ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 2010, 14–21

On injectors of finite groups

Shitian Liu* and Runshi Zhang**

- * School of Science, Sichuan University of Science & Engineering, Zigong 643000 P.R.China. liust@suse.edu.cn
- ** School of Science, Sichuan University of Science & Engineering Zigong 643000 P.R.China. zhangrs-75@163.com

Received by the editors May 07, 2010; accepted for publication February 15, 2010.

Abstract

If \mathscr{F} is a non-empty Fitting class, $\pi = \pi(\mathscr{F})$ and *G* a group such that every chief factor of $G/G_{\mathscr{F}}$ is an C_{π}^{s} -group. Then *G* has at least one \mathscr{F} -injector. This result is used to resolve an open problem and generalize some known results.

Key Words: Fitting class, Soluble, Chief factor, *F*-injector. *Mathematics Subject Classification* 2000: 20D10, 20F17

1 Introduction

All groups in this paper are finite. Fischer, Gaschütz, and Hartley [1] proved that for any Fitting class \mathscr{F} and any finite solvable group G there exist \mathscr{F} -injectors and any two of them are conjugate in G. A class \mathscr{F} of groups is a Fitting class if (i) $G \in \mathscr{F}$, $N \triangleleft G$ implies that $N \in \mathscr{F}$ and (ii) $N_1, N_2 \triangleleft G, N_1, N_2 \in \mathscr{F}$ implies that $N_1N_2 \in \mathscr{F}$. Fitting classes were introduced by Fischer, Gaschütz, and Hartley [1]. If \mathscr{F} is a Fitting class, each group G possesses a unique maximal normal \mathscr{F} -subgroup called the \mathscr{F} -radical of G and denoted by $G_{\mathscr{F}}$, which contains each subnormal \mathscr{F} -subgroup of G. Furthermore if N is subnormal in G, then $N_{\mathscr{F}} = N \cap G_{\mathscr{F}}$. A subgroup V of G is called an \mathscr{F} -injector of G if $V \cap N$ is \mathscr{F} -maximal in N for each subnormal subgroup N of G. In particular, an \mathscr{F} -injector V of G lies in \mathscr{F} and contains $G_{\mathscr{F}}$. Tomkinson in [2] proved that let \mathscr{F} be a Fitting class, then the \mathcal{G} -group G possesses \mathscr{F} -injectors, where \mathcal{G} is the class of

15

periodic locally soluble FC-groups. Flavell in [3] proved that if *G* is a group whose local subgroups are \mathcal{N} -constrained, then all nilpotent injectors of *G* are conjugate. Guo, and Vorob'ev [4] described the \mathcal{H} -injectors associated with a Hartley class \mathcal{H} . And some good results are given by some authors (see [5, 6, 7, 8]).

In this note, we give the following notations (see [9, p386-387]):

 π : any set of primes.

 E_{π} : *G* has at least one Hall π -subgroup;

 C_{π} : G satisfies E_{π} and any two Hall π -subgroups of G are conjugate in G.

 E_{π}^{n} : *G* has a nilpotent Hall π -subgroup.

 C^s_{π} : *G* satisfies C_{π} and its Hall π -subgroup are soluble.

Guo, and Li [10] gave that, let \mathscr{F} be a non-empty Fitting class, $\pi = \pi(G)$ and G a group such that every chief factor of $G/G_{\mathscr{F}}$ is an E_{π}^{n} -group, then G has at most one \mathscr{F} -injector and any two \mathscr{F} -injectors are conjugate in G.

Concerning Fitting classes and \mathscr{F} -injectors, the following problem arose:

Problem (see [11]). Let \mathscr{F} is a local Fitting class. Could we describe the \mathscr{F} -injectors of a group?

In this note, we will partially deal with the problem and prove the following main theorem.

Theorem 1.1. Let \mathscr{F} be a non-empty Fitting class, $\pi = \pi(\mathscr{F})$ and G a group such that every chief factor of $G/G_{\mathscr{F}}$ is an C^s_{π} -group. Then

(1) G has at least one \mathscr{F} -injector.

(2) Any two \mathscr{F} -injector are exactly all the \mathscr{F} -maximal subgroups which contain the \mathscr{F} -radical $G_{\mathscr{F}}$.

(3) In any G there exist \mathscr{F} -injectors and any two of them are conjugate in G.

For some notion and notations, the reader is referred to Ballester-Bolinches and Ezquerro [12], and Doerk and Hawkes [13].

2 Preliminaries

Definition 2.1 ([1]). A class \mathscr{F} of groups is a Fitting class if (i) $G \in \mathscr{F}$, $N \lhd G$ implies that $N \in \mathscr{F}$ and (ii) $N_1, N_2 \lhd G, N_1, N_2 \in \mathscr{F}$ implies that $N_1N_2 \in \mathscr{F}$.

Definition 2.2 (see [12] or [13]). A subgroup V of G is called an \mathscr{F} -injector of G if $V \cap N$ is \mathscr{F} -maximal in N for each subnormal subgroup N of G.

Lemma 2.1 ([1]). Let \mathscr{F} be a Fitting class. Then a soluble group G has at most one \mathscr{F} -injector and any two \mathscr{F} -injectors of G are conjugate in G.

Lemma 2.2 ([10]). Let \mathscr{F} be a Fitting class, and H an \mathscr{F} -injector of G. Then the following statements hold:

(1) H is an ℱ-maximal subgroup of G;
(2) G_ℱ ≤ H;
(3) For every x ∈ H, H^x is also an ℱ-injector of G;
(4) If K is subnormal subgroup of G, then H ∩ K is an ℱ-injector of K.

Lemma 2.3 ([1]). If V is an \mathscr{F} -injector of G and $V \leq H \leq G$, then V is an \mathscr{F} -injector of H.

Lemma 2.4 ([1]). Let $N \triangleleft G$ with G/N nilpotent. If V_1 and V_2 are \mathscr{F} -maximal in G and $V_1 \cap N = V_2 \cap N$ is \mathscr{F} -maximal in N, then V_1 and V_2 are conjugate in G.

Lemma 2.5 ([15, p334], or [14, Corollary 7.3.12]). Let \mathscr{F} be a Fitting class, if H is subnormal subgroup of G, then $H_{\mathscr{F}} = H \cap G_{\mathscr{F}}$.

Lemma 2.6 ([13, IX-Lemma 1.6]). Let \mathscr{F} be a Fitting class, and let G be a finite soluble group. Let $N \lhd G$, and let L be a subgroup of G such that $L \cap N$ is an \mathscr{F} -injector of N. Assume that either (1) G/N is nilpotent, and L is \mathscr{F} -maximal in G, or (2) $L \in \mathscr{F}$ and LN = G. Then L is an \mathscr{F} -injector of G.

Lemma 2.7 ([9, Theorem C1]). If G has a series in which every factor is a C^s_{π} -group, then G is a C^s_{π} -group and every Hall π -subgroup of G is solvable.

Lemma 2.8. Let \mathscr{F} be a Fitting class and G a group. Suppose that $G/G_{\mathscr{F}}$ is soluble and G/N is soluble. If V is an \mathscr{F} -maximal subgroup of G and $V \cap N$ is an \mathscr{F} -injector of N, then V is an \mathscr{F} -injector of G

Proof. Assume that the Lemma is not true and *G* is a minimal-order-counter-example. By [**12**, **Theorem 2.4.27**], *G* has a unique conjugate class of \mathscr{F} -injectors. Let V_0 be a \mathscr{F} -injector of *G*, then, by Lemma 2.2(1), V_0 is a maximal \mathscr{F} -subgroup of *G*.

Cases 1. *NV* < *G*.

Since G/N is soluble, VN/N is soluble. Obviously V is also a maximal \mathscr{F} -subgroup of VN. By Lemma 2.5, $(VN)_{\mathscr{F}} = NV \cap G_{\mathscr{F}}$. Hence the quotient $NV/(NV)_{\mathscr{F}} = NV/(NV \cap G_{\mathscr{F}}) \cong NVG_{\mathscr{F}}/G_{\mathscr{F}} \leq G/G_{\mathscr{F}}$ is soluble. Thus, the minimal choice of G implies that V is an \mathscr{F} -injector of G. By [12, Theorem 2.4.27], G has a unique conjugate class of \mathscr{F} -injectors, there exist an element $x \in NV$ such that $(V_0 \cap NV)^x = V$, and so $V \leq V_0^x$. Since an \mathscr{F} -maximal subgroup of $G, V = V_0^x$, and so V is an \mathscr{F} -injector of G by virtue of Lemma 2.2(3), a contradiction.

Cases 2. NV = G.

17

Let M be a maximal normal subgroup of G containing N. Since G/N is soluble, M/N is soluble. It is easy to see that $V \cap M \triangleleft V$. Let V_1 be an maximal \mathscr{F} -subgroup of M with $V \cap N \leq V_1$. Since $V \cap N = (V \cap M) \cap N \leq V_1 \cap N$ and $V_1 \cap N = (V_1 \cap N) \cap (NV) = (V \cap N) \cap (V_1 \cap N) \leq V \cap N$, $V_1 \cap N = V \cap N$ is an \mathscr{F} -injector of N by hypotheses, and, by Lemma 2.5, the quotient $M/M_{\mathscr{F}} = M/(M \cap G_{\mathscr{F}}) \cong MG_{\mathscr{F}}/G_{\mathscr{F}} \leq G/G_{\mathscr{F}}$ is soluble. The minimal choice of G implies that V_1 is an \mathscr{F} -injector of M. Since $M = (NV) \cap M = N(V \cap M) \leq NV_1 \leq G$, $NV_1 = G$ or M. If the former, then, $G/N = NV/N \cong V/V \cap N \cong V_1N/N \cong V_1/V_1 \cap N$. Comparing the order, we have $V_1 = V^x$ for some $x \in G$. By Lemma 2.2(3), V_1 is an \mathscr{F} -injector of G, a contradiction. So have $M = NV_1$, and $|N(V \cap M)| = |NV_1| = |M|$. This shows $|N||V \cap M|/|V \cap N| = |N||V_1|/|N \cap V_1|$ and hence $(V \cap M)^x = V_1$ for some $x \in G$. By Lemma 2.2(3), $V \cap M$ is an \mathscr{F} -injector of M. By [12, Theorem 2.4.27], there exists an $x \in M$ such that $V_0 \cap M = (V \cap M)^x = V^x \cap M$. Moreover, by Lemma 2.2(1), V_0 , V^x are \mathscr{F} -maximal subgroup of M and $G_{\mathscr{F}} \leq V \cap V_0$. By [16, Lemma 2.3], V, V_0 are conjugate in G, and so V is an \mathscr{F} -injector of G, a contradiction.

This completes the proof. \Box

Lemma 2.9. Let \mathscr{F} be non-empty Fitting class and G a group. If every chief factor of $G/G_{\mathscr{F}}$ is an C^s_{π} -group and $N \triangleleft G$, then every chief factor of $N/N_{\mathscr{F}}$ is also an C^s_{π} -group.

Proof. By hypotheses, there exists a series

$$G_0 \le G_1 \le G_2 \le \dots \le G_n = G$$

Such that every chief factor are C^s_{π} -group. Since $N_{\mathscr{F}} = N \cap G_{\mathscr{F}}$ by Lemma 2.5, $N/N_{\mathscr{F}} = N/(N \cap G_{\mathscr{F}}) \cong NG_{\mathscr{F}}/G_{\mathscr{F}} \leq G/G_{\mathscr{F}}$. It follows that, intersection of N and the above series is the series such that every chief factor of $N/N_{\mathscr{F}}$ is also an C^s_{π} -group.

This completes the proof. \Box

3 Some results

In this section, we will give the proof of the main theorem 1.1 and some applications.

The proof of Theorem 1.1

Proof. Our proof proceeds via a number of steps.

Step 1. *G* is a C_{π} -group and if *H* is a Hall π -subgroup of *G*, then $H/H_{\mathscr{F}}$ is soluble.

By Lemma 2.7, we have *G* is a C_{π} -group and, since $G_{\mathscr{F}} \leq H_{\mathscr{F}} \leq H$, $H/H_{\mathscr{F}}$ is soluble. **Step 2.** If *G* has an \mathscr{F} -injector, then an \mathscr{F} -injector of *G* is also an \mathscr{F} -injector of some

Hall π -subgroup of G.

Let *V* be an \mathscr{F} -injector of *G*. Assume that *V* is a π -group of *G*. Without loss of generality, assume that $V \leq H$. Now prove that *V* is also an \mathscr{F} -injector of *H*.

18

Denote
$$N = G_{\mathscr{R}}$$
. Then set

 $\mathscr{F}^* = \{M/N : M \in \mathscr{F}, N \leq M\}$ is a Fitting set of the soluble group G/N. Moreover, by [13, VIII-2.17(a)], have that

 $\mathscr{F}_0 = \{S \leq G : SN/N \in \mathscr{F}^* \text{ and } S \text{ is subnormal in } SN\}$

is a Fitting set of *G*. Observe that $\mathscr{F}_0 \subset \mathscr{F}$ and, for any subnormal subgroup *S* of *G*, $S_{\mathscr{F}_0} = S_{\mathscr{F}}$. By hypotheses of the theorem, *G* has a subnormal series

 $1 \le N = G_{\mathscr{F}} = G_0 \le G_1 \le G_2 \le \dots \le G_n = G$

such that G_i/G_{i-1} is a *G*-chief factor and is an E^s_{π} -group. By [**13**, **VIII-2.17(b**)], if V/N is an \mathscr{F}^* -injector of H/N, then V is an \mathscr{F}_0 -injector of H. Since $G_{\mathscr{F}} \leq H$, H has the subnormal series

$$1 \leq G_{\mathscr{F}} = H \cap G_0 \leq G_1 \cap H \leq G_2 \cap H \cdots \leq G_{n-1} \cap H \leq G_n \cap H = H.$$

such that $G_i \cap H/G_{i-1} \cap H$ is an E_{π}^s -group by Lemma 2.6. And also V is an \mathscr{F} -injector of H. To see that, we prove that, for any subnormal subgroup $H_i = G_i \cap H$ of H, the subgroup $V \cap H_i$ is \mathscr{F} -maximal in H_i . Suppose that there exists $W \in \mathscr{F}$ such that $V \cap$ $H_i \leq W \leq H_i$. Then $(V \cap H_i)N/N = (V/N) \cap (SN/N) \leq WN/N \leq H_iN/N$. Since $H_{i\mathscr{F}0} = H_{i\mathscr{F}} \leq V \cap H_i \in \operatorname{Inj}_{\mathscr{F}0}(H_i)$, then $H_{i\mathscr{F}} \leq W$. By Lemma 2.5, $N \cap H_i = H_{i\mathscr{F}}$. Therefore $W(N \cap H_i) = WH_{i\mathscr{F}} = W$, W is subnormal in WN, and so $WN \in \mathscr{F}$. Thus, $WN/N \in \mathscr{F}^*$. Since $(V/N) \cap (H_iN/N)$ is \mathscr{F}^* -maximal in H_iN/N , $(V \cap H_i)N = WN$, This means that $V \cap H_i = (V \cap H_i)(N \cap H_i) = WN \cap H_i = W$, and $V \cap H_i$ is \mathscr{F} -maximal in H_i . Therefore, have that $V \in \operatorname{Inj}(G)$.

Step 3. If *G* have \mathscr{F} -injectors, then any two \mathscr{F} -injectors are conjugate in *G*.

By [13, VIII-2.15], if $V \in \text{Inj}(G)$, then V/N is an \mathscr{F}^* -injector of the soluble group G/N. By Lemma 2.1, the \mathscr{F}^* -injectors of G/N are conjugate in G/N. And so any two \mathscr{F} -injectors are conjugate in G.

Step 4. *G* has an \mathscr{F} -injector.

Let *H* be a Hall π -subgroup of *G*, Then $H/H_{\mathscr{F}}$ is soluble by step 1, and hence *H* has an \mathscr{F} -injector by [**12**, **Theorem 2.4.27**]. In order to prove that *G* has an \mathscr{F} -injector, only needs to prove an arbitrary \mathscr{F} -injector of *H* is an \mathscr{F} -injector of *G*.

Let *V* be an \mathscr{F} -injector of *H*. Let *K* be an subnormal subgroup of *G*. Then $V \cap K$ is a subnormal subgroup of *H*. By Lemma 2.2(4), the subgroup $V \cap K = (V \cap H) \cap K =$ $V \cap (H \cap K)$ is an \mathscr{F} -injector of $H \cap K$. Since $|K : H \cap K| = |KH : H|$ is a π' -number, $H \cap K$ is a Hall π -subgroup of *K*. So we need to deal with the following cases: K = G or K < G.

Case 1: K < G. Then by induction, $V \cap K$ is an \mathscr{F} -injector of K, and $V \cap K$ is an \mathscr{F} -maximal subgroup of K. Since K is arbitrary, V is also an \mathscr{F} -injector of G.

Case 2: K = G. Let W be an maximal \mathscr{F} -subgroup of G with $V \leq W \leq G$. Since for every subnormal subgroup M of G, $W \cap M = V \cap M$ is an \mathscr{F} -maximal subgroup of M

by case 1. And so W is an \mathscr{F} -injector of G. Since $G \in C^s_{\pi}$, there exists an element $x \in G$ such that $V \leq W \leq H^x$. But, by Lemma 2.2(3), V^x is also an \mathscr{F} -injector of H^x . By step 2, W is also an \mathscr{F} -injector of H. Since $H/H_{\mathscr{F}}$ is soluble, by [**12**, **Theorem 2.4.27**], W and V are conjugate in G, and so V = W.

This completes the proof. \Box

Remark 3.1. This Theorem 1.1 is comparing the Theorem 2.4.27 of [12].

Corollary 3.1. Let \mathscr{F} be a non-empty Fitting class and $\pi = \pi(\mathscr{F})$. If every chief factor for every maximal subgroup of G is an C^s_{π} -group, then G has an \mathscr{F} -injector.

Proof. 1. Let M_1, M_2 be maximal subgroups of G such that M_1, M_2 are not conjugate in G. Then $G = M_1M_2$. By Theorem 3.1, M_1, M_2 have \mathscr{F} -injectors V_1, V_2 .

If $M_1 \cap M_2 = 1$, then $G = M_1 \times M_2$, and, by [17, Lemma 1], G contains \mathscr{F} -injectors which are the product of the \mathscr{F} -injectors of the factors, M_1, M_2 .

If $M_1 \cap M_2 \neq 1$, so there exists a prime p dividing the order of $M_1 \cap M_2$. And so assume that $|G:M_1| = p$ or q, where $p \neq q$.

Case 1: If $|G : M_1| = q$, then $M_1 \triangleleft G$, and V_1 , which is an \mathscr{F} -injector of M_1 , is also an \mathscr{F} -injector of G. To see this. Only needs to prove every subnormal subgroup K of G, $V_1 \cap K$ is an \mathscr{F} -injector of K. By Lemma 2.5, $M_{1\mathscr{F}} = G_{\mathscr{F}} \cap M_1$. By hypotheses, there exists a series

 $1 \leq W_0 = M_{1\mathscr{F}} = G_{\mathscr{F}} \cap M_1 \leq W_1 \leq W_2 \leq \cdots \leq W_{n-1} = M_1 \leq W_n = G$

such that every chief factor of *G* is E_{π}^{s} -group, then by Theorem 1.1, V_{1} is an \mathscr{F} -injector of *G*.

Case 2: If $|G : M_1| = p$, then, for a Sylow *p*-subgroup P_1 of M_1 , there exists a *p*-subgroup P_2 such that $P = P_1P_2$ is a Sylow *p*-subgroup of *G* and $|P : P_1| = p$. If $p \notin \pi(\mathscr{F})$, by case 1, V_1 is an \mathscr{F} -injector of *G*. If $p \in \pi(\mathscr{F})$, then there exists a Hall subgroup *H* such that $H/H_{\mathscr{F}}$ is soluble. So by Theorem 1.1, *G* has an \mathscr{F} -injector.

2. Let M_1, M_2 be maximal subgroups of G such that M_1, M_2 are conjugate in G. Then $M_1M_2 = M_2^gM_2 = M_2 \leq G$, for some $g \in G$. Then, if $M_2 < G$, by case 2, G also has an \mathscr{F} -injector. If $M_2 = G$, by Lemma 2.6, and Theorem 1.1, G has an \mathscr{F} -injector.

This completes the proof. \Box

Remark 3.2. If the condition of Corollary 3.1 is that, every chief factor is an E_{π}^{n} , we also can get the same result.

Corollary 3.2. Let \mathscr{F} be a non-empty Fitting class. If every chief factor of G is an E_{π}^{s} -group. then A is an \mathscr{F} -injector of G if and only if A is a maximal \mathscr{F} -subgroup of G containing $G_{\mathscr{F}}$.

Acknowledgment.

The authors would like to thank the referee for the valuable suggestions and comments. This object is partial supported by Scientific Research Fund of School of Science of SUSE.

References

- [1] B. Fischer, W. Gaschütz, and B. Hartley, Injectoren endlicher auflösbarer Gruppen, *Math.Z.* 102, 1967, pp. 337–339.
- [2] M. J. Tomkinson, ℱ-injectors of locally soluble groups, *Glas. J. Math*, 10(2), 1968, pp. 130–136.
- [3] P. Flavell, Nilpotent injectors in finite groups all of whose local subgroups are *N*-constrained, *J. Algebra*, 149, 1992, pp. 405–418.
- [4] W. Guo, and N. T. Vorob'ev, On injectors of finite soluble groups, *Comm. Algebra*, 36, 2008, pp. 3200–3208.
- [5] J. C. Beidlema, and M. J. Karbe, Injectors of locally soluble FC-groups, *Mh. Math*, 103, 1987, 3–13.
- [6] A. Neumann, Nilpotent injectors in finite groups, *Arch. Math.*, 71, 1998, pp. 337–340.
- [7] M. J. Asiáin, Fitting classes and injectors, *Rend. Ciro. Mate. Palerma Series II*, 48, 1999, pp. 93–100.
- [8] J. Cossey, A note on injectors in finite soluble groups, *Bull. Austral. Math. Soc.*, 17, 1977, 419–421.
- [9] P. Hall, Theorem like Sylow's, Proc. London Math. Soc., 6(3), 1956, pp. 286–304.
- [10] W. Guo, and B. Li, On the injectors of finite groups, J. Group Theory, 10, pp. 2007, pp. 849–858.
- [11] B. Hartley, On Fischer's dualization of formation theory, *Proc. London Math. Soc.*, 3(2), 1969, pp. 193–207.
- [12] A. Ballester-Bolinches, and L. M. Ezquerro, Classes of finite groups, Springer, Netherlands, 2006.
- [13] K. Doerk, and T. Hawkes, Finite soluble groups, Walter de Gruyter, New York, 1992.

- 21
- [14] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, World Scientific, London, 1994.
- [15] W. Anderson, Injectors in finite solvable groups, J. Algebra, 36, 1975, pp. 333–338.
- [16] A. A. Klimowicz, Injectors in certain classes of locally π -soluble groups, *Arkiv För Mathematik*, 14(1), 1976, pp. 119–124.
- [17] M. J. Iranzo, and F. P. Monasor, Fitting classes *F* such that all finite groups have *F*-injectors, *Isr. J. Math.*, 56(1), 1986, pp. 97–101.