
ARMENIAN JOURNAL OF MATHEMATICS

Volume 3, Number 1, 2010, 22–31

Note on Matuzsewska-Orlich indices and Zygmund

inequalities

N. G. Samko

Universidade do Algarve,

Campus de Gambelas,

Faro,8005 139, Portugal

nsamko@gmail.com

Received by the editors February 01, 2010; accepted for publication March 31, 2010.

Abstract

In this note we call attention to the fact that there exist some relations between the

Matuszewska-Orlicz indices m(') and M(') of the function ', and possible values of

the constants in Zygmund type inequalities.
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1 Introduction

The main goal of this note is to call attention to the fact that there exist some relations

between the Matuszewska-Orlicz indicesm(') andM(') of the function', and possible

values of the constants c' and C' in the inequalities

ℎ∫
0

'(t)

t
dt ≤ 1

c'
'(ℎ), (1)

ℓ∫
ℎ

'(t)

t
dt ≤ 1

C'
'(ℎ), (2)

where 0 < ℎ ≤ ℓ <∞, ' is a non-negative function, see Theorems 3.1 and 4.1.
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Inequalities (1) and (2) are known as Zygmund type inequalities, we refer for instance

to [1], where under some monotonicity conditions on ' there was shown in particular

that Zygmund inequalities are equivalent to the so called Lozinsky and Bary-Stechkin

conditions. In [2], [7] it was shown that monotonicity conditions on ' may be replaced

by that of almost monotonicity, or more generally, by the condition ' ∈ W̃ , see Defini-

tion 2.1; recall that a non-negative function ' is called almost increasing if there exists a

constant c ≥ 1 such that '(x) ≤ '(y) for all x ≤ y.

Note that we prefer to write constants on the right-hand sides of (1)-(2) as 1
c

and 1
C

by

reasons which become clear in the sequel, see for instance Lemma 3.1 and inequality

(5).

2 Preliminaries

The Matuszewska-Orlicz indices known in the theory of Orlicz spaces (see [5], [3] and

[4], where they were studied mainly for Young functions '), are defined as

m(') = sup
t>1

ln
[
limℎ→0

'(tℎ)
'(ℎ)

]
ln t

= lim
t→0

ln
[
limℎ→0

'(tℎ)
'(ℎ)

]
ln t

(1)

M(') = inf
t>1

ln
[
limℎ→0

'(tℎ)
'(ℎ)

]
ln t

= lim
t→∞

ln
[
limℎ→0

'(tℎ)
'(ℎ)

]
ln t

, (2)

the definition being applicable to any non-negative-function ', and

−∞ ≤ m(') ≤M(') ≤ +∞

in this case.

Note that for '
(t) = t
'(t) we have

m('
) = 
 +m(') and M('
) = 
 +M(').

Definition 2.1. By W = W ([0, ℓ]) we denote the class of non-negative almost increasing

functions on [0, ℓ], positive on (0, ℓ) and by W̃ = W̃ ([0, ℓ]) we denote the class of functions

on [0, ℓ], such that there exists an a ∈ ℝ1 such that the function xa'(x) ∈ W .

In the case ' ∈ W̃ , one has

−∞ < m(') ≤M(') ≤ +∞.

Various properties of the indices m(') and M(') were obtained in [3] and [4], and in

[2], [7], [8], [9], [10], [11], [12] in connection with study of various operators in general-

ized Hölder spaces, where in particular it was shown that the validity of the Zygmund

inequalities for a function '(t) may be characterized in terms of the indicesm('),M(').
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In particular, the following property is known (for the proof see [2], Theorems 3.1 and 3.2

for ' ∈ W̃ , as stated in Theorem 2.1, and [3], Thm 6.4 or [4], Thm 11.8 under a different

definition of the indices and other assumptions on ')

Theorem 2.1. Let ' ∈ W̃ . Then

ℎ∫
0

'(t)

t1+

dt ≤ c

'(ℎ)

ℎ

⇐⇒ 
 < m('), (3)

ℓ∫
ℎ

'(t)

t1+�
dt ≤ c

'(ℎ)

ℎ�
⇐⇒ � > M('). (4)

3 A relation between the indexm(') and the constant c'

Given a non-negative function ', let

I−(') =

⎧⎨⎩
 ∈ ℝ1 : there exists c = c(', 
) such that

ℎ∫
0

'(t)

t1+

dt ≤ 1

c

'(ℎ)

ℎ


⎫⎬⎭ .

Obviously, if 
 ∈ I−('), then 
 − a ∈ I−(') for any a > 0, so that I−(') may be only an

infinite interval starting from −∞. For functions ' ∈ W̃ it is known that the set I−(') is

an open interval with the exactly calculated upper bound:

I−(') = (−∞,m(')) , (1)

which follows from (3).

In Lemma 3.1 we show that the fact itself that this interval is open, is valid for an

arbitrary non-negative function ', without any assumption on almost monotonicity of

', and find a relation between the constants c(', 
) and c(', 
 + ").

Lemma 3.1. Let '(t) be a non-negative function on [0, ℓ] such that the integral
t∫

0

'(s)
s
ds

exists for every t ∈ (0, ℓ). If there holds inequality (1) with some c' > 0, then for any

" ∈ (0, c') there also holds the inequality

ℎ∫
0

'(t)

t1+"
dt ≤ 1

c' − "
'(ℎ)

ℎ"
(2)

where c is the same as in (1).

Proof. Let

Φ(t) =

t∫
0

'(s)

s
ds.
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The formula is valid
ℎ∫

0

'(t)

t1+"
dt =

Φ(ℎ)

ℎ"
+ "

ℎ∫
0

Φ(t)

t1+"
dt. (3)

Indeed,

"

ℎ∫
0

Φ(t)

t1+"
dt = "

ℎ∫
0

dt

t1+"

t∫
0

'(s)

s
ds

= "

ℎ∫
0

'(s)

s
ds

ℎ∫
s

dt

t1+"
=

ℎ∫
0

'(s)

s

(
1

s"
− 1

ℎ"

)
ds

which yields (3).

Since Φ(ℎ) ≤ 1
c'
'(ℎ) by (1), from (3) we obtain

ℎ∫
0

'(t)

t1+"
dt ≤ '(ℎ)

c'ℎ"
+

"

c'

ℎ∫
0

'(t)

t1+"
dt,

from which (2) follows.

Corollary 3.1. Let ' be a non-negative function on [0, ℓ] such that
ℓ∫

0

'(t)
t1+


dt exists, 
 ∈ ℝ1.

Then
ℎ∫

0

'(t)

t1+

dt ≤ 1

c


'(ℎ)

ℎ

=⇒

ℎ∫
0

'(t) dt

t1+
+"
≤ 1

c
 − "
'(ℎ)

ℎ
+"

for any " < c
.

Remark 3.1. In case we pass from the factor 1
t"

in (2) to a power of the logarithmic func-

tion, the corresponding statement becomes

ℎ∫
0

'(t)

t
dt ≤ 1

c'
'(ℎ) =⇒

ℎ∫
0

'(t)
(
ln ℎ

t

)n
t

dt ≤ 1

cn+1
' n!

'(ℎ), (4)

where n = 1, 2, 3, ... which may be obtained by the successive application of the given

inequality:

'(ℎ) ≥ c'

ℎ∫
0

'(t)

t
dt ≥ c2

'

∫ ℎ

0

dt

t

t∫
0

'(s)

s
ds = c2

'

∫ ℎ

0

'(s) ln ℎ
s

s
ds etc

Theorem 3.1. Let ' ∈ W̃ . If there holds inequality (1) with some constant c' > 0, then

c' ≤ m('). (5)
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Proof. Suppose to the contrary that m(') < c'. By Lemma 3.1, inequality (2) holds

with every " ∈ (0, c'), in particular, with every " ∈ (�, c'), � = max{m('), 0}, which is

impossible, because for ' ∈ W̃ , inequality (2) implies m(') > " by 3.

Corollary 3.2. For the index m(') of a function ' ∈ W the estimate holds

m(') ≥ inf
t>0

'(t)

Φ(t)
= inf

t>0

tΦ′(t)

Φ(t)
, (6)

where Φ(t) =
t∫

0

'(s)
s
ds.

Proof. Let A = supℎ>0
Φ(ℎ)
'(ℎ)

. Let first A = ∞. Then the right-hand side of (6) is zero and

alsom(') = 0. Indeed, we havem(') ≥ 0 for ' ∈ W and in casem(') > 0 there holds (1)

with a finite constant c', which would mean thatA <∞. Therefore, (6) trivially holds in

the case A =∞.
Let A < ∞. Then (1) obviously holds with c' = 1

A
. Then 1

A
≤ m(') by Lemma 3.1,

which is inequality (6).

Remark 3.2. In case of power functions '(t) = t� we have

m(') = M(') = inf
t>0

'(t)

Φ(t)
= inf

t>0

tΦ′(t)

Φ(t)
= �,

but in the general case it may be that m(') > inft>0
'(t)
Φ(t)

.

4 A relation between the indexM(') and the constantC'

Similarly to the previous section we reveal a relation between the upper indexM(') and

the constant C' in the Zygmund inequality (2).

Let

I+(') =

⎧⎨⎩
 ∈ ℝ1 : there exists C = C(', 
) such that

l∫
ℎ

'(t)

t1+

dt ≤ 1

C

'(ℎ)

ℎ


⎫⎬⎭ .

For functions ' ∈ W̃ it is known that

I+ = (M('),+∞),

see (4). The following lemma exactifies the statement on the openness of the interval

(M('),+∞) for an arbitrary non-negative function.
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Lemma 4.1. Let '(t) be a non-negative function on [0, ℓ] such that the integral
ℓ∫
t

'(s)
s
ds

exists for every t ∈ (0, ℓ). If there holds inequality (2) with some C' > 0, then for any

" ∈ (0, C') there also holds the inequality

ℓ∫
ℎ

'(t)

t1−"
dt ≤ 1

C' − "
ℎ"'(ℎ) (1)

where C' is the same as in (2).

Proof. Lemma 4.1 was proved in [6]. We give the proof here for the completeness of

presentation. Let Φ1(t) =
ℓ∫
t

'(s)
s
ds. Similarly to (3) we have

ℓ∫
ℎ

'(t)

t1−"
dt = ℎ"Φ1(ℎ) + "

ℓ∫
ℎ

Φ1(t)

t1−"
dt (2)

by direct verification. Since Φ1(ℎ) ≤ 1
C'
'(ℎ) by (2), from (2) we obtain

C'

ℓ∫
ℎ

'(t)

t1−"
dt ≤ ℎ"'(ℎ) + "

ℓ∫
ℎ

'(t)

t1−"
dt,

from which (1) follows.

Lemma 4.2. Let ' ∈ W̃ . If there holds inequality (2) with some constant C' > 0, then

M(') ≤ −C'.

Proof. Suppose to the contrary that M(') > −C'. By Lemma 4.1, inequality (1) holds

with every " ∈ (0, C'), in particular, with every " ∈ (�,C'), � = max{−M('), 0}, which

is impossible, because for ' ∈ W̃ , inequality (1) implies M(') < −" by (4).

Theorem 4.1. If a function ' ∈ W̃ admits estimate (2) with some constant C' > 0, then

for the index M(') the estimate holds

M(') ≤ − inf
0<t≤ℓ

'(t)

Φ1(t)
= sup

0<t≤ℓ

tΦ′1(t)

Φ1(t)
, (3)

where Φ1(t) =
ℓ∫
t

'(s)
s
ds.

Proof. Let A1 = sup
0<t<l

Φ(t)
'(t)

. Inequality (2) obviously holds with C' = 1
A1

. Then 1
A1
≤

−M(') by Lemma 4.2, which is inequality (3).
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Remark 4.1. The indices

p(') = inf
0<x≤ℓ

x'′(x)

'(x)
, q(') = sup

0<x≤ℓ

x'′(x)

'(x)
(4)

are known as Simonenko indices, see [13], and it is known that

p(') ≤ m(') ≤M(') ≤ q('), (5)

see [4], Theorem 11.11. In these terms, inequalities (6) and (3), in case ' ∈ W, mean that

p(Φ) ≤ m(') ≤M(') ≤ q(Φ1). (6)

Observe that although we can write, for instance,

p(Φ) ≤ m(Φ) ≤M(Φ) ≤ q(Φ),

to derive the left-hand side inequality p(Φ) ≤ m(') in (6) from here, we would like to have

the propertym(Φ) = m('), which is true in the case 0 < m(') ≤M(') <∞ because Φ ∼ '

in this case and then the functions Φ and ' have coinciding indices, see [4], Theorem 11.4.

Similarly one has M(Φ1) = M(') when−∞ < m(') ≤M(') < 0.

5 A generalization of Lemmas 3.1 and 4.1

Based on the passage from (1) to (2) and the example given in (4), we now consider a

possibility to trace a similar passage when one deals with the scale of functions more

fine than just the scale of power (or power-logarithmic) functions.

In the sequel the notation AC(0, ℓ) stands for the set of functions on (0, ℓ) absolutely

continuous on every closed subinterval of (0, ℓ).

Lemma 5.1. Suppose that
ℎ∫

0

'(t)

t
dt ≤ 1

c0

'(ℎ) (1)

for some c0 > 0. Then a similar inequality

ℎ∫
0

'(t)

t�(t)
dt ≤ 1

c0 − �
'(ℎ)

�(ℎ)
(2)

holds, where �(t) is any non-negative function on [0, ℓ] such that 1
�
∈ AC(0, ℓ), and

� =: sup
t∈[0,ℓ]

t∣� ′(t)∣
�(t)

< c0. (3)
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Proof. Integration by parts yields
ℎ∫

0

'(t) dt

t�(t)
=

Φ(ℎ)

�(ℎ)
+

ℎ∫
0

� ′(t)

�2(t)
Φ(t)dt (4)

since limℎ→0
Φ(ℎ)
�(ℎ)

= 0. To check the latter, in view of (1) it suffices to show that limℎ→0
'(ℎ)
�(ℎ)

=

0, for which it is sufficient to verify that m
(
'
�

)
> 0. Since m

(
'
�

)
≥ m(') + m

(
1
�

)
=

m(')−M(�), we then may only check thatM(�) < m('). The latter follows from condi-

tion (3), which implies that M(�) ≤ q(�) < c0(≤ m(')) .

From (4), by assumption (1) we obtain
ℎ∫

0

'(t) dt

t�(t)
≤ 1

c0

⎡⎣'(ℎ)

�(ℎ)
+

ℎ∫
0

∣� ′(t)∣
�2(t)

'(t)dt

⎤⎦ (5)

or
ℎ∫

0

(
1− 1

c0

t∣� ′(t)∣
�(t)∣

)
'(t)

t�(t)
dt ≤ 1

c0

'(ℎ)

�(ℎ)
. (6)

By assumption (3) we have 1− 1
c0

t∣�′(t)∣
�(t)∣ ≥ 1− �

c0
which yields (2).

Lemma 5.2. Suppose that
ℓ∫

ℎ

'(t)

t
dt ≤ '(ℎ)

C0

(7)

for some C0 > 0. Then a similar inequality
ℓ∫

ℎ

'(t)�(t)

t
dt ≤ �(ℎ)'(ℎ)

C0 − �
(8)

holds, where �(t) is any non-negative function in AC(0, ℓ), and

� =: sup
t∈[0,ℓ]

t∣�′(t)∣
�(t)

< C0. (9)

Proof. Integrating by parts, we obtain
ℓ∫

ℎ

�(t)
'(t)

t
dt = �(ℎ)Φ1(ℎ) +

ℓ∫
ℎ

�′(t)Φ1(t)dt, Φ1(t) =

ℓ∫
ℎ

'(t)

t
dt. (10)

By assumption (7) we then have
ℓ∫

ℎ

�(t)'(t) dt

t
≤ 1

C0

⎡⎣�(ℎ)'(ℎ) +

ℓ∫
ℎ

∣�′(t)∣'(t)dt

⎤⎦ (11)

or
ℓ∫

ℎ

(
1− 1

C0

t∣�′(t)∣
�(t)∣

)
�(t)'(t)

t
dt ≤ 1

C0

�(ℎ)'(ℎ), (12)

which yields (8) by (9).
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