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Abstract

In this note we call attention to the fact that there exist some relations between the
Matuszewska-Orlicz indices m(¢) and M (y) of the function ¢, and possible values of
the constants in Zygmund type inequalities.
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1 Introduction

The main goal of this note is to call attention to the fact that there exist some relations
between the Matuszewska-Orlicz indices m(y¢) and M (y) of the function ¢, and possible
values of the constants ¢, and C,, in the inequalities

h
e(t) 1
/Tdt < a@(h)y (1)
0
[ot) 1
2
/Tdt < C_Lp90<h)a (2)

where 0 < h </ < o0, ¢ is a non-negative function, see Theorems[3.I]and 4.1}
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NOTE ON MATUSZEWSKA-ORLICH INDICES AND ZYGMUND INEQUALITIES

Inequalities (I) and (2) are known as Zygmund type inequalities, we refer for instance
to [1], where under some monotonicity conditions on ¢ there was shown in particular
that Zygmund inequalities are equivalent to the so called Lozinsky and Bary-Stechkin
conditions. In [2], [7] it was shown that monotonicity conditions on ¢ may be replaced
by that of almost monotonicity, or more generally, by the condition ¢ € W, see Defini-
tion[2.1} recall that a non-negative function ¢ is called almost increasing if there exists a
constant ¢ > 1 such that p(z) < ¢(y) forall z < y.

Note that we prefer to write constants on the right-hand sides of (I)- @) as  and £ by
reasons which become clear in the sequel, see for instance Lemma [3.1] and inequality

(5).

2 Preliminaries

The Matuszewska-Orlicz indices known in the theory of Orlicz spaces (see [5], [3] and
[4], where they were studied mainly for Young functions (), are defined as

In [li_mh_m%} y In [Mhﬁo%} X

mie) = Stl>111) In ¢ — 50 In ¢ o
Y . fln [hmh_m (:)} y In [mhﬁo%] ,
W=l — =\ @

the definition being applicable to any non-negative-function ¢, and
—o00 < m(p) < M(p) < +o0

in this case.
Note that for ¢, (t) = t7¢(t) we have

m(py) =7 +m(p) and M(p,) =~ + M(p).

Definition 2.1. By W = W([0, ¢]) we denote the class of non-negative almost increasing
functions on [0, ¢], positive on (0, () and by W = W ([0, {]) we denote the class of functions
on |0, (], such that there exists an a € R' such that the function x*p(z) € W.

In the case ¢ € W, one has
—o0 < m(p) < M(p) < +oo.

Various properties of the indices m(y) and M (p) were obtained in [3] and [4], and in
121, 71, 181, [91, [10], [11], [12] in connection with study of various operators in general-
ized Holder spaces, where in particular it was shown that the validity of the Zygmund
inequalities for a function ¢ (¢) may be characterized in terms of the indices m(y), M(p).
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In particular, the following property is known (for the proofsee [2], Theorems 3.1 and 3.2
for o € W, as stated in Theorem and [3], Thm 6.4 or [4], Thm 11.8 under a different
definition of the indices and other assumptions on ()

Theorem 2.1. Let ¢ € W. Then

h
/tlﬂ < ¢h—) — v <m(p), (3)
/ h
t
/Zigdtgc% <~ v>M(p). 4)

h

3 Arelation between the index m(y) and the constant c,,

Given a non-negative function ¢, let
[olt) , _ 1g(h)
- 1 . B ¥
I (o) = {7 € R": there exists ¢ = ¢(¢,v) such that /tlﬂdt . } :
0
Obviously, if y € I_(¢), theny —a € I_(p) for any a > 0, so that I_(p) may be only an

infinite interval starting from —oo. For functions ¢ € W it is known that the set /_(y) is
an open interval with the exactly calculated upper bound:

[_(gp) - (_Oo7m(90)) ) (1)

which follows from (3).

In Lemma 3.1 we show that the fact itself that this interval is open, is valid for an
arbitrary non-negative function ¢, without any assumption on almost monotonicity of
¢, and find a relation between the constants ¢(y,y) and ¢(p, v + ¢).

t
Lemma 3.1. Let ¢(t) be a non-negative function on [0, (] such that the integral

0
exists for everyt € (0,(). If there holds inequality with some c, > 0, then for any
e € (0,c,) there also holds the inequality

[etyc L e 2

t1+s Ct,o —c hs

where c is the same as in (1).

Proof. Let
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The formula is valid

h h
o(t) @) o(1)
/ tlte dt = he +e Hl+e dt. 3)
0 0
Indeed,
Fow) [t [l
_ PLS
[Ty EEth
0 0 0

which yields (3).
Since ®(h) < égp(h) by (1), from (3) we obtain

o) gy < 2 i/hﬂf>clt

tl-i—s — C(phe tl—&-s

o\:

0

from which (2) follows. O

¢
Corollary 3.1. Let ¢ be a non-negative function on [0, (] such that | tﬁ’(ﬁ dt exists, v € R
0

Then

h h
o) o Lot [eld 1 elh)
tl-i—ﬂ/ C’Y h'y t1+'y+a C»y —¢ h’y-‘ra
0 0
foranyes < c,.

Remark 3.1. In case we pass from the factor = in @) to a power of the logarithmic func-
tion, the corresponding statement becomes

h h
t 1 n &)" 1
/_W Jar< Ly :/9‘7 V< 1 om, @
t Cy cg+ n!
0 0

wheren = 1,2,3, ... which may be obtained by the successive application of the given

inequality:
h 1 h
@(ME@»/# /dt/@ ds—c/%ds etc
0

0

Theorem 3.1. Letp € W. If there holds inequality (1) with some constantc, > 0, then

co <m(ep). Q)
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Proof. Suppose to the contrary that m(¢) < c¢,. By Lemma inequality (2) holds
with every ¢ € (0,c¢,), in particular, with every e € (A, ¢,), A = max{m(y),0}, which is
impossible, because for ¢ € W, inequality (2) implies m(p) > ¢ by N

Corollary 3.2. For the index m(y) of a function ¢ € W the estimate holds

m(p) = inf 2 g 2 (6)

s

t
where ®(t) = [ #2)ds,
0

Proof. Let A = sup,, %. Let first A = co. Then the right-hand side of (6) is zero and
also m(¢) = 0. Indeed, we have m(y¢) > 0 for ¢ € W and in case m(y) > 0 there holds
with a finite constant ¢,,, which would mean that A < cc. Therefore, (6) trivially holds in
the case A = cc.

Let A < co. Then (I) obviously holds with ¢, = 4. Then § < m(p) by Lemma 3.1}

which is inequality (6). N

Remark 3.2. In case of power functions p(t) = t* we have

t:/\7

but in the general case it may be that m(y) > inf; %.

4 Arelation between the index )/ (¢) and the constant C,

Similarly to the previous section we reveal a relation between the upper index M (y) and
the constant C,, in the Zygmund inequality (2).
Let

!
. 1 o(h
Li(p) = {’y € R': there exists C' = C(yp,v) such that /tl_—l-'ydt = EQO}E’Y)} '
h

For functions ¢ € W it is known that
]+ - (M(QO), +OO>»

see (4). The following lemma exactifies the statement on the openness of the interval
(M (¢),+00) for an arbitrary non-negative function.
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4
Lemma 4.1. Let o(t) be a non-negative function on (0, (] such that the integral [ @ds

t
exists for everyt € (0,(). If there holds inequality with some C, > 0, then for any
e € (0,C,) there also holds the inequality

L
p(t) L.
/ S G elh) (1)
h

where C,, is the same as in (2).

Proof. Lemma was proved in [6]. We give the proof here for the completeness of
¢

presentation. Let ®,(¢) = [ @ds. Similarly to (3) we have
t

/W)dt: h5<1>1(h)+e/q)1(t)dt 2)

from which (I) follows. O
Lemma4.2. Letp € W. If there holds inequality (2) with some constant C, > 0, then
M(p) < =C,.

Proof. Suppose to the contrary that M(¢) > —C,. By Lemmaf4.1} inequality (I) holds
with every € € (0,C,,), in particular, with every ¢ € (u,C,), i = max{—M(y), 0}, which
is impossible, because for ¢ € W, inequality (1) implies M (¢) < —e by (). O

Theorem 4.1. Ifa function ¢ € W admits estimate (2) with some constant C, > 0, then
for the index M (o) the estimate holds

M) < — int 2O _ g )

= Su ) 3
o<t<t Py (t) 0<t1§)é Dy (t) o

s

¢
where ®,(t) = [ £ ds.
t

Proof. Let A, = sup %. Inequality () obviously holds with C, = 4. Then 4 <
0<t<i
— M (¢) by Lemma[4.2} which is inequality (3). O
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Remark 4.1. The indices

' (x) - z¢'(v)
o<e<t o(x) 1(¢) _o<£e p(z)

4)
are known as Simonenko indices, see [13], and it is known that

p(p) <m(p) < M(p) < q(vp), (5)
see [4], Theorem 11.11. In these terms, inequalities (6) and 3), in case p € W, mean that

p(®) < m(p) < M(p) < q(P1). (6)
Observe that although we can write, for instance,

p(®) < m(®) < M(P) < (),

to derive the left-hand side inequality p(®) < m(p) in (6) from here, we would like to have
the propertym(®) = m(p), which is truein the case) < m(p) < M(p) < oo becaused ~ ¢
in this case and then the functions ® and ¢ have coinciding indices, see [4], Theorem 11.4.
Similarly one has M (®,) = M(p) when —oo < m(y) < M(p) < 0.

5 Ageneralization of Lemmas3.1/and 4.1

Based on the passage from (1) to and the example given in (4), we now consider a
possibility to trace a similar passage when one deals with the scale of functions more
fine than just the scale of power (or power-logarithmic) functions.

In the sequel the notation AC(0, ¢) stands for the set of functions on (0, ¢) absolutely
continuous on every closed subinterval of (0, ¢).

Lemma 5.1. Suppose that

dt < —¢(h) (1)

o

2)

~~

<
—~

~+~
~—

co—ovih

o\:
S
=

U

~

IN
—_
5
N~—r 3/

holds, where v(t) is any non-negative function on [0, (] such that + € AC(0,(), and

t'(1)]

te0,4] V(t)

5=

< Cp. (3)
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Proof. Integration by parts yields
h h

st () [ V()
[ =+ o @

0 0

since limy,_, % = 0. To check the latter, in view of (I) it suffices to show that lim;,_,, % =
0, for which it is sufficient to verify that m (£) > 0. Since m (£) > m(p) + m(2) =
m(y) — M (v), we then may only check that M (v) < m(y). The latter follows from condi-
tion (3), which implies that M (v) < q(v) < co(< m(p)) .

From (4), by assumption (1) we obtain

h h
pt)dt _ 1 | o(h) / [V (1)]
<
[ == L(h) ) O ©
0] 0
or ,
L/ (0] #() 1 o(h)
— = <= :
/ (1 o vl ) i)™= o o) (6)
0
By assumption (3) we have 1 — 01 t'y”( t(”)‘ >1- which yields (2). O
Lemma 5.2. Suppose that
¢
p(t) ,, _ o(h)
<
/ " dt < o (7)
h
for some Cy > 0. Then a similar inequality
¢
p(OAE) . _ Alh)e(h)
<
/ " dt < Co—3 (8)
h
holds, where \(t) is any non-negative function in AC(0,(), and
LA ()]
5 =: < Cy. 9
e MO
Proof. Integrating by parts, we obtain
¢ ¢ ¢
/ A(t)@dt — AB)D1(h) + / N()Dy (H)dt, Dy(t) = / @dt. (10)
h h h
By assumption (7) we then have
¢ ¢
A(t)p(t) dt 1
[ < et + | X(tm(t)dt] a
h ° h
or ,
/ ( : tM t)l) MO0 4y < Zamyen), (12)
/ At)] t Co
which yields (8) by (9). O
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