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Description of random fields
by systems of conditional distributions
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Abstract. In this paper, we consider the direct and inverse
problems of the description of lattice positive random fields by
various systems of finite-dimensional (as well as one-point) prob-
ability distributions parameterized by boundary conditions. In
the majority of cases, we provide necessary and sufficient condi-
tions for the system to be a conditional distribution of a (unique)
random field. The exception is Dobrushin-type systems for which
only sufficient conditions are known. Also, we discuss possible
applications of the considered systems.
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Introduction

A random field is a probability measure on the infinite-dimensional space
of its realizations. This definition, which is of great theoretical importance,
is not always suitable for applications. From a practical point of view, it is
much more convenient to deal with systems of finite-dimensional (conditional
or unconditional) distributions equivalently describing a random field.
Systems of finite-dimensional distributions can be subdivided into two
types: systems generated by a random field and those given autonomously
through the main system-forming property of its elements — consistency
conditions. Accordingly, two problems come to the fore. The direct problem
is the problem of unique determination (restoration) of a random field by the
system generated by it. The inverse problem is the problem of the existence
of a random field with an a priori given system of distributions.
Kolmogorov [19] was the first one who considered both the direct and the
inverse problems of the description of random processes by a system of un-
conditional finite-dimensional distributions. Over time, it became clear that
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in many cases, it is convenient to impose restrictions not on unconditional
distributions but on their relations, that is, on conditional distributions.

The idea of specifying a random object through conditional probabilities
is very old and goes back to the concept of a Markov chain. At the end of the
1960s, the approach to describing random objects by systems of conditional
distributions was further developed. In connection with mathematical prob-
lems of statistical physics, Dobrushin [3] and, independently, Lanford and
Ruelle [21] introduced the fundamental concept of a Gibbs random field. Its
definition is based on the idea of specifying a random field through a spe-
cial system of finite-dimensional distributions parameterized by boundary
conditions — Gibbs specification.

Dobrushin’s approach was further developed by Dachian and Nahapetian
in [6H8], where it was shown that the description of Dobrushin-type specifi-
cations (and, consequently, random fields) can be carried out by systems of
consistent one-point distributions parameterized by infinite boundary con-
ditions. Systems of one-point distributions on general measurable spaces
were studied by Fernandez and Maillard [12]. The problem of describing a
random field by a system of consistent one-point distributions with finite
boundary conditions was solved by Dalalyan and Nahapetian [11].

In this paper, we consider various systems of conditional probability dis-
tributions, study their properties, and present for such systems solutions for
both direct and inverse problems. Some of the systems are fully studied for
the first time: the system of finite-dimensional distributions parameterized
by finite boundary conditions (Section , the system of Palm-type distri-
butions (Section , and the systems of finite-dimensional and one-point
distributions parameterized by various boundary conditions (Section . For
the system of one-point distributions with finite boundary conditions, we
slightly improve known results (Section [B.2)). Also, we consider the sys-
tems of finite-dimensional and one-point distributions parameterized by Do-
brushin’s type boundary conditions and formulate the corresponding results
within the framework of the approach developed in the paper (Section .

The work is mainly theoretical, but possible areas of application of the
obtained results will be outlined. Some of the statements of this paper (with
proof ideas) are given in |16] (see also [1]). Here, for the sake of simplicity,
we restrict ourselves to considering only positive random fields with a finite
phase space. However, the results can be carried over more general settings.

1 Preliminaries

Let X C R be a non-empty finite set, 1 < |X| < oo, and let Z¢ be a
d-dimensional integer lattice (the set of d-dimensional vectors with integer
components), d > 1.
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For S C 74, denote by W(S) = {V C S : |V| < oo} the set of all finite
subsets of S, and let W,,(S) = {V C S : |V]| = n} be the set of n-element
subsets of S, n > 1. When S = Z?, we will use simpler notations W and
W, respectively. For convenience of notations, we will usually omit braces
for one-point sets {t}, t € Z<.

A neighborhood system in Z? is a system 0 = {9t,t € Z%} of finite-
dimensional subsets 9t of the lattice Z? such that ¢t ¢ 9t and s € 9t if and
only if t € 9s, s € Z¢. If a neighborhood system 0 is defined, for any V € W,
put OV ={s € Z\V : s € dt,t € V'}.

Denote by X° = {x = (2;,t € S) : x; € X1 t € S} the set of configura-
tions on S, S C Z<, i.e., the set of functions defined on S with values in X.
If S =, we assume that X? = {@} where @ is an empty configuration.
For any S,T C Z% such that SNT = @ and any z € X° and y € X7, de-
note by zy the concatenation of x and y, that is, the configuration on SUT
coinciding with = on S and with y on 7. We assume that concatenation
of x with an empty configuration @ coincides with z, i.e., x@ = x for all
r € X 8§ C Z% Finally, for T C S, denote by x7 the restriction of the
configuration z € X* to 7.

When some enumeration V' = {ty,1s,...,t,} of the points of V' € W is
fixed, for brevity, we will denote by (zu); the concatenation of configurations

Ty, t;_1) and ug, oy, that is

(lL‘u)j = T1.--Lj—1Uj41...Un, 1 <] <n,

(1)

(xu)y = ugus...uy,, (xu)n = x1T9... 251,

where z; = 1y, u; = uy;, 1 < j<n,n=|V|], and zv,u € XV,

For x € X°, S C Z%, we call the set S the support of configuration = and
denote it by s(z). For any V' € W, for sets of configurations with supports
not intersecting with V' (or, simply, for configurations outside V'), we will
use the following notations

= U x xl= U x x{= U x°
OASCTZANV DASEW (Z4\V') SEW (ZA\V)

It is clear that X‘J; - )/(;/ and X"; C X(;O.
For a sequence A = {A, },>; of sets A,, € W and for S C Z%, the notation
A, 1 S means that the sequence A is increasing and converges to S, i.e.,

A, CApppand | A, = S. For a family {gx, A € W(S)} of functions, the

n=1
notation }\1% ga(za) = a, v € X, means that for any increasing sequence

{An}n>1 of finite sets converging to S, we have lim ga,(za,) = a. A real-
- n—oo

valued function g on X*® is called quasilocal if

lim sup g(x)—g(y)| = 0.
ATSWE)(S:M:M! (x) = 9(y)|
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For any S C Z< denote by #° the o-algebra generated by cylinder
subsets of X®. In the case of a finite subset V' € W of the lattice, " is the
o-algebra of all subsets of XV,

Probability distribution on (X*, %°) will be denoted by Latin letters
indexed by the set S, for example, Pg. In the case S = Z%, the subscript
will be omitted, i.e., we will write P instead of Pya. If S = (), there exists
only one probability distribution Pyp(@) = 1. For T C S C Z% and any
probability distribution Ps on (X*, %), denote by Pr its restriction (Ps)z
on (X7, %"). In the case of finite subsets of the lattice V.C A € W, one
has

Py(z) = (PA)v(z) = Y Pa(zy), zeXV.

yEXA\V

A probability distribution P on (X%', %%") is called a random field.
For a random field P, the set of probability distributions {Py,V € W}
with P, = (P)y is called its system of finite-dimensional (unconditional)
distributions.

It is well known (see, for instance, the classical work [19] by Kolmogorov)
that any random field is restored by its system of finite-dimensional un-
conditional distributions. In this regard, we will often identify a random
filed P with the system of its finite-dimensional distributions and will write
P ={P,,V € W}. An autonomously given system of finite-dimensional
distributions {Py,V € W} satisfying Kolmogorov’s consistency condition
(PA)y =Py for all V' C A € W uniquely determines a random field P such
that (P)V = Pv, VeW.

A random field P is called positive if its finite-dimensional distributions
are strictly positive, that is, for any V' € W, one has Py(x) > 0 for all
r € XV. In the framework of this paper, we will consider only positive
random fields.

For a random field P, a conditional probability Q% on X" under a finite
boundary condition z € X, S € W(Z4\V), is defined as follows:

_ Pyus(zz)

Q@(x)_T(Z), re XV, Vel (2)

In the case of infinite boundary condition z € X*°, S C Z4\V, put

Qi (2) = lim Q3 (x) = lim ~¥e(T28)

, ceXV.vew, 3
A+S AtS  Py(za) v (3)

where the limit exists for almost all (with respect to the measure P) config-
urations z. The term “boundary condition” for the configuration z is used
in mathematical statistical physics. In the future, we will adhere to this
terminology.
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Finally, note that conditional probabilities of a random field satisfy the
following Sullivan’s inequalities (see [23])

inf QU@ < Qi) < sw QLla), (4)

yeEXSyp=2 yEXSya=2

where V,Ae W, AcC SCZ)\V and z € XV, 2 € XA,

2 Systems of conditional distributions. The
direct and inverse problems

Further, we will study various systems of finite-dimensional probability dis-
tributions parameterized by boundary conditions. Their general structure
(regardless of whether they were generated by a random field or not) has
the following form:

Q={qi,z€ Yy, Ver}

where Ty C )/(; is the set of admissible boundary conditions defined out-
side V, # C W is a family of finite subsets of the lattice Z¢, and for any
fixed V' and boundary condition z € Ty, the function ¢f is a probability
distribution on XV.

Any such system of probability distributions is specified by two sets: #
and T = {Yy,V € #}. As #, one can consider, for example, the set W
of all finite subsets of the lattice Z% or the set W,, of its n-element subsets
(n > 1). A special place here is occupied by the case n = 1, corresponding
to which the system of sets W = {{t},¢ € Z%} is the collection of all lattice

nodes. As boundary conditions, one can consider the set T/ = {X{,,V € #'}
of configurations with finite supports or the set T = {)/(T/,V € W} of
configurations admitting infinite supports.

The mg\in systems considered in the present paper are the system Qf =

{¢t, 7 € X{;, V € W} of finite-dimensional distributions parameterized by
finite boundary conditions and the system Q = {¢{, z € )/(;, V € W} which
is the completion of the system Q/ by distributions with infinite boundary
conditions.

All the other studied systems are the subsystems of the mentioned sys-
tems. For example, we will consider a Palm-type system Q" = {¢¢,2 €
X1t € Z\V,V € W} and Dobrushin-type system QP = {¢é, z € /){Zd\v,
V e W}. Also, we will consider one-point systems Q{ ={q¢,z € th,t €
74, Qi = {qf, 2 € X, t € Z4 and QP = {¢7, 2 € XL\ ¢ € 77},

The relationships of the studied systems are shown in the following dia-
gram.
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Q" ¢ QF ¢ Q o @F
U U U

Qf ¢ @ > @

Systems generated by a random field P will be denoted by Qp or Q(P).
The natural requirement for such systems is that Q) p restores P. In the case
it is necessary to emphasize that the random field P is restored by Q)p, we
will use the notation Fy,. For a given random field P, we call the problem
of the existence of a system ()p such that Py, = P a direct problem of the
description of random fields. A system () p is a solution to the direct problem
for the given random field P if Py, = P. Note that for any random field,
there may exist many (equivalent) solutions to the direct problem.

For an a priori given system Q of finite-dimensional probability distribu-
tions, we will call an inverse problem of the description of random fields the
problem of the existence of a random field P such that Qp = Q. A random
field P is a solution to the inverse problem for a given system Q if Qp = Q.
For the system (), any solution to the inverse problem will be denoted by F4,.
In this case, Qp, = Q, and we will say that Q defines the random field Fyq.
If Pq is unique, then we will say that Q specifies it. A random field P for
which Qp = Q will be called compatible with the system Q.

The solution of the direct problem makes it possible to define various
classes of random fields by imposing corresponding restrictions. For example,
under suitable conditions, Kolmogorov’s system defines classes of Gaussian
random fields, processes with independent increments or stationary random
processes, while the restrictions on the systems of conditional probabilities
lead to such important classes of random fields as Markov and Gibbs random
fields, martingales, etc. The solution of the inverse problem provides the
possibility to construct models of random fields with required properties.

Finally, note that both direct and inverse problems can be formulated
not only for the pair “random field” — “system of finite-dimensional distri-
butions”, but also for the pair “system” — “subsystem”.

3 Systems of distributions with finite bound-
ary conditions

We start by considering systems of finite-dimensional distributions parame-
terized by finite boundary conditions. We will show that each of such systems
specifies (uniquely determines) compatible with it random field. The general
case (Subsection and the Palm-type distributions (Subsection are
studied in full in the present paper for the first time. One-point distribu-
tions with finite boundary conditions (Subsection [3.2)) were the subject of
the work [11] by Dalalyan and Nahapetian.
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3.1 System of finite-dimensional distributions with fi-
nite boundary conditions

Let P = {Py,V € W} be a random field and let Q£ ={Q%,z € X{;,V €
W} be a system of its conditional probabilities (distributions) with finite
boundary conditions (see (2))). The system Q; will be called the finite-
conditional distribution of the random field P or, in short, its f-distribution.

From the probabilistic point of view, the definition of the system Qé is
quite natural. This system is mentioned, for example, in [9].

Let us show that Qé is a solution to the direct problem for the random
field P.

Theorem 1 Any random field is restored by its f—distribution.

Proof. Tt is enough to note that finite-dimensional distributions {Py,V €
W} of the random field P and its finite-conditional probabilities Q£ =
{Q%,z € X(j, V € W} are connected by the following relation

-1

Py(z)=| > Qi (y) ., zeXV vVew, (5)

2 Q)

where I € W(Z\V). Indeed, taking (2)) into account, we can write

2.

yeXx!

Qrly) _ Pily) 1
QY (z) 2 Py(z)  Py(z)

yeXx!

O

To solve the inverse problem associated with the system Qé, first of
all, it is necessary to answer the following question: does the system Qé
possess such properties (consistency conditions) which allow restoring the
random field P without taking into account the fact that the elements of
Q{D are generated by P? If such characterizing properties are found, one can
expect that for an a priori given system Q/ of distributions satisfying these
properties, the inverse problem will have a solution. That is, there will exist
a random field Py, the f-distribution Q/(Pys) of which coincides with Q/.

As it will be shown below, for the system Qﬁ, such characterizing prop-
erty is the following one: for any disjoint sets V,I € W and boundary

conditions z € X";UI, it holds
Qvur(ry) = Q7 (2)Q"(y), ze X" yeX'. (6)

The verification of these relations for the conditional probabilities of a ran-
dom field is trivial.
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A system Qf = {¢7,2 € X{;,V € W} of strictly positive probability

distributions ¢, on XV parameterized by finite boundary conditions z € X {;,
V e W, will be called a specification with finite boundary conditions (or f-
specification) if its elements satisfy the following consistency conditions: for

all disjoint sets V,I € W and all configurations x € XV, y € X', z € )?VE,
it holds
dror(zy) = av (2)q;" (y)- (7)

It is not difficult to see that f—distribution Q’; of a random field P forms
an f-specification.

Note that the positivity condition imposed on the elements of the con-
sidered system is due to the fact that in this paper, we concentrate on the
problem of the description of positive random fields. The inverse problem
can be solved under less restrictive positivity conditions using the ideas ap-
plied in [8] (see also [18]).

The following result takes place.

Theorem 2 Any f-specification specifies compatible with it random field.

To prove this theorem, we need the following properties of the elements
of f—specification.

Lemma 1 Let Qf = {¢5,z € X{;,V € W} be an f-specification. Then
for any disjoint sets V,I € W and all configurations z,u € XV, y,v € X!,

z € X(;OUI, it holds

¢/ (2)q;" (v)gy’ ()i (y) = ¢/ (u) g (v) a7’ (2) a7 (y). (8)

Further, for any pairwise disjoint sets V,I,J € W and any configurations

reXV,yeX,weX’, z¢ X‘];?JIUJ, one has
0" (2)a;" (y)d)" (w) = 4 () ()" (w). (9)

Proof. Tacking into account the consistency of the elements of Qf, for any
disjoint sets V, I € W and all configurations z,u € XV, y,v € X, z € X/,
we can write

_ Girur(vy) ) Girur(2v) ) iy (uv) ) o (uy) _
i (y) i (z) qi(v) qir(u)

@ ()qi" (v) g7’ (w)g*(y)

_ Qiz/qél((yl;y) ) qz::/lésf) ) Qizfqufl((vagv) ] qz::/[((;)y) = ¢ (W)@ ()¢ ()G (y).
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To verify relation in the case z = @, note that due to , for any pairwise
disjoint sets V,I,A € W and any configurations z € XV, y € X', z € X,
we have

droayz)  ai(y)
Then, using , and with z # @, we can write

W) @) o) @) @R e g

) qrv)  Goalyz)  diavz) GG ) dh(z)a"

_ a@e’ (W) RR)e (@) _ ayua(uz) o) _w) @ @)

4@ ) GG W) e g qiy) g (v)’

Further, from the consistency conditions @), it follows that for any pair-
wise disjoint sets V,I,J € W and any configurations x € XV, y € X7,

we X’ ze X!, wehave

s (Yo7 () () = T (E) Grur(@y)  dius(yw) _
A ) R )

_ G ) @wor(@y) s (rw)
q5(w) q; (y) qy ()
To verify relation @[} in the case z = @, note that due to , it follows

that for any disjoint sets V,I € W and all configurations x € XV, y € X1,
z € Xyur, it holds

= 4" (y) @y’ (7)q7" (w).

v (2)q;"(y) = 4 (y) @i/ (). (11)
Then for any pairwise disjoint sets V, I, J € W and any configurations x €
XV, ye X we X7, we can write

¢ (2)q?* (y) = af (W) av” (x),
¢5(w)qy” (x) = gy (x)q5" (w),

Multiplying these relations, we obtain @ with z = @. O

Proof of Theorem [2] Let Q' = {¢i, 2z € X{;, V € W} bean f-specification.
For any V € W and x € XV, put

g @)
) =) (X q?<y>) ’ 12

where y € X', I € W (Z*\V). Let us show that this formula is correct (the
values of Py do not depend on the choice of y and I), and the family Py; =
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{Py,V € W} is a consistent in Kolmogorov’s sense system of probability
distributions.

First, we verify that the values of P, do not depend on the choice of y.
From , it follows that for any configuration v € X!, we have

and hence,

¢l () @) @) O
a7 () (Z Q?(y)>  qf(v) (Z Q?(v)> '

ueXV ueXV

Now we show that the values of P, do not depend on the choice of I.
Let J € W(Z¥\V) be another set. First, suppose that JN 1 = @. According
to @D with z = @, for any z,a € XV, y € X!, w € X”, we have

@ (2)qi (W) g5 (w) = ¢ (y)qi (x) g5 (w)

and
av(a)qr (y)as(w) = a7 (y)ay-(a)q(w).
Taking the ratio of the corresponding parts of these two equalities, we obtain

() av(a) qy(z) gv(a)

@Gw) @) @Gy Gw)

From here it follows that

g() @)\ @@ @@
<Z 5( )> 4 (y) (Z q?(y)> '

X
qJ(w) aceXxV a7\ aeXV

Suppose now that I NJ = S # . It is sufficient to show that for any
r,a € XV, ye XN we XV and 2z € X¥, one has

w'(x) '@ @) ¢"()
¢G(zw) qf(zy)  qf(zy) ¢5(zw)

According to , this relation is equivalent to

@) @'le) _ @'@) ¢*(a)
a7s(w) aits(y)  aitsly) afg(w)’

which holds true due to @D
From , it obviously follows that the function Py is a probability
distribution on XV, V' € W. Further, let us verify that the system {P,,V €
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W} is consistent in Kolmogorov’s sense. Using and , for any disjoint
sets V,A € W and all x € XV, we can write

-1

Z Pyua(zv) = qyua (V) Z qvua(af) _

veXA vEXA q}“’(y) aeXV BeXh q?ﬁ ()

-1

qV qA gx(v) gy (@)qx (B)gx(B)
=2 xy (v) 2 ¢ (v)ay’ (B)

a€XV peXxA

-1

~BE S o | T S we)) -

veEXA eXV y BexA

N N 1 A N
A <ZX q?(y)) = i)

where y € X! and I € W (Z\(V U A)). Thus, we showed that there exists
a random field Py; = {Py,V € W} constructed by f-specification Q7.
Let us show that Py, is compatible with Q/, that is, that the f-distri-

bution @’ (Pys) = {Q%, 2 € X!,V € W} of the random field Py coincides
with Q7. Applying (2), and (1)), for any disjoint sets V, A € W and all
r € XV, ze X" we can write

Qo) = TS

_ du(2) don09) G — 4

) anVZﬂexA a;"(y) ar(2) S 4 ()

_AOE@) (5 A @) G) « 4B
G @)\ e @W@ (@) ar(2) S ar ()

-1

— i (@) ZW S ¢ (a) GO _ e (),

peXA qI y) acXxV peXA a1

sy
—~
<
~—

where y € X’ and I € W (Z%\(V UA)).
It remains to note that Py is a unique random field compatible with
Q/. Indeed, if P is another random field compatible with Q7, then pr =
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Q= Qé, and by Theorem , P = P. Therefore, Q/ specifies Py O

Note that formula can be written in the following equivalent form

-1

Py(z) = QI (5) ., e XV, Vew, (13)

pex! qV z)

where I € W (Zd\V). Indeed, for any y € X!, we can write

(2) qv )\ |« g
y ) qv()q7 ()
4 (y)av(a) > a7 (B)
B Bex! G Wy (@) (B (x)
=2 a¥(£)q5 (y) P> ; N

aeXV BexI q%/(x qr <y>qV (33)

aeXV
:Z qu QV )a5 (y QV quﬁ Z (115
acXV BEXI (y>q\/ ﬂGXI QV .Z' aceXV ,BEXI qV ‘1.

where we used (8) and the fact that 3 ¢¥(8) = 3 ¢i(a) =
Bexl! acXV
Note also that the results of Theorems [1] and 2] can be formulated in the

following equivalent form.

Theorem 3 A system Q = {¢i, 2z € X{;, V € W} of strictly positive finite-
dimensional distributions parameterized by finite boundary conditions is an
f—distribution of the unique random field P compatible with it if and only if
the elements of Q satisfy the consistency conditions .

From the theorems above, it follows that there is a one-to-one correspon-
dence between a random field P and an f-specification Q/. In this regard,
the random field P can be identified with its system of finite-conditional

distributions, and one can write P = {Q%},z € X{;,V € W}. Therefore,
there are no statements about random fields that cannot be expressed in
terms of their f—distributions.

For example, in terms of Q7, estimates for mixing coefficients for random
fields with weakly dependent components can be obtained. Following Do-
brushin, Dalalyan and Nahapetian (see Theorem 2 in [11]) gave an estimate
for the difference between the conditional and unconditional distributions of
a random field, expressed by the difference between its one-point conditional
distributions with finite boundary conditions that differ at a point. Below
we present another proof of this result.
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Proposition 1 Let P = {Q},z € X{;,V € W} be a random field. Then
forany VA € W, VN A=Q, the following relation holds

sup ‘PV( ‘ <Zzpts>

TEXV zEXA teV scA
where
b= sup  sup sup [QV(x) — QU(x), s ez
wGXf Yy, veEXS e Xt

{t,s}

Proof. For any disjoint sets V,A € W and any x € XV, z € X*, we have

Py(x) — Z Py(w (z) — Qv (z)).

weXA

Let A = {sq, S2, ..., i } be some enumeration of the points of A, m = |A| > 1.
Using notations , we can write

Qu(@) - Qi) = 3 (@5 ) — QE (@)

k=1

Let now V' = {t1,ts,...,t,} be some enumeration of the points of V, n =
|V| > 1. For each k, 1 < k < m, denoting for brevity y = (zw)y, a = 25 and
£ = wy, we have

QU (@) — QU (@) = QY () — QY () =
= (@I () = QK (@0) ) Q5 (o) )+
QI (@) (QU @) — QI )
Similarly, for the bracketed expression in the right-hand summand, we obtain
Qg (@ gny) — Qi (@) =
= (QU"(22) — QI (02)) QU @A )+

QU (@) (QUE @ gan)) — AV (@) )

13
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Continuing this process the required number of times, we get

QW) - Qs z@ QU () e Q).
r1...2_103 T 10 8212
' < i/jl ! (l']) - tyj ' = ( )) Q:{y/\{;h ], (JZV\{tl,”_,t]_}) =
- ZQ{tl, ot 1} {tl,...,tj,l})'

xi1B T Bx1...T;
QI P ay) = QI ) ) QU ()

-----

Finally, we obtain

n

Qu(r) = Qi () =D D QE Y (@, )

k=1 j=1

(@ e ) — QT ) QR ).
From here it follows that

sup  [Py(z) = Qp(2)] <

reXV ze XA
m n
2W) 21,
sup > Pa(w) DD Q@)
mEX ,2€X weXA k=1 j=1
z1...xj_1(2w)pwy x1...25—1(2w) K2k z1...25 (2w) Wi
Jer (v;) - @ ()] Q2 (@ et) <
m n
§:§:t%=§32hm
Ol

Further, it seems more natural to give the definition of a Markov random
field in terms of the elements of its f—distribution (see, for example, [14]).
Namely, a random field P will be called a Markov random field (with respect
to a neighborhood system 9 on Z) if the elements of its f-distribution Qé

satisfy the following conditions: for all V€ W and z € X‘fv such that
JV C s(z), it holds

Qi (z) = QY (w), re XV, (14)



DESCRIPTION OF RANDOM FIELDS BY SYSTEMS OF CONDITIONAL DISTRIBUTIONS

Note that Dobrushin 2] defined a Markov random field somewhat differently,
imposing restrictions on its conditional probabilities with infinite boundary
conditions. In Section [5 we will show the equivalence of these definitions.

Remark 1 The collection of the elements of Qf with the same boundary
condition is consistent in Kolmogorov’s sense. Namely, for fired A € W and
2z € XA, it holds

Z q\z/ul(xy) - szf(l’)a x e XV? (15)

yeXx!

where V,1 € W(ZI\A), VNI = @. This means that the system Q»* =
{5,V € W(Z\A)} of probability distributions defines a unique random
field PM* on (XZN\N | 7\N)

Remark 2 [t follows directly from that for the elements of Q7, it holds
Gur(@y)qi*(v) = ayur(av)gr (), (16)

where v € XV, y,v € X!, zGX{jUI, V.ieWwW,Vnl=qQ.

On the other hand, if the elements of some system of strictly positive
finite-dimensional distributions parameterized by finite boundary conditions
satisfy conditions and , then they satisfy conditions as well. To
verify this, it is enough to take a sum of both sides of over all v € X7,

Relations , in their turn/,_@ld if and only if for any V € W, s € Z\V

and z,u € XV, ye X*, z € X{;U{S}, the following equality takes place

Grogsy (@Y ey (W) = o (uy) g (o). (17)

Remark 3 The elements of Qf for any V€ W and z € X{;, satisfy the
following relations

) - B ( qéy<a>>‘ Caexv 8

Gt \ S 6 W)

wherey € X', I € W (Z*\(V U s(z))). Note that for z = @, these relations
lead to (12]).

Since f-distribution Q£ of any random field P forms an f-specification,
all the above remarks stay true for Q;

The connection between unconditional and finite-conditional distribu-
tions of a random field P can be also expressed in the following form:

Py(x) = Y Qy(x)Pr(z), xeX",

zeXM

15
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where VA € W, VN A = . These relations can be considered as a
finite-dimensional analogue of the well-known DLR-equations (named after
Dobrushin, Lanford and Ruelle) in statistical physics. It is easy to see that
the solution to the direct problem given by formula (), when substituted
into this equation, leads to an identity. In terms of DLR-equations, the
solution to the inverse problem for @/ can be stated as follows.

Theorem 4 Let Qf be an f-specification. Then there exists a unique ran-
dom field P satisfying the finite-volume DLR-equations

Py(x) =Y qi(@)Pr(z), 22XV VAW, VNA=0. (19)

zEXA

In this case, Q; = Q.

Proof. Let us show that the functions defined by form a solution to
equations (19)). Taking into account and ([13)), for any pairwise disjoint
sets V, I, A € W, we obtain

> —1

s wern - S ) (5 5

zeXA zeXA acXA q
. -1
— ( qgij;) = P\/(Jf)
aEXA qV

Therefore, there exists a random field P finite-dimensional distributions
of which are defined by formula . As it was shown in the proof of
Theorem , Q£ = /. Finally, since any random field is uniquely determined
by its finite-conditional distribution, the random field P is unique. [J

3.2 System of one-point distributions with finite bound-
ary conditions

For a random field P, the set Q](P) = {Q?,z € X/t € Z%} of one-point
conditional probabilities with finite boundary conditions will be called the
one-point finite-conditional distribution of the random field P, or, in short,
its 1f-distribution. The system Q{ (P) was introduced in [11].

Let us consider the direct problem for a random field P in terms of the

system QI (P).

Theorem 5 Any random field is restored by its 1f—distribution.
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Proof. 1t is sufficient to note that the finite-dimensional distributions { Py,
V € W} of the random field P and its one-point finite-conditional probabil-

ities Q] (P) = {Q7,z € X/t € Z%} are connected in the following way

Tty -1
PV(x) = (Z 62;—(3/)) fgtl (th) ' tx;:lxt2 ($t3) Tt th‘t‘mxtlwil(l’tw\)a

where z € XV, y € X*, s € Z\V, and V = {t1,ts, ..., tjy|} is some enumer-
ation of the points of V € W. [J

The inverse problem for a system of one-point distributions parameter-
ized by finite boundary conditions was first considered in [11]. Below we
slightly improve the result of [11].

As the main characterizing property of the elements of the system Q{ (P),
we consider the follow easily verifiable property: for all ¢,s € Z% and

reXye X% 2z ¢ X{t’s}, it holds
Qi (2)Q (y) = Q(y) Q" (2). (20)

A system Q{ ={q,z € th .t € Z%} of strictly positive one-point prob-
ability distributions ¢f on X' parameterized by finite boundary conditions

z € th ,t € Z4, will be called a I-specification with finite boundary condi-

tions (or 1f-specification) if its elements satisfy the following consistency
conditions: for all ¢,s € Z? and v € X*, y € X*, 2z € X{t sp it holds

G (2)a;" () = ¢ ()@’ (2). (21)
Theorem 6 Any 1f-specification specifies compatible with it random field.

In the proof of this result, we need the following properties of the elements

of Q.
Lemma 2 The elements of 1f—specification Q{ satisfy the following relation
;" (2)q:" () (w)a (y) = ¢ (W) g (V)" (2)g:" (y) (22)

forallt,s € Z¢ and v,u € X', y,v € X®, z € X{tos}. Further, for any points

t,s,r € Z% and any configurations v € X', y € X*, w € X", one has

' (2)qs (y)g¥ (w) = ¢’ (v)q! (x) gy (w). (23)

17
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Proof. For any t,s € Z% and z,u € X!, y,v € X®, z € X{fts}, by (1)), we
can write

G W)a" () - ¢ (v)q" (v) - ¢ (v) g (v) - g7 (u)gs" (y) =

= ¢ (v)Z"(y) - G (v) " () - ¢ (w) g (v) - 42 (v) g (u),

whence, after the necessary reductions, follows . Now let us show
that stays true for z = @ as well. For different points t,s,r € Z?
and any configurations z,u € X', y,v € X*, z € X", according to (21]), we
have

@ (2)q7Y(2) - g5 (v)q, " (2) - qf () g (2) - ¢4 () g, (2) =
= q/(2)q" () - 47 (2)g5" (v) - ¢ (2)" (w) - ¢ (2) 5" (y)

and

45 ()G (2) - qf (w)q¥ (2) - ¢4 (v)g," (2) - ¢ (2) g (2) =
=4, (2)¢;" (y) - ¢/ (2)g;" (v) - ¢/ (2)gs" (v) - ¢/ (2) g ().

Dividing the first of these equalities by the second one, we obtain

g (2)gs (v)g; (w)ge(y) _ 4" (2)gZ" (v)g;" (u)gZ" (y)

W (way()ai(x) @& (y)a" (w)ez (v)g* (z)
It remains to note that the right-hand side of the relation above is equal to
one.

The validity of can be shown using the same reasonings that we
used to verify (9)). O

Proof of Theorem [6 Let Q] = {¢7, 2 € X/, t € Z%} be a 1 f-specification.
For all V € W and z € XV, put

PV<:C> = Ptl (wtl)q:;tl (th) ’ qutlth (mts) Tt th‘tvl"”xt‘v‘il (xt|V|>7 (24)

where

Py(u) = Ziiw <Z qty(a))_ . ueX, (25)

v\ 5 ¢ W)

y € X%, s € Z\V, and V = {t1,ts,...,t)y|} is some enumeration of the
points of V. First, let us verify the correctness of these formulas.

Using the same reasoning as in the proof of Theorem [2| and relations
and , one can verify that the right-hand side of (25)) does not depend
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on the choice of y € X* and s € Z4\V. Further, note (see the derivation of
formula (13))) that

P,(u) = (Z %) . ue X' (26)

BEXS Qt

Let us show that the right-hand side of does not depend on the
enumeration of the elements of V. It is sufficient to verify this statement for
enumerations ¢y, ...,tx_1, %, ..., 4y and ti, ..., g, tp_1, ..., )y differing in the
position of two successive points t;_; and tg, 2 < k < [V]. Thus, we need to
check that the following equalities hold true:

Tty Tty o

Gty e ag T () = @ (gt ()

and
Ptl (xh)qtgtl (xtz) = Pt2 (xtz)qt1t2 ('rh)‘

The first relation directly follows from the consistency conditions . The
second one becomes obvious if we use formula with s =t and y = xy,
to express P, and formula (25) with s =t and y = xy, for P,,.

It is not difficult to see that for each V' € W, the function Py defined
by is a probability distribution on XV, and the system {P,,V € W}
is consistent in Kolmogorov’s sense. Thus, there exists a random field P, f

such that (PQ{> = Py, V € W. For this random field, for any ¢ € Z¢ and
v

zZ € th, we have

P{t}Us(z)<xZ> Ps(z)(z)%z(x) t
Qf(x) = = =q(z), weX',
! PS(Z)<Z) Ps(z) (Z) !

and hence, Q{ (PQ{) = Q{ . According to Theorem PQ{ is the unique
random field compatible with Q{ .

Note that in Theorem 1 in [11], the conditions together with the
relations (22) with z = @ were considered as consistency conditions for the
system ;. However, as we have seen in Lemma , the relations follow
from , and thus, for the existence of the unique random field PQ{ it
is necessary and sufficient to require the fulfilment only of the consistency
conditions (21)).

From the theorems above, it follows that there is a one-to-one correspon-
dence between a random field P and an 1 f—specification Q{ . In this regard,
the random field P can be identified with its system of one-point finite-

conditional distributions, and one can write P = {Q?, z € X{,t € Z}.
Now let us consider the relation between the systems Q{ and Q. The
following statement holds true.

19
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Theorem 7 A set Q{ = {q¢},z € th,t € 74} of strictly positive one-point
probability distributions parameterized by finite boundary conditions is a one-
point subsystem of an f-specification QF = {¢i, 2 € X{;,V € W} if and
only if Q{ is a 1f-specification. The specification QF is uniquely determined
by Qf.

Proof. The necessity follows from the fact that the consistency condi-
tions of the elements of 1f—specification Q{ coincide with the prop-
erty of the elements of f-specification Q/ for V = {t} and I = {s}.
Let us prove the sufﬁcigricy.

Let Qf = {¢7, 2 € X/t € Z%} be a 1f specification. For any V € W,
put

2 - 2z 2Tty Ty -Tt ),

qV(I) = qt1 (Itl)qtg . (xtQ) BEEEEN (:Zt‘v‘l ’ i (xt|v|)7 (27)
where V' = {t1,t2,...,tjy|} is some enumeration of the points of the set V.
By , the values of ¢, do not depend on the way of enumeration of the

points of V. Moreover, as it is easy to see, for each V€ W and z € X{;, the
function ¢ is a strictly positive probability distribution on XV.

—~

Let us show that the system Qf = {¢¢, 2 € X{;, V € W} forms an f-
specification. For any disjoint sets V' = {t1,ts, ...t }, I = {51, 52, ..., 5111} €

W and configurations x € XV, y € X', 2z € X‘J;UI, one has

2Tt 2Lty Lto...Tt _
Gror(@y) = 6, (@)a " (2n) - ayy, T (@)
zx ZTYs ZTYs1Ysa - Ysp| - z 2T
s ) s Wsy) e sy (sy) = @ () g ().

Hence, the elements of Qf satisfy the consistency conditions .
The uniqueness of Q/ follows from the construction of its elements. [

The elements of an f-specification Qf can be also constructed by the
elements of 1f-specification Qf in the following way first introduced in [8]
for Dobrushin-type specifications. Note that this approach can be also used
under less restrictive conditions than strict positivity of the elements of
specifications.

Proposition 2 Let Qf ={¢,z € th,t € 7} be a 1f-specification. For
any Ve W andz € XV, z € X{., put
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where u € XV, V = {t1,to, ..., t,} is some enumeration of the points of the
set V, V| =n, and we used notations (). Then the system Qf = {¢5,z €

X{;, V e W} forms an f-specification.

Formula (28) can be equivalently written in the following recurrent form

" (y)ay (u) 3 ¢ (8)qi () 7

QE }UV(yx) = ZU Y ZU Z
y qs (U)qv (Qj) acXV BeXs qs (U)qV/BO’L)

zu€e XV, yve X z¢ X{;U{s}, seZN\V,VeWw.

The correctness of formula can be checked in the same way as it
was done in the paper [§] (see also [18]). The equivalence of formulas
and derives from the following chain of equalities

-1
2y

2 (y)a/ () > " (B)qy (a)

g (' (W) \ | Sy @ (0)a (u)

- L) ( Qf““)) (@) = G ) ).

¢ (u) Gexs q\Z/B(U)

qfs}UV (yﬂ?) =

were we used .
Constructed by Q{ f-specification Qf inherits properties of Q{ , for ex-

ample, Morkov property. We say that an f-specification Q7 is Markov if its
elements satisfy the Markov property . The following statement holds
true.

Proposition 3 For an f-specification QF to be Markov it is necessary and
sufficient that its one-point subsystem Q{ satisfy the Markov property.

Proof. The necessity is obvious. Let us prove the sufficiency. Let the

elements of Q{ satisfy the Markov property: for all ¢t € Z¢ and z € th such
that 0t C s(z), it holds

¢ (1) = ¢™(z), weX'

where 0 = {0t,t € Z%} is a neighborhood system in Z?. For V € W, let
A € W(ZN\V) be such that 9V C A. Since for any ¢ € V, one has

ot c OV U (V\{t}) C AU (V\{t}),
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for all z € X® and z,u € XV, we can write

Zav (zu); )atj

(zU)J)Bt ((L’ )

n (ZA

H = =
( (zu)j)o B

J=1 4y, 7 7 (uy)

(J

where V' = {t1,ts,...,t,} is some enumeration of the points of V., n = |V].
Hence, using and the Markov property of the elements of Q{ , we obtain

n z(xu) zau)] ' -1
qZV(x):qu ) (ZH ]>> i

jlq

acXV j=1 t] ( Uy

n Zav(w) zav (au); (a )
N H Z@V(wu ) < Z H zav o) > = qVOV (l‘)

jlt aeXV j=1 t ])

Moreover, the following statement is true.

Proposition 4 Let Q{ be a 1f-specification and let QF be the constructed
by it f—specification. Then PQ{ = Pyr.

Proof. 1t is sufficient to note that f-specification Qf is uniquely defined
by 1 f-specification Q{ , while each of the systems Q{ and Qf specifies a
compatible with it random field. [J

3.3 System of Palm-type distributions

Let P = {Py,V € W} be a random field and let Q% = {Q%,2 € X!/t €
Z3\V,V € W} be a family of its conditional probabilities under the condltlon
at a point defined by for S = {t}, t € Z%. The system Q% will be called
the Palm distribution of the random field P.

Theorem 8 Any random field is restored by its Palm distribution.

Proof. 1t is sufficient to note that for any V€ W and x € XV, the following
relations hold

Py(x) = (Z gjt(( ;) Qv (2v\() »

yeXs

where t € V, s € Z4\V. [
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It is clear that under a fixed boundary condition, conditional probabilities
are consistent in Kolmogorov’s sense. Moreover,

Qi (r)Qy (yu) = Q(Y) Ry (zu),

where t,5 € Z4, V € W(Z\{t,s}) and x € X!, y € X%, u € XV. It is
these two relations between the Palm-type conditional probabilities that we
propose to consider as consistency conditions for the elements of a system
of distributions parameterized by a boundary condition at a point.

A set Q"= {¢i,z € X't € Z\V,V € W} of strictly positive probabil-
ity distributions ¢¢ on XV parameterized by boundary condition 2z € X" at
a point t, t € Z will be called a Palm specification if its elements satisfy the
following consistency conditions:

1. forallt,s € Z4, V € W(Z%\{t,s}) and x € X', y € X*, u € XV, it holds
a! (z)qsov (yu) = a5 (Y) gLy (vu); (29)
2. for all disjoint sets I,V € W, t € ZN\(VUI) and z € XV, z € X', it

holds
> Giuilay) = qp (o). (30)

yex!

The solution to the inverse problem for the system QU is given in the
next theorem.

Theorem 9 Any Palm specification specifies compatible with it random field.

Proof. Let Q" = {¢f,z € X",t € Z°,V € W(Z*\{t})} be a Palm specifi-
cation. For any t € Z%, define P, by formula , and for any V € W,
V| > 1, put

PV(ZL‘) = Pt(xt)q‘x/t\{t}(Iv\{t}), T € XV, (31)

where t € V.
First, let us verify the correctness of these formulas. By , for all
t,s €2V e W(ZN\{t,s}) and x,u € X!, y,v € X*, z € XV we have

! (2)q5v (y2) - @5 (V) gy (22) - @ (w) gy (v2) - 44 () gy (uz) =
= @ (W) ay (v2) - ¢ (v)qiuy (v2) - ¢ (V) iy (uz) - ¢f (w)gey (¥2),
and thus,
q; (v)q; (v)q; (w)g (y) = q/ (w)a (v)g; () (y)-
Moreover, for any ¢,s,7 € Z% and v € X!, y € X*, v € X", we can write
@/ (2) a5,y (y0) - @7 (V) sy (2Y) - €5 ()], (20) =
= ¢ (V) (20) - ¢ (1)l 13 (y0) - @2 (V) 5 (2Y),

23
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and hence,
q; (¥)g; (v)ay (v) = g5 (y)at (x)g; (v).

The application of the reasoning used in the proof of Theorem [6] and the
obtained relations allows one to verify the correctness of formula and
the fact that for all ¢,s € Z¢ and z € X, y € X*, it holds

Pi(z)q; (y) = Ps(y)q/ ().

Using this equality and the consistency conditions , forallt,se VCW
and r € Xt y € X*, ue XV} we obtain

Pi(x) - gy gy () = Po(2)q5 (y) - G g (W) =

= P(y)al (@) - 4% () = Puly) - 1y a0).

Therefore, the values of P, do not depend on the choice of t € V., V € W,
and hence, formula is also correct.

It is easy to see that for all V' € W, the function Py, defined by
is a probability distribution on XV. Let us show that the elements of the
system { Py, V € W} are consistent in Kolmogorov’s sense. For all V. T € W,
VNI=¢and zc XV, with the usage of , we can write

Z Pyor(zy) = Pi(w) Z QEcxt/\{t})uj(wV\{t}y) =

yeX! yeX!
= Pt(xt)ng/t\{t} (xV\{t}) = PV($)7

where ¢ € V. Hence, there exists a random field Pon = {Py,V € W}. It
remains to note that according to (31)), one has Q"(Pgn) = QU, and by
Theorem , Pgn is uniquely determined by QM. O

Obtained one-to-one correspondence between a random field P and a
Palm specification Q' allows one to identify the random field P with its
Palm distributions and write P = {Q%,z € X', t € Z\V,V € W}. This
approach, in a certain sense, is dual to the one using the system Q{ . Indeed,
the system Q{ consists of probability distributions indexed by one-point
subsets of the lattice and parameterized by boundary conditions in finite
subsets, while for the elements of Q', on the contrary, one-point sets of the
lattice are supports for the boundary conditions and finite subsets stand for
the indexes. Palm systems can be convenient for studying lattice models of
point random processes.

The relation between f— and Palm specifications is revealed in the fol-
lowing statements.
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Theorem 10 A set Q" = {¢7,z € X', t € Z,V €e W(Z\{t})} of strictly
positive finite-dimensional probability distributions parameterized by bound-
ary conditions at a point is a subsystem of an f-specification QF = {q¢i, z €
X‘];, V € W} if and only if QU is a Palm specification. The specification Q'
is uniquely determined by QM.

Proof. Let us start with the necessity. According to , the elements of
an f-specification Q/ = {¢&, 2 € X{;, V € W} satisfy the following relations

Gy (zu) g/ (x)

oy (yu)  ¢*(y)

forall V.e W, t,s € Z\V and v € X!, y € X, u € XV. These are the
consistency conditions for the elements of Palm specification Q. The
consistency conditions for the elements of Q! are obtained by taking
the sum of both sides of over all y € X7 (see Remark . Hence, a sub-
system of an f—specification, which consists of the elements parameterized
by boundary conditions at a point, form the Palm specification.

Now, let Q! = {Q%,2 € X',t € Z)\V,V € W} be a Palm specification.
Forany VA€W, VNA=0 and z € X", put

qv (ZUZA t)
g (x) = LUAMD TENE o v (32)

Ty (Zanny)

where ¢ € A. Let us show that the values of ¢{, do not depend on the
choice of t € A. Indeed, according to the consistency conditions , for
any t,s € A, we have

qs* (Zs)q\Z;U(A\{s}) (z2A\(s})
a4 (z)

)

qiz/tu(A\{t}) (T2a\(1y) =

q; (Zs)qlzxs\{s} (2a\(s})

di\ g (2 = -
A\{t}( A\{t}) @ (z)

Then

Goa g (@2a\ () _ Gt (2)ay o sy (T2a\ (1) 45" (22) _ @o sp (@2a\(s))
a3\ gy (2angey) a7 (20)a2 (26) 43 oy (2 (s}) 03 1o (2 gs})

Further, according to , for each V € W and z € X{;, the function
q¢% is a probability distribution on XV and strictly positive by construction.
To complete the proof, it remains to show that the elements of the system

Qf = {¢,z € X{;,V € W} satisfy the consistency conditions (7). Let
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I,V,A € W be pairwise disjoint non-empty sets. For any v € XV, y € X/,
2z € X" and any point t € A, using , we can write

P Grorom gy (TYZa\(1)
Gror(vy) = =
qA\ (¢} (ZA\{t})

q\Z/tU(A\{t})(xZA\{t}> q\z/tuIU(A\{t})(xyzA\{t}) ; .
- Zt ’ Zt = qV(x)qI (y)
qA\{t}(zA\{t}) qVU(A\{t})(x’ZA\{t}>

O

Theorem 11 Let QY be a Palm specification and QF be the one constructed
by it f-specification. Then Pon = Py;.

4 Systems with various boundary conditions

In this section, we introduce and study systems of finite-dimensional and
one-point distributions parameterized by various (both finite and infinite)
boundary conditions.

4.1 System of finite-dimensional distributions with var-
ious boundary conditions

For a given random field P = { P,V € W}, consider the set Qp = {Q%,, z €
)/(T/, V € W} of its conditional probabilities that includes, in addition to
finite-conditional probabilities Qé, the conditional probabilities with infi-
nite boundary conditions, determined by formula . By the martingale
convergence theorem, the limits on the right-hand side of exist for al-
most all (in measure P) infinite boundary conditions. All other elements
of Qp with infinite boundary conditions can be set arbitrary. Thus, for P,
there are various systems @) p, all of which will be called the full conditional
distribution of the random field P.

Note that in his now-classic work [2], Dobrushin defined a conditional
distribution of a random field as a subsystem QZ of the system Qp con-
sisting only of those conditional probabilities Q% for which s(z) = Z4\V,
V € W. It seems more natural to call the system ) p, which includes condi-
tional probabilities parameterized by any (both infinite and finite) boundary
conditions, a conditional distribution of a random field. However, following
the tradition, we leave the term conditional distribution for the Dobrushin-
type conditional distribution considered in Section[5] The same approach is
applied to the terms specification and full specification.
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Since the full conditional distribution ()p contains the subsystem Qé,
which restores the random field P, the system ()p is also a solution to the
direct problem.

Theorem 12 Any random field is restored by its full conditional distribu-
tion.

It is not difficult to see that the elements of (Qp are connected by the
relations @ for all finite and P-a.e. infinite boundary conditions. Thus, the
relation @ establishes a connection between those elements of (Qp whose
boundary conditions differ no more than in a finite set. The relation ,
which is valid for P-a.e. configurations, reflects the connection between the
elements with finite and infinite boundary conditions. We consider these
relations as characterizing properties of QJp.

The set Q = {¢,z € Xy,V € W} of strictly positive probability dis-
tributions ¢i; on XV parameterized by boundary conditions z outside V,
V e W, will be called a full specification if its elements satisfy the following
consistency conditions:

1. for all disjoint sets V,I € W and all configurations = € XV, y € X/,
z € )?V\U], it holds

avor(ey) = o (2)ar" (y); (33)
2. forall V€ W and S C Z4\V,
¢y () =1Aigslq9(x), re X", ze X5 (34)

A full specification Q is called quasilocal if its elements are quasilocal as
functions on boundary conditions. Note that for a quasilocal specification
Q, the convergence in is uniform with respect to the boundary condition
z€ X% forall V€ W and S C ZN\V.

Let us consider now the inverse problem of the description of random
fields for a given full specification.

Theorem 13 Any full specification Q specifies a random field Py such that
Qp, = Q (for Pq-a.c. boundary conditions).

Proof. Let Q = {q{,z € )/(?/,V € W} be a full specification. Using the
same reasoning as in the proof of Theorem [2, we construct a random field
Py = {Py,V € W} such that Qf = ¢ for any V € W and any finite
boundary condition z € X{;.

Further, for any z € Xy and any increasing sequence of (finite) sets
A = {A, },>1 such that A 1 s(z), we have

Pyun, (xzp, P
Pron.(wzn,) = ¢’ (2),

= re XV, n>1.
Py, (za,) v
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As n — oo, the left part of the obtained relation Pg-a.e. converges to the
conditional probability Q% (z) of the random field Py, while its right-hand

side converges to ¢i (z) by (34). Hence, for Py-a.e. z € Xy, we have

; . Pyon,(z2a,) L o .
Qv (z) = gl_{gom = lim gy () = qi(z), =€ XV, vew,

that is, Qp, = Q for Pg-a.e. infinite boundary conditions. According to
Theorem , the random field Fq is uniquely determined by Q. [J

Let us return to the consideration of the conditional distribution @p of
the random field P. Since the elements of () p are defined for P-a.e. boundary
conditions, the random field P may have many versions of its full conditional
distribution. As it was mentioned above, the elements of any version of the
conditional distribution satisfy relations (33]) and for P-a.e. boundary
conditions. Moreover, the following statement takes place.

Proposition 5 For any random field P, there exists a version Qp of its
full conditional distribution, the elements of which satisfy the consistency
conditions for all boundary conditions.

Proof. Let Qp = {Q}, 2 € )/(;, V € W} be a version of the full conditional
distribution of the random field P. Denote by 27 the set of such configu-
rations z € X°, S C Z%\V, for which the limit in the right-hand side of

exists, V€ W,and let £ = |J Zv. In this case, P(Z") = 1.
Vew
Let us verify that z € 27 if and only if zz € 2 for any V € W(Z%\s(2))

and z € XV. Indeed, let z € 2. From the definition of 2", it follows that
for any disjoint sets I,V € W(Z%\s(z)), the following limits exist for all
r€ X" andy e X

Pyiroa(zyza) Pyua(xzy)

lim = Q7 ;(zy), lim = Q7 (x).
Ats(z)  Py(zp) Qvur(zy) As(z)  Pa(2p) Qvlz)
But in this case, there also exists the limit
. Pyoroa(ryza) L. Pyooa(ryzy) Pr(21)
ZT = lim ——> = lim ——~—%. lim ———~—_ =
) Ats(z)  Pyua(wza) Ats(z)  Pa(za) Ats(z) Pyua(z2a)
_ Qvur(ry)
Qy (x)

Now, let zz ¢ 2 for any V € W(Z¥\s(z)) and x € XV. If z € 27, then
from the fact proved above, it follows that zx € 2", which leads towards a
contradiction. Hence, z ¢ 2.
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Further, for all V € W and z € XV, put ¢i-(z) = Q% (z) if z € 2 and
¢ (v) = | X|7WVIif 2 ¢ 2. Tt is clear that the system Q = {¢%, z € Xy, Ve
W} is a version of the full conditional distribution of the random field P.
Let us show that the elements of () satisfy the consistency conditions
for all z.

If z€ 2, we have

avur(zy) = Qv (ry) = Q4 (2)Q7" (v) = ¢ (2)q;* (v)

for any I,V € W(Z\s(2)), INV = @ and z € XV, y € X'. In the case
z ¢ 2, it also holds that zx ¢ 2, and hence,

gior(zy) = | X7V = | XTIV XV = g (2) g7 ().
0

In the case P has a quasilocal version of its full conditional distribution,
both sets of the consistency conditions hold true for all boundary conditions.
Moreover, the following result takes place, that first was proved in [9] for
Dobrushin-type boundary conditions only (see Proposition [11| below).

Proposition 6 If a random field P has a quasilocal version Qp of its full
conditional distribution, then this version is unique and forms a full specifi-
cation.

Proof. Let (Qp be a quasilocal version of the full conditional distribution of
the random field P. Then the limits in the right-hand side of exist for
all boundary conditions, that is, the elements of ()p satisfy the consistency
conditions . The validity of the consistency conditions directly
follows from the definition of conditional probabilities.

Let us verify that the quasilocal version is unique. Assume the opposite.
Let Qp = {Q%,2z € Xy, V € W} and Fp = {F{,2 € Xy,V € W} be two
quasilocal versions of the full conditional distribution of the random field P.
Then for all V € W and = € XV, the function

fs(2) = Qi (x) — Fi(x), z¢e€ X% Scz\V,
equals to zero for P-a.e. z € X¥ i.e.,
P(X5)=P({z € X®: fs(z) #0}) =0.

Further, from the quasilocality of Qp and Fp, it follows the quasilocality
of fg, and thus, for any ¢ > 0, there exists Ay € W(S) such that for all
A D Ay, A € W(S), it holds |fs(z) — fa(za)] < e. Hence, if z € X, there
exists A € W(S) large enough such that fa(za) # 0. But in this case, by
positivity of P,

P(X5) > P(X{) > P(z) > 0,

and we come to the contradiction. O
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It is easy to see that the subsystem of a full specification Q, which consists
only of those elements which are parameterized by finite boundary condi-
tions, forms an f-specification Q/. On the other hand, an f-specification,
generally speaking, does not restore the full specification for which it is a
subsystem. However, the following statement holds true.

Proposition 7 Let Q' be an f-specification. Then there exists a system
Q* ={q¢t,z € Xv,V € W} of strictly positive probability distributions pa-
rameterized by various boundary conditions, all the elements of which satisfy
the consistency conditions . In this case, Q C Q*.

Proof. According to Theorem , for a given f-specification Q/, there ex-
ists a unique random field P such that Q’; = Q. By Proposition |5| this
random field P has a version Qp of its full conditional distribution which
elements satisfy the consistency conditions for all boundary conditions.
It remains to put Q* = Qp. U

Note also, that for the elements of a full specification Q, Remarks 1-3
are also true.

4.2 System of one-point distributions parameterized
by various boundary conditions

The system Q1(P) = {Q7,z € )/(\t,t € 74} of one-point conditional proba-
bilities of a random field P, defined by formulas (2)) and (3)) for V = {¢},
t € Z4, will be called a full one-point conditional distribution of the random
field P.

It is clear that Qf(P) C Q.(P), and hence, full one-point conditional
distribution of a random field is a solution to the direct problem.

Theorem 14 Any random field is restored by its full one-point conditional
distribution.

As the main characterizing properties of one-point conditional probabil-
ities we consider the property as well as the relation (for V' = {t},
t € Z%) establishing a connection between finite and infinite boundary con-
ditions. .

A system Q; = {¢f,z € X;,t € Z%} of strictly positive one-point prob-
ability distributions parameterized by various boundary conditions will be
called a full 1-specification if its elements satisfy the following consistency
conditions: -

1. forallt,s € Z%and x € X!, y € X*, z € X153, it holds

4 (7)gZ" (y) = ¢ (y)a;” (x); (35)



DESCRIPTION OF RANDOM FIELDS BY SYSTEMS OF CONDITIONAL DISTRIBUTIONS

2. for any t € Z% and S C Z\{t},

q; (z) = lim ¢;* (), re X' ze X5 (36)
AtS
A full 1-specification @ is called quasilocal if its elements are quasilocal
as functions on boundary conditions. For a quasilocal full 1-specification Q,
the convergence in is uniform in z € X° for all t € Z? and S C Z4\{t}.
Let us consider the inverse problem of the description of random fields
for a full 1-specification.

Theorem 15 Any full 1-specification Qi specifies a random field Pq, such
that Q1(Pq,) = Q1 (for Py, -a.e. boundary conditions).

The proof of this result is similar to the proof of Theorem (using
Theorem @ and, therefore, will be omitted.

Note that the elements of full 1-specification Q; satisfy the/foﬁ)wing
conditions: for any t,s € Z? and z,u € X!, y,v € X*, 2z € X?m}, the
following relations hold

;" (2)qZ" (v) g7 ()i (y) = ¢ ()" (v) g ()" (). (37)

It is not difficult to see that the one-point subsystem of a full specification
forms a full 1-specification. Moreover, the following statement is true, which
can be shown analogously to the proof of Theorem [7]

Theorem 16 A set Q; = {¢},z € )?t,t € Z%} of strictly positive one-point
probability distributions parameterized by various boundary conditions is a
one-point subsystem of a full specification Q = {q{,,z € Xy,V € W} if and
only if Qq is a full 1-specification. The specification Q is uniquely determined
by Q1.

As in the case of specifications with finite boundary conditions, the full
specification QQ can be constructed by the elements of the full 1-specification
Q; using either formula or formula (28). The full specification Q con-
structed from Q; inherits such properties of Q; as being quasilocal or Marko-
vian. Moreover, the following fact takes place.

Theorem 17 Let Qp be a full 1-specification and @Q be the constructed by
it full specification. Then Pq, = FPq.

Concluding this section, we note several properties of the full one-point
conditional distribution of a random field. These results directly follow from
the similar statements for a full conditional distribution or can be verified
independently using similar reasoning.
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Proposition 8 For any random field P, there exists a version Q1(P) of
its full one-point conditional distribution, the elements of which satisfy the
relations for all boundary conditions.

Proposition 9 If a random field P has a quasilocal version Q1(P) of its
full one-point conditional distribution, this version is unique and forms a
full 1-specification.

5 Systems of Dobrushin-type conditional dis-
tributions

Among the subsystems of the full conditional distribution of a random field,
the system introduced by Dobrushin in [2] occupies a special place. Inter-
est in this system is caused, first of all, by the problems of mathematical
statistical physics.

Dobrushin was the first to consider the problem of the description of a
random field by conditional probabilities. Further, Dachian and Nahapetian
in the series of works [6-8] showed that Dobrushin’s theory can be equiva-
lently formulated in terms of the system of consistent one-point distributions
parameterized by boundary conditions.

In this section, we formulate the main results of the mentioned works
from the point of view developed in the present paper.

5.1 System of finite-dimensional distributions with in-
finite boundary conditions

For a random field P, considered by Dobrushin [2] the system QR = {Q%,, 2 €
XZ\V V€ W} of conditional probabilities on X" parameterized by infinite
boundary conditions defined everywhere outside V', V' € W, will be called
infinite conditional distribution of the random field P, or just conditional
distribution of P.

Dobrushin’s system is not a solution to the direct problem, since different
random fields can have the same infinite conditional distribution (see, for
example, [10]). Nevertheless, one can single out a class of random fields that
can be restored by their conditional distribution (see Theorem 2 in [2]).

Theorem 18 Let a random field P be such that its conditional distribution

B is quasilocal and satisfy the following condition

Z ps,t S a < 1, (38)

s€Z\{t}
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where

ot = sup 5 0 105 ~ Q).

z,yEXZd\{i}:de\{t’S}:yZd\{t’s} zeXt

Then the system QX restores P.

The main property of conditional probabilities considered by us can-
not be written for Dobrushin-type conditional probabilities directly in the
form @ However, as it is not difficult to see, for the elements of QZ,
relations @ can be written as follows

Quur(zy) = Q7" (y) Z Qvur(zh),

pext

where V,I e W, VNI =Qand z € XV, y € X!, 2 € XZ\VUI)_ 14
is this relation that Dobrushin considered as the characterizing property of
conditional probabilities with infinite boundary conditions.

The set QP = {¢i,z € XZ\V.V € W} of strictly positive probability
distributions parameterized by infinite boundary conditions will be called a
specification in Dobrushin’s sense, or just specification if its elements satisfy
the following consistency conditions: for all disjoint sets V,I € W and all
configurations z € XV, y € X7, z € XZ\VUD it holds

oY) = 4" () D qiur(@h). (39)

Bex!

Dobrushin presented conditions under which a specification Q” defines
a random field (see Theorem 1 in [2]). In this case, there may exist several
random fields whose conditional distribution a.e. coincides with QY. How-
ever, the conditions on the elements of QP under which it specifies (uniquely
determines) compatible with random field are known (see, for example, The-
orem 2 in [2]).

Theorem 19 Let QP be a quasilocal specification. Then there exists a ran-
dom field Poo such that QP (Pqp) = QP (Pqo-a.e.). If, in addition, condi-
tion is satisfied, then the random field Pyo is unique.

Note that in the theory of Gibbs random fields, the inverse problem
for Dobrushin’s specification QP is usually formulated in terms of DLR—
equations. Namely, for a given (Gibbs) specification Q” = {¢3,z € X2"\V,
V € W}, one considers the question of the existence as well as the uniqueness
of a random field P = {Py,V € W} satisfying the following equations

Py(z) = / qv () Pga\yv (2)
2e X2V

forallz € XV and V € W.
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Remark 4 The consistency conditions can be written in the following
equivalent form: for all disjoint sets V.1 € W and all configurations x,u €
XV, ye X!, ze XE\NVUD it holds

aior(@y)ay (u) = ¢or(uy) gy (z).

These relations are true for the elements of f— and full specification as well

(see Remark[9).

Remark 5 The elements of a specification QP are connected with each other
by the following analogues of relations .' forall I,V e W, VNI=0,
and z € XZ\VYD it holds

-1
. (@) 0’ (@) XV
2, dvuiled) = o (anV qi“(.u)) L TER

where y € X1,

Any full specification @ contains a subsystem Q” which is a specification
in the sense of Dobrushin. However, not every specification QP defines a full
specification Q for which it is a subsystem. Moreover, if QP defines some full
specification Q and some random field Pyp, it may turn out that Pq # Pyo.

Let us mention some properties of conditional distribution Q& of a ran-
dom filed P. It is clear, that P may have several versions of its infinite
conditional distribution Q. Also, the following statements take place (see,
for example, Theorem in [13] and Proposition 3.3 in [9], and compare with
Propositions |8 and @ of the present paper).

Proposition 10 For a random field P, there exists a version QY of its
conditional distribution which forms a specification.

Proposition 11 If a random field P has a quasilocal version QE of its
conditional distribution, then this version is unique and forms a specification.

Dobrushin [2] defined a Markov random field P (with respect to a neigh-
borhood system 9 = {0t,t € Z} in Z%) as one for which the elements of
D satisfy the following conditions: for all V. € W and P-a.e. z € X Zd\v, it

holds
Qi(@) = Q7" (1), wex", (40)

Let us show that this definition is equivalent to the one given in Section [3.1}

Proposition 12 A random field P is Markovian if and only if the elements
of its conditional distribution QX satisfy the conditions ([40]).
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Proof. Let P be a Markov field. Then for any disjoint sets V, A € W such
that OV C A, and any configuration z € X Z\V  we have

Ha) = Q¢ (2), weXV
Passing in this relation to the limit as A 1 Z%\V, we obtain
Qi) = Q" (@) (Pac),  ze X,

and hence, the elements of conditional distribution Q¥ of the random field
P satisfy relations .

Now, let a random field P be such that the elements of its conditional
distribution QP satisfy (40). By Sullivan’s inequality ([]), for any V, A € W,
VAA=0 and z € XV, 2z € X", we have

inf QL@ < Qi) < s Q).

d
YyEXLN\V yp=2 yexzd\v:yA:Z

Thus, if A is such that 0V C A, we obtain

ap QU= s QUY() — Q)
yEXZNV 1y =2 yEXZNV 1y =2

inf QY (x) = inf QY (z) = QY (x),
yEXZNV 1y =2 yEXZNV 1y =2

and hence, Qf (z) = Q%Y (z). Therefore, P is a Markov random field. [J

5.2 System of Dobrushin-type one-point distributions

Considered in [6-8] system QP(P) = {Q7, z € X%\ t € Z9} of one-point
conditional distributions with infinite boundary conditions will be called the
Dobrushin-type one-point conditional distribution of the random field P, or,
in short, the one-point conditional distribution of P.

The distribution QP (P), generally speaking, does not restore the random
field P (see the corresponding remarks for the system QF).

Theorem 20 Let a random field P be such that its one-point conditional
distribution QY (P) is quasilocal and satisfy the condition (38). Then the
system QP (P) restores P.

The main characterizing property of one-point conditional probabil-
ities cannot be written down directly for the elements of QP (P). However,
as it is not difficult to verify, for the one-point conditional probabilities of
Dobrushin’s type, it holds

¢ (2)QF (0)QF (W)@ (y) = QF (W) QT (v)Q7" (2)Q3" (y)
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for all t,s € Z z,u € X!, y,v € X® and P-a.e. boundary conditions
z € XZ\tsh Tt is this relation that was singled out in works [7,|8] as the
determining one for the systems of one-point distributions parameterized by
Dobrushin’s type boundary conditions.

Aset QP ={¢7, 2 € X2\ ¢ e 74} of strictly positive one-point prob-
ability distributions parameterized by infinite boundary conditions will be
called a 1-specification (in Dobrushin’s sense) if its elements satisfy the fol-
lowing consistency conditions: for all ¢,s € Z% and z,u € X!, y,v € X*,
z € X2\t it holds

;" (2)qZ" (v)gi" ()i (y) = ¢t ()" (v) " ()" (). (41)

The inverse problem for a 1-specification may not have a solution. How-
ever, the following statement holds true (see Theorem 4.2 in 7] and Theorem
21 in [8]).

Theorem 21 Let QP be a quasilocal 1-specification. Then there exists a
random ﬁeld Pop such that QD(PQD) QP (P-a.e.). If, in addition, the
condition is satisfied, then the random field Pqp is unique.

The connection between Dobrushin-type 1-specification and specification
is given in the following statements (see Theorem 19 in [§]).

Proposition 13 Let QP be a I-specification. Then there exists a unique
specification QP such that QP c QP.

The proof of this result was obtained in [§], where the construction of
the elements of specification QP by the elements of 1-specification QP was
carried out according to formula (28)). From this formula, in particular, it
follows that the constructed specification QP inherits such properties of QP
as quasilocality and Markovness. Moreover, the following fact holds true.

Theorem 22 Let QP be a 1-specification and let QP be the constructed by
it specification. Then the set of random fields compatible with QP coincides
with the set of random fields compatible with QP.

At the same time, 1-specification, generally speaking, does not define a
full specification Q; such that QP c Q.

Returning to the consideration of the one-point conditional distribution
of a random field, we note that the random field P may have many versions
of it, while the following statements are true (see Propositions [5| and |§| in
this paper and Proposition 3.3 in [9]).

Proposition 14 For a random field P, there exists a version QP (P) of its
one-point conditional distribution which forms a 1-specification.
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Proposition 15 If a random field P has a quasilocal version QP (P) of its
one-point conditional distribution, then this version is unique and forms a
1-specification.

It should be noted that Dobrushin-type 1-specification is a fundamental
object, in terms of which the foundations of the general theory of Gibbs
random fields were laid (see [9] and [10]).

Note also, that if one considers a finite-volume 1-specification Q) =
{q?, 2 € XM ¢ € A} as a system of probability distributions consistent in
the sense of (41), then it specifies compatible with it finite random field Py,
A € W. For details, see [18].

Concluding remarks

We considered various ways of describing random fields by systems of consis-
tent finite-dimensional distributions parameterized by boundary conditions.
We presented (in the majority of cases, necessary and sufficient) conditions
on the elements of these systems to coincide with the corresponding condi-
tional probabilities of a random field.

The preference for one or another system, of course, depends on the
task at hand. First of all, we note that the Dobrushin-type systems QP
and QP are widely used in mathematical problems of statistical physics.
Despite the fact that these systems do not specify a random field, perhaps,
their main role is revealed in the theory of phase transitions. Namely, in
Dobrushin’s theory of description of Gibbs random fields, the non-uniqueness
of the solution to the inverse problem is interpreted as the presence of a phase
transition in the model under consideration (see the fundamental work [4]).

The system Q7 of distributions parameterized by finite boundary con-
ditions uniquely determines a random field and, therefore, can be useful in
many theoretical considerations. It is especially convenient that it turns out
to be sufficient to have a one-point system Q{ of such distributions. First of
all, we note that this system seems to be the most natural for application in
the theory of Markov random fields. In particular, it can be used to describe
Gaussian Markov random fields that are ubiquitous in various applications
(corresponding paper is being prepared; see also [20]). In addition, many
properties of a random field are expressed in terms of conditions on Q{ .
Note, for example, the mixing conditions [11], the constructive uniqueness
criterion [5], and the fact that the probabilistic definition of a Gibbs random
field (without using the notion of potential) was given in [9] precisely in terms
of the system Q{ . As regards the system QU of Palm-type distributions, it
seems to be useful in studying discrete models of point processes.

The system @ (Q1), being the most general, is primarily of theoretical
interest. On the other hand, despite its generality, it admits a convenient
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representation: its elements can be represented in the Gibbsian form (this
issue will be considered in a separate publication).

As for the main property of conditional probabilities used as the consis-
tency conditions (see the relations (7)) and (33, which differ only in restric-
tions on the supports of the boundary conditions), we note that this relation
was used by Renyi [22] as the third axiom in constructing his axiomatic of
probability theory by means of conditional probabilities. We also note that
in [1], it was shown how, based on the relation (33)), to obtain the consis-
tency conditions for other systems of probability distributions considered in
the paper.

For the sake of simplicity, in this paper, we considered systems of strictly
positive probability distributions and positive random fields only. However,
the similar results can be obtained under less restrictive positivity conditions
applying the approach introduced in [8] (see also [18]). Our results carry
over in a natural way to the case of infinite (both countable and continuous)
measurable spaces X (under a suitable integrability condition).

Finally, let us note that both direct and inverse problems of the de-
scription of random fields can be solved in terms of systems of correlation
functions (see [17] and the references therein). Also, this problem can be
considered from the algebraic point of view as a problem of consistency of
an appropriate infinite system of linear equations (see [15]).
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