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Abstract

If F is a non-empty Fitting class, � = �(F ) and G a group such that every chief fac-

tor of G/GF is an Cs
�-group. Then G has at least one F -injector. This result is used to

resolve an open problem and generalize some known results.
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1 Introduction

All groups in this paper are finite. Fischer, Gaschütz, and Hartley [1] proved that for

any Fitting class F and any finite solvable group G there exist F -injectors and any two

of them are conjugate in G. A class F of groups is a Fitting class if (i) G ∈ F , N ⊲ G

implies that N ∈ F and (ii) N1, N2 ⊲ G, N1, N2 ∈ F implies that N1N2 ∈ F . Fitting

classes were introduced by Fischer, Gaschütz, and Hartley [1]. If F is a Fitting class,

each group G possesses a unique maximal normal F -subgroup called the F -radical of

G and denoted by GF , which contains each subnormal F -subgroup of G. Furthermore

if N is subnormal in G, then NF = N ∩ GF . A subgroup V of G is called an F -injector

of G if V ∩ N is F -maximal in N for each subnormal subgroup N of G. In particular,

an F -injector V of G lies in F and contains GF . Tomkinson in [2] proved that let F

be a Fitting class, then the G-group G possesses F -injectors, where G is the class of
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periodic locally soluble FC-groups. Flavell in [3] proved that if G is a group whose local

subgroups are N -constrained, then all nilpotent injectors of G are conjugate. Guo, and

Vorob’ev [4] described the H -injectors associated with a Hartley class H . And some

good results are given by some authors (see [5, 6, 7, 8]).

In this note, we give the following notations (see [9, p386-387]):

�: any set of primes.

E�: G has at least one Hall �-subgroup;

C�: G satisfies E� and any two Hall �-subgroups of G are conjugate in G.

En
� : G has a nilpotent Hall �-subgroup.

Cs
�: G satisfies C� and its Hall �-subgroup are soluble.

Guo, and Li [10] gave that, let F be a non-empty Fitting class, � = �(G) andG a group

such that every chief factor of G/GF is an En
� -group, then G has at most one F -injector

and any two F -injectors are conjugate in G.

Concerning Fitting classes and F -injectors, the following problem arose:

Problem (see [11]). Let F is a local Fitting class. Could we describe the F -injectors

of a group?

In this note, we will partially deal with the problem and prove the following main

theorem.

Theorem 1.1. Let F be a non-empty Fitting class, � = �(F ) and G a group such that

every chief factor of G/GF is an Cs
�-group. Then

(1) G has at least one F -injector.

(2) Any two F -injector are exactly all the F -maximal subgroups which contain the F -

radical GF .

(3) In any G there exist F -injectors and any two of them are conjugate in G.

For some notion and notations, the reader is referred to Ballester-Bolinches and Ez-

querro [12], and Doerk and Hawkes [13].

2 Preliminaries

Definition 2.1 ([1]). A class F of groups is a Fitting class if

(i) G ∈ F , N ⊲ G implies that N ∈ F and

(ii) N1, N2 ⊲ G, N1, N2 ∈ F implies that N1N2 ∈ F .

Definition 2.2 (see [12] or [13]). A subgroup V of G is called an F -injector of G if V ∩ N

is F -maximal in N for each subnormal subgroup N of G.

Lemma 2.1 ([1]). Let F be a Fitting class. Then a soluble group G has at most one F -

injector and any two F -injectors of G are conjugate in G.
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Lemma 2.2 ([10]). Let F be a Fitting class, andH an F -injector ofG. Then the following

statements hold:

(1) H is an F -maximal subgroup of G;

(2) GF ≤ H;

(3) For every x ∈ H, Hx is also an F -injector of G;

(4) If K is subnormal subgroup of G, then H ∩ K is an F -injector of K.

Lemma 2.3 ([1]). If V is an F -injector of G and V ≤ H ≤ G, then V is an F -injector of

H.

Lemma 2.4 ([1]). Let N ⊲ G with G/N nilpotent. If V1 and V2 are F -maximal in G and

V1 ∩ N = V2 ∩ N is F -maximal in N , then V1 and V2 are conjugate in G.

Lemma 2.5 ([15, p334], or [14, Corollary 7.3.12]). Let F be a Fitting class, ifH is subnor-

mal subgroup of G, then HF = H ∩ GF .

Lemma 2.6 ([13, IX-Lemma 1.6]). Let F be a Fitting class, and let G be a finite soluble

group. Let N ⊲ G, and let L be a subgroup of G such that L ∩ N is an F -injector of N .

Assume that either

(1) G/N is nilpotent, and L is F -maximal in G, or

(2) L ∈ F and LN = G.

Then L is an F -injector of G.

Lemma 2.7 ([9, Theorem C1]). If G has a series in which every factor is a Cs
�-group, then

G is a Cs
�-group and every Hall �-subgroup of G is solvable.

Lemma 2.8. Let F be a Fitting class and G a group. Suppose that G/GF is soluble and

G/N is soluble. If V is an F -maximal subgroup of G and V ∩ N is an F -injector of N ,

then V is an F -injector of G

Proof. Assume that the Lemma is not true andG is a minimal-order-counter-example.

By [12, Theorem 2.4.27], G has a unique conjugate class of F -injectors. Let V0 be a F -

injector of G, then, by Lemma 2.2(1), V0 is a maximal F -subgroup of G.

Cases 1. NV < G.

SinceG/N is soluble, V N/N is soluble. Obviously V is also a maximal F -subgroup of

V N . By Lemma 2.5, (V N)F = NV ∩ GF . Hence the quotient NV/(NV )F = NV/(NV ∩
GF ) ∼= NV GF/GF ≤ G/GF is soluble. Thus, the minimal choice of G implies that V

is an F -injector of G. By [12, Theorem 2.4.27], G has a unique conjugate class of F -

injectors, there exist an element x ∈ NV such that (V0 ∩ NV )x = V , and so V ≤ V x
0 .

Since an F -maximal subgroup ofG, V = V x
0 , and so V is an F -injector ofG by virtue of

Lemma 2.2(3), a contradiction.

Cases 2. NV = G.
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LetM be a maximal normal subgroup ofG containingN . SinceG/N is soluble,M/N

is soluble. It is easy to see that V ∩ M ⊲ V . Let V1 be an maximal F -subgroup ofM with

V ∩ N ≤ V1. Since V ∩ N = (V ∩ M) ∩ N ≤ V1 ∩ N and V1 ∩ N = (V1 ∩ N) ∩ (NV ) =

(V ∩ N) ∩ (V1 ∩ N) ≤ V ∩ N , V1 ∩ N = V ∩ N is an F -injector of N by hypotheses,

and, by Lemma 2.5, the quotient M/MF = M/(M ∩ GF ) ∼= MGF/GF ≤ G/GF is

soluble. The minimal choice of G implies that V1 is an F -injector of M . Since M =

(NV )∩M = N(V ∩M) ≤ NV1 ≤ G,NV1 = G orM . If the former, then,G/N = NV/N ∼=
V/V ∩ N ∼= V1N/N ∼= V1/V1 ∩ N . Comparing the order, we have V1 = V x for some

x ∈ G. By Lemma 2.2(3), V1 is an F -injector of G, a contradiction. So have M = NV1,

and ∣N(V ∩ M)∣ = ∣NV1∣ = ∣M ∣. This shows ∣N ∣∣V ∩ M ∣/∣V ∩ N ∣ = ∣N ∣∣V1∣/∣N ∩ V1∣ and

hence (V ∩ M)x = V1 for some x ∈ G. By Lemma 2.2(3), V ∩ M is an F -injector of M .

On the other hand, by Lemma 2.2(4), V0 ∩ M is an F -injector of M . By [12, Theorem
2.4.27], there exists an x ∈ M such that V0 ∩ M = (V ∩ M)x = V x ∩ M . Moreover, by

Lemma 2.2(1), V0, V x are F -maximal subgroup of M and GF ≤ V ∩ V0. By [16, Lemma
2.3], V, V0 are conjugate in G, and so V is an F -injector of G, a contradiction.

This completes the proof. □

Lemma 2.9. Let F be non-empty Fitting class and G a group. If every chief factor of

G/GF is an Cs
�-group and N ⊲ G, then every chief factor of N/NF is also an Cs

�-group.

Proof. By hypotheses, there exists a series

G0 ≤ G1 ≤ G2 ≤ ⋅ ⋅ ⋅ ≤ Gn = G

Such that every chief factor are Cs
�-group. Since NF = N ∩ GF by Lemma 2.5, N/NF =

N/(N ∩ GF ) ∼= NGF/GF ≤ G/GF . It follows that, intersection of N and the above

series is the series such that every chief factor of N/NF is also an Cs
�-group.

This completes the proof. □

3 Some results

In this section, we will give the proof of the main theorem 1.1 and some applications.

The proof of Theorem 1.1

Proof. Our proof proceeds via a number of steps.

Step 1. G is a C�-group and if H is a Hall �-subgroup of G, then H/HF is soluble.

By Lemma 2.7, we have G is a C�-group and, since GF ≤ HF ≤ H, H/HF is soluble.

Step 2. IfG has an F -injector, then an F -injector ofG is also an F -injector of some

Hall �-subgroup of G.

Let V be an F -injector of G. Assume that V is a �-group of G. Without loss of gener-

ality, assume that V ≤ H. Now prove that V is also an F -injector of H.
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Denote N = GF . Then set

F ∗ = {M/N :M ∈ F , N ≤ M} is a Fitting set of the soluble group G/N .

Moreover, by [13, VIII-2.17(a)], have that

F0 = {S ≤ G : SN/N ∈ F ∗and S is subnormal in SN}

is a Fitting set of G. Observe that F0 ⊂ F and, for any subnormal subgroup S of G,

SF0 = SF . By hypotheses of the theorem, G has a subnormal series

1 ≤ N = GF = G0 ≤ G1 ≤ G2 ≤ ⋅ ⋅ ⋅ ≤ Gn = G

such that Gi/Gi−1 is a G-chief factor and is an Es
�-group. By [13, VIII-2.17(b)], if V/N

is an F ∗-injector of H/N , then V is an F0-injector of H. Since GF ≤ H, H has the

subnormal series

1 ≤ GF = H ∩ G0 ≤ G1 ∩ H ≤ G2 ∩ H ⋅ ⋅ ⋅ ≤ Gn−1 ∩ H ≤ Gn ∩ H = H.

such that Gi ∩ H/Gi−1 ∩ H is an Es
�-group by Lemma 2.6. And also V is an F -injector

of H. To see that, we prove that, for any subnormal subgroup Hi = Gi ∩ H of H, the

subgroup V ∩ Hi is F -maximal in Hi. Suppose that there exists W ∈ F such that V ∩
Hi ≤ W ≤ Hi. Then (V ∩ Hi)N/N = (V/N) ∩ (SN/N) ≤ WN/N ≤ HiN/N . Since

HiF0 = HiF ≤ V ∩ Hi ∈ InjF0(Hi), then HiF ≤ W . By Lemma 2.5, N ∩ Hi = HiF .

Therefore W (N ∩ Hi) = WHiF = W , W is subnormal in WN , and so WN ∈ F . Thus,

WN/N ∈ F ∗. Since (V/N)∩ (HiN/N) is F ∗-maximal inHiN/N , (V ∩ Hi)N = WN , This

means that V ∩ Hi = (V ∩ Hi)(N ∩ Hi) = WN ∩ Hi = W , and V ∩ Hi is F -maximal in

Hi. Therefore, have that V ∈ Inj(G).

Step 3. If G have F -injectors, then any two F -injectors are conjugate in G.

By [13, VIII-2.15], if V ∈ Inj(G), then V/N is an F ∗-injector of the soluble group

G/N . By Lemma 2.1, the F ∗-injectors of G/N are conjugate in G/N . And so any two

F -injectors are conjugate in G.

Step 4. G has an F -injector.

Let H be a Hall �-subgroup of G, Then H/HF is soluble by step 1, and hence H has

an F -injector by [12, Theorem 2.4.27]. In order to prove that G has an F -injector, only

needs to prove an arbitrary F -injector of H is an F -injector of G.

Let V be an F -injector of H. Let K be an subnormal subgroup of G. Then V ∩ K is

a subnormal subgroup of H. By Lemma 2.2(4), the subgroup V ∩ K = (V ∩ H) ∩ K =

V ∩ (H ∩ K) is an F -injector of H ∩ K. Since ∣K : H ∩ K∣ = ∣KH : H∣ is a �′-number,

H ∩ K is a Hall �-subgroup of K. So we need to deal with the following cases: K = G or

K < G.

Case 1: K < G. Then by induction, V ∩ K is an F -injector of K, and V ∩ K is an

F -maximal subgroup of K. Since K is arbitrary, V is also an F -injector of G.

Case 2: K = G. Let W be an maximal F -subgroup of G with V ≤ W ≤ G. Since for

every subnormal subgroup M of G, W ∩ M = V ∩ M is an F -maximal subgroup of M
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by case 1. And so W is an F -injector of G. Since G ∈ Cs
�, there exists an element x ∈ G

such that V ≤ W ≤ Hx. But, by Lemma 2.2(3), V x is also an F -injector of Hx. By step

2, W is also an F -injector of H. Since H/HF is soluble, by [12, Theorem 2.4.27], W and

V are conjugate in G, and so V = W .

This completes the proof. □

Remark 3.1. This Theorem 1.1 is comparing the Theorem 2.4.27 of [12].

Corollary 3.1. Let F be a non-empty Fitting class and � = �(F ).If every chief factor for

every maximal subgroup of G is an Cs
�-group, then G has an F -injector.

Proof. 1. Let M1,M2 be maximal subgroups of G such that M1,M2 are not conjugate

in G. Then G =M1M2. By Theorem 3.1, M1,M2 have F -injectors V1, V2.

If M1 ∩ M2 = 1, then G = M1 × M2, and, by [17, Lemma 1], G contains F -injectors

which are the product of the F -injectors of the factors, M1,M2.

IfM1∩M2 ∕= 1, so there exists a prime p dividing the order ofM1∩M2. And so assume

that ∣G :M1∣ = p or q, where p ∕= q.

Case 1: If ∣G : M1∣ = q, then M1 ⊲ G, and V1, which is an F -injector of M1, is also

an F -injector of G. To see this. Only needs to prove every subnormal subgroup K of G,

V1 ∩ K is an F -injector of K. By Lemma 2.5, M1F = GF ∩ M1. By hypotheses, there

exists a series

1 ≤ W0 =M1F = GF ∩ M1 ≤ W1 ≤ W2 ≤ ⋅ ⋅ ⋅ ≤ Wn−1 =M1 ≤ Wn = G

such that every chief factor of G is Es
�-group, then by Theorem 1.1, V1 is an F -injector

of G.

Case 2: If ∣G : M1∣ = p, then, for a Sylow p-subgroup P1 of M1, there exists a p-

subgroup P2 such that P = P1P2 is a Sylow p-subgroup ofG and ∣P : P1∣ = p. If p ∕∈ �(F ),

by case 1, V1 is an F -injector ofG. If p ∈ �(F ), then there exists a Hall subgroupH such

that H/HF is soluble. So by Theorem 1.1, G has an F -injector.

2. Let M1,M2 be maximal subgroups of G such that M1,M2 are conjugate in G. Then

M1M2 = M g
2M2 = M2 ≤ G, for some g ∈ G. Then, if M2 < G, by case 2, G also has an

F -injector. If M2 = G, by Lemma 2.6, and Theorem 1.1, G has an F -injector.

This completes the proof. □

Remark 3.2. If the condition of Corollary 3.1 is that, every chief factor is an En
� , we also

can get the same result .

Corollary 3.2. Let F be a non-empty Fitting class. If every chief factor of G is an Es
�-

group. then A is an F -injector of G if and only if A is a maximal F -subgroup of G con-

taining GF .
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