳf(x) + r−

n
q(x) [w(∣x∣)]−

1
p(x)

)
in the case where r ≤ ∣x∣ (3.13)

and

I�(⋅)f(x) ≤ C
(
r�(x)ℳf(x) + r

a
p(x)
− n
q(x) ∣x∣−

a
p(x) [w(∣x∣)]−

1
p(x)

)
in the case where r ≥ ∣x∣

(3.14)

The minimizing value of r = r0 for the right-hand side of(3.13) is given in (2.10). The

minimizing value r1 for (3.14) (obtained as the value of r for which both terms in (3.14)

coincide), is

r1 := ∣x∣
a

a−n [w(∣x∣)]
1

a−nMf(x)
p(x)
a−n . (3.15)

Observe that
r1

∣x∣
=

(
r0

∣x∣

) n
n−a

,

so that for r1 we have exactly the same relations as in (2.11)-(2.12):

r1 ≤ ∣x∣ ⇐⇒ℳf(x) ≥ v(x), (3.16)

r1 ≥ ∣x∣ ⇐⇒ℳf(x) ≤ v(x). (3.17)

Therefore, from (3.13)-(3.14) we have

I�(⋅)f(x) ≤ Cr
�(x)
0 ℳf(x) in the case where ℳf(x) ≥ v(x) (3.18)
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and

I�(⋅)f(x) ≤ Cr
�(x)
1 ℳf(x) in the case where ℳf(x) ≤ v(x). (3.19)

Substituting the values of r0 and r1, we obtain

I�(⋅)f(x) ≤ C[w(∣x∣)]−
�(x)
n [Mf(x)]

p(x)
q(x) .

and

I�(⋅)f(x) ≤ C∣x∣a−n[w(x)]
�(x)
a−nℳf(x)

p1(x)
q(x)

respectively, where

p1(x) = p(x)

(
1− a�(x)q(x)

n(n− a)

)
< p(x).

Consequently, ∫
Ω

[w(∣x∣)]
q(x)
p(x)
∣∣I�(⋅)f(x)

∣∣q(x)
dx ≤ C

∫
Ω

w(∣x∣)∣ℳf(x)∣p(x) dx.

in the first case, and∫
Ω

[w(∣x∣)]
q(x)
p(x)
∣∣I�(⋅)f(x)

∣∣q(x)
dx ≤ C

∫
Ω

w�1(x)(∣x∣)
∣x∣�2(x)

∣ℳf(x)∣p1(x) dx, (3.20)

in the second case, where

�1(x) = q(x)

[
1

p(x)
− �(x)

n− a

]
, �2(x) =

a�(x)q(x)

n− a
.

There is nothing to do in the first case, so we have to work with inequality (3.20).

Let p2(x) = p(x)
p1(x)

. Obviously, infx∈Ω p2(x) > 1. Observe that with this notation we have

�1(x) =
1

p2(x)
, �2(x) =

n

p′2(x)
.

An application of the weighted variable exponent Hölder inequality in (3.20) with

the exponents p2(x) and p′2(x) is not helpful, if we wish to obtain the final inequality in

form (1.3). Indeed, we have∥∥∥∥∥ [w(∣x∣)]�1(x)− p1(x)
p(x)

∣x∣�2(x)

∥∥∥∥∥
Lp
′
2

=

∥∥∥∥ 1

∣x∣�2(x)

∥∥∥∥
Lp
′
2

=∞,

since �2(x)p′2(x) ≡ n. This explains the appearance of the additional factor ' in the

weight in our proof. Instead of (3.20) we write∫
Ω

'(∣x∣)[w(∣x∣)]
q(x)
p(x)
∣∣I�(⋅)f(x)

∣∣q(x)
dx ≤ C

∫
Ω

'(∣x∣)[w(∣x∣)]�1(x)

∣x∣�2(x)
∣ℳf(x)∣p1(x) dx. (3.21)
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Then the Hölder inequality with the exponents p2(x) and p′2(x), the boundedness of the

maximal operator in the space Lp(⋅)(Ω, w) (see Theorem 2.9 in [1]), and the fact that

�1(x) − p1(x)
p(x)

= 0 provide inequality (1.6), if
∥∥∥ '(∣x∣)
∣x∣�2(x)

∥∥∥
Lp
′
2
< ∞. The latter is equivalent

to
∫
Ω

['(∣x∣)]p
′
2(x)

∣x∣n dx < ∞. Since p′2(x) > 1 and ' is bounded, the condition
ℓ∫

0

'(t)
t
dt < ∞ is

sufficient for the latter.
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