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Introduction

In this paper, we have focused on geometry and studied objects in the plane,
exploring properties that are invariant under the action of the Lie group
SL(3,R). The approach we have followed is in the same line as the ‘Er-
langen Program’ proposed by Felix Klein [12]. In the ‘Erlangen Program’,
geometry is defined as a space of objects along with a group of transfor-
mations and is based on the invariants under the transformations (see, for
example, [6, 17]). Following this approach, Kisil [15] investigated the kind
of geometry related to the Lie group SL(2,R) action. In this direction, func-
tion theory associated with the representation of SL(2,R) was thoroughly
studied by Kisil and Biswas in [1, 2, 16]. Further extensions and investiga-
tions of Möbius action of SL(2,R) were done by many authors, for example,
in [3, 4, 5, 7, 14]. Therefore, it becomes imperative to examine the under-
lying geometry related to the higher dimensional groups. However, there is
extensive literature devoted to the study of one-parameter subgroups of Lie
groups, particularly for the Lie group SL(2,R), the results of which may ex-
tend to the group SL(3,R) as well, see [10, 18]. In view of this, we are writing
the present paper to carry the exposition further for a deeper understanding.
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Here, we consider the transformation group as the Lie group SL(3,R) and
the space as a two-dimensional homogeneous space. The aim of our work is
to generalise the theory from the group SL(2,R) to the group SL(3,R) and
develop the existing theories if possible. To study geometry, we obtain all
the one-parameter subgroups (up to conjugacy) of SL(3,R). Though many
of the obtained statements seem to be particular cases of standard general
results about Lie groups, explicit description of the one-parameter subgroups
of SL(3,R) up to conjugacy and presentation of some of their geometrical
properties have their own charm.

1 Preliminaries

In this section, we review some standard definitions and theorems that are
pertinent to our work.

As in [11], we define the matrix Lie group as any subgroup G of GL(n,C)
satisfying the property: If Am is any sequence of matrices in G and Am
converges to some matrix A, then either A ∈ G or A is not invertible. Also,
the Lie algebra of a matrix Lie group G, denoted by g, is the collection of
all matrices M such that etM is in G for all real numbers t.

The one-parameter subgroup of the Lie group G is defined as the Lie
group homomorphism f : R→ G, i.e., f is smooth and such that f(0) = 1G
and f(s + t) = f(t)f(s) for all s, t ∈ R. In particular, if G is a matrix Lie
group, then every one-parameter subgroup A(t) of G is formed by A(t) = etX

where X ∈ g is the Lie algebra of G.

Definition 1 Transformation group G is a non-void set of mappings of a
set X into itself such that
(i) the identity map is included in G,
(ii) if g1 ∈ G and g2 ∈ G, then g1g2 ∈ G,
(iii) if g ∈ G, then g−1 exists and belongs to G.

Definition 2 A group action ϕ : G×X 7→ X is said to be transitive if for
every x, y ∈ X, there exists g ∈ G such that g · x = y.

Definition 3 Homogeneous space is the pair (G,X) such that the action of
the group G on X is transitive and X is a topological space.

1.1 Derived representation

Let G be a Lie group and H be a Banach space. Let f : G → H be a
smooth map. For each X ∈ g and y ∈ G, the Lie derivative, or the derived

representation is defined by LXf(y) =
d

dt
f(y exp(tX)) |t=0 (see [19]).
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1.2 Group action on coset spaces

Let G be a Lie group and H be a closed subgroup of G. Then it follows
by Cartan’s theorem that there exists a unique differential structure on H
making it a Lie group such that the natural inclusion ι : H → G is a Lie
group homomorphism (see [20]).

Let G/H = {gH : g ∈ G} denote the space of left cosets of H.

Definition 4 The projection map p : G→ G/H is given by sending g ∈ G
to its equivalence class [g] and is defined as p(g) = gH = [g].

Theorem 1 [13] Let G be a Lie group and H a closed subgroup of G. Let
G/H have the quotient topology. Then G/H has a unique smooth manifold
structure such that the projection map p : G→ G/H is a smooth submersion
and G acts smoothly on G/H.

Definition 5 A section s of a projection map p is defined as the right in-
verse of p such that s : G/H → G and p(s(x)) = x for all x ∈ G/H.

Remark 1 We consider the action G × G/H → G/H given by (a, gH) 7→
agH. The action can be viewed as a composition of smooth maps as follows:

φ : G×G/H → G/H
φ(g, x) := g · x = p(g ∗ s(x)),

where ∗ denotes the group operation on G (see Lemma 1 for more details).

1.3 Iwasawa decomposition of SL(3,R)

The Iwasawa decomposition of the group SL(3,R) is defined by SL(3,R) =
ANK, where A is the subgroup of diagonal matrices, N is a unipotent
subgroup and K is the maximal compact subgroup. Explicitly,

A =

{ a 0 0
0 b 0
0 0 (ab)−1

 : a, b ∈ R, a, b > 0

}
,

N =

{ 1 x y
0 1 z
0 0 1

 : x, y, z ∈ R

}
and K = SO(3,R),

see [19] for more details.
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1.4 Real projective plane RP2

The real projective plane RP2 consists of points which are equivalence classes
of the set R3 r {(0, 0, 0)} modulo the equivalence relation x ∼ λx, for all λ
in R r {0}. A point in RP2 has homogeneous coordinates (X, Y, Z), where
the coordinates (X, Y, Z) and (λX, λY, λZ) are considered to represent the
same point for all λ 6= 0 in R. For more details, we refer to [9].

1.5 The Jordan normal form

Let V be a finite-dimensional vector space of dimension n over the alge-
braically closed field F, and let T be a linear operator on V . Then there
exists a basis B of V for which

[T]B =


J1 0 · · · 0
0 J2 · · · 0
...

...
...

0 0 · · · Jk

 , (1)

where each 0 is a zero matrix and each Ji (i = 1, 2.., k ≤ n) is a square
matrix of the form (λj) or

λj 1 0 · · · 0 0
0 λj 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λj 1
0 0 0 · · · 0 λj


for some eigenvalue λj of T. Such a matrix Ji is called a Jordan block
corresponding to λj, and the matrix [T]B is called a Jordan normal form of
T. In particular, when V = Fn, every A ∈ Fn×n is similar to a matrix having
the form (1) (see [8] for details).

Theorem 2 [8] Let T be a linear operator on a vector space V, and let
λ1, λ2, . . . , λk be distinct eigenvalues of T. If vi is an eigenvector of T cor-
responding to λi (1 ≤ i ≤ k), then {v1, v2, . . . , vk} is linearly independent.

2 Two-dimensional homogeneous space

Consider the matrix Lie group SL(3,R)={A ∈ M(3,R) : det(A) = 1} and
the action on the space of left cosets X = G/H, where G = SL(3,R) and

H =

{a11 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣a22a33 − a23a32 =
1

a11
, a11 6= 0

}
.
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Here H is a closed subgroup of SL(3,R), and hence, a matrix Lie group (see
[20]). By the dimension theorem of the quotient space,

dimX = dim(G)− dim(H) = 2.

Since X is a two-dimensional space, each element of X is parametrized by
the pair (x, y). This parametrization allows one to express the set theo-
retic action of SL(3,R) on SL(3,R)/H as a composition of smooth maps as
follows:

g : x 7→ g · x = p(g ∗ s(x)).

We can define another map r : G → H such that r(g) = h, where h =
s(p(g))−1g. Hence, g can be uniquely written as g = s(p(g))r(g).

Consequently, we have a decomposition g = s(p(g))r(g) of the form

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11/a31 0 1
a21/a31 −1 0

1 0 0



a31 a32 a33

0
a21
a31

a32 − a22
a21
a31

a33 − a23

0 a12 −
a11
a31

a32 a13 −
a11
a31

a33

 ,

where a31 6= 0.

In this set up, we define p(g) =

(
a11
a31

,
a21
a31

)
, where

a11/a31 0 1
a21/a31 −1 0

1 0 0


is the matrix representation of the equivalence class of [g].

We define section s : X → SL(3,R) as

s(x, y) =

x 0 1
y −1 0
1 0 0


such that

p(s(x, y)) = p

x 0 1
y −1 0
1 0 0

 = (x, y).

Then the SL(3,R) action takes the form

(x, y) 7→
(
a11x+ a12y + a13
a31x+ a32y + a33

,
a21x+ a22y + a23
a31x+ a32y + a33

)
, (2)

provided a31x+ a32y + a33 6= 0.

Remark 2 If we allow a31x + a32y + a33 = 0, then action (2)) gives us the
following projective transformation of the space RP2.
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Let any point [p] ∈ RP2 be represented by three-dimensional column
vector (X, Y, Z)t in homogeneous coordinates, and let the action of g = (aij)
be defined by matrix multiplicationa11 a12 a13

a21 a22 a23
a31 a32 a33

 .

XY
Z

 =

a11X + a12Y + a13Z
a21X + a22Y + a23Z
a31X + a32Y + a33Z

 .

This SL(3,R) action on RP2 is denoted as g : [p] 7→ [g · p].
Let φ be the action. We consider the projective transformation φg :

RP2 → RP2 such that φg([p]) = [g · p] for all g ∈ SL(3,R), see [9].

We state some elementary but essential observations on the action of G
on G/H defined in terms of maps s and p.

Lemma 1 The action φ : G×G/H → G/H given by φ(g, x) = p(g ∗ s(x))
is a transitive group action.

Remark 3 Let s1 and s2 be two sections such that p(s1(x)) = p(s2(x)) = x
for any x ∈ X. Then p(g ∗ s1(x)) = p(g ∗ s2(x)), for all g ∈ G. Also, for any
g ∈ G, we have s(p(g)) = gh for some h ∈ H depending on g.

3 One-parameter subgroups of SL(3,R)
In this section, we describe the one-parameter subgroups of SL(3,R).

Theorem 3 Any continuous one-parameter subgroup of SL(3,R) is conju-
gate to one of the following subgroups:

A1 =

{eat 0 0
0 ebt 0
0 0 e−(a+b)t

 : t ∈ R

}
,

B =

{eat teat 0
0 eat 0
0 0 e−2at

 : t ∈ R

}
,

C =

{1 t t2/2
0 1 t
0 0 1

 : t ∈ R

}
,

D =

{eat cos bt −eat sin bt 0
eat sin bt eat cos bt 0

0 0 e−2at

 : t ∈ R

}
,

where a, b ∈ R.
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Proof. Any one-parameter subgroup is obtained through the exponential
map

etX =
∞∑
n=0

tn

n!
Xn

of an element X of the Lie algebra sl(3,R) of SL(3,R). The Lie algebra is
given by

sl(3,R) = {X ∈M(3,R) : tr(X) = 0}
We prove this result by characterising the elements of the Lie algebra sl(3,R).

Let

X =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ sl(3,R),

then the characteristic polynomial is

PX(λ) = λ3 − tr(X)λ2

+ (a11a22 + a22a33 + a33a11 − a12a21 − a23a32 − a13a31)λ− det(X).

The nature of the λi’s will determine the nature of the elements up to simi-
larity as similar matrices have the same characteristic polynomial. We have
two main cases.
Case 1. All three roots are real.
i) We assume that all roots are distinct, i.e., λ1 6= λ2 6= λ3. Therefore,
eigenvectors are linearly independent (cf. Theorem 2) and up to similarity
matrices are diagonalizable. Then the Jordan normal matrix takes the form

X =

λ1 0 0
0 λ2 0
0 0 λ3

 =

λ1 0 0
0 λ2 0
0 0 −(λ1 + λ2)

 as tr(X) = 0. (3)

ii) Next we assume that λ1 = λ2 6= λ3 and λ1 = λ2 = λ. Then the algebraic
multiplicity of λ is 2.

If the geometric multiplicity of λ is 2, then the maximum number of
linearly independent eigenvectors corresponding to λ is 2. Consequently, all
the eigenvectors of X are linearly independent (cf. Theorem 2). Thus, X is
diagonalizable, and the Jordan matrix takes the form

X =

λ 0 0
0 λ 0
0 0 λ3

 =

λ 0 0
0 λ 0
0 0 −2λ

 as tr(X) = 0. (4)

If the geometric multiplicity of λ is 1, then the Jordan block correspond-

ing to λ is

(
λ 1
0 λ

)
, and Jordan matrix takes the form

X =

λ 1 0
0 λ 0
0 0 λ3

 =

λ 1 0
0 λ 0
0 0 −2λ

 as tr(X) = 0. (5)
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iii) Finally, we assume that all roots are equal, i.e., λ1 = λ2 = λ3 = λ. Then
the algebraic multiplicity of λ is 3.

If the geometric multiplicity of λ is 3, then X is diagonalizable, and the
Jordan matrix takes the form

X =

λ 0 0
0 λ 0
0 0 λ

 =

0 0 0
0 0 0
0 0 0

 as tr(X) = 0. (6)

If the geometric multiplicity of λ is 2, then the Jordan blocks corre-

sponding to λ are

(
λ 1
0 λ

)
and (λ). Thus, the Jordan matrix takes the

form

X =

λ 1 0
0 λ 0
0 0 λ

 =

0 1 0
0 0 0
0 0 0

 as tr(X) = 0. (7)

If the geometric multiplicity of λ is 1, then the Jordan block correspond-
ing to λ is 3× 3 matrix, and the Jordan form is

X =

λ 1 0
0 λ 1
0 0 λ

 =

0 1 0
0 0 1
0 0 0

 as tr(X) = 0.

Case 2. Two roots are complex conjugate and one real.
Let λ1 = a + ib, λ2 = a − ib and λ3 is real, a, b ∈ R, b 6= 0. Then the

Jordan form is

X =

 a b 0
−b a 0
0 0 λ3

 =

 a b 0
−b a 0
0 0 −2a

 as tr(X) = 0.

Thus, we can combine equations (3), (4) and (6) to have the following form

X1 =

λ1 0 0
0 λ2 0
0 0 −(λ1 + λ2)

 . (8)

Further, equations (5) and (7) can be combined to

X2 =

λ 1 0
0 λ 0
0 0 −2λ

 , (9)

and we have the other two forms

X3 =

0 1 0
0 0 1
0 0 0

 , (10)
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X4 =

 a b 0
−b a 0
0 0 −2a

 . (11)

Using the fact that every one-parameter subgroup of matrix Lie group
SL(3,R) can be expressed as etX for some X ∈ sl(3,R) and et(MXM−1) =
MetXM−1 (see [11]), we have four types of one-parameter subgroups up to
conjugacy (cf. [10]), and they are

A1 = exp (tX1) =
∞∑
n=0

tnXn
1

n!
=

etλ1 0 0
0 etλ2 0
0 0 e−t(λ1+λ2)

,
B = exp (tX2) =

∞∑
n=0

tnXn
2

n!
=

etλ tetλ 0
0 etλ 0
0 0 e−tλ

,
C = exp (tX3) =

∞∑
n=0

tnXn
3

n!
=

1 t t2/2
0 1 t
0 0 1

,
D = exp (tX4) =

∞∑
n=0

tnXn
4

n!
=

 eta cos bt eta sin bt 0
−eta sin bt eta cos bt 0

0 0 e−2ta

.
Hence, the result follows. �

Remark 4 An alternative proof of the Theorem 3 can be deduced from the
characterisation of the elements of the Lie group SL(3,R). Let a, b, (ab)−1

be three eigenvalues of any matrix K in SL(3,R). Based on their Jordan
normal form, these matrices can be written in the general form as follows:

K1 =

a 0 0
0 b 0
0 0 (ab)−1

 , K2 =

a 1 0
0 a 0
0 0 1/a2

 ,

K3 =

1 1 0
0 1 1
0 0 1

 , K4 =

 λ1 λ2 0
−λ2 λ1 0

0 0 (λ21 + λ22)
−1

 ,

where a = λ1 + iλ2 and b = λ1 − iλ2 in the case of complex conjugate
eigenvalues. Thus, up to conjugacy, these are the one-parameter subgroups
of SL(3,R). In particular, we get the complete list of different forms of
elements (up to conjugacy) of SL(3,R). Here, we can see that although
these subgroups do not exactly match the subgroups obtained in Theorem
3, their forms are the same.

Hence, using two different approaches, i.e., using Lie algebra as well as
Lie group approach, we can show that up to conjugacy, there are only four
types of one-parameter subgroups of SL(3,R).
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4 Action of the one-parameter subgroups of

SL(3,R)
We now consider the action of the four types of one-parameter subgroups of
SL(3,R).

Theorem 4 1. The action of the subgroup A1 defines orbit passing through
(α, β) as power curve of the form y = cxn, where n = (a + 2b)/(2a + b)
and c = β/αn. The derived representation is ((2a + b)α, (a + 2b)β). The
curvature of A1-orbit at t = 0 is given by

κA1|t=0 =
(a+ 2b)(2a+ b)(b− a)αβ

((2a+ b)2α2 + (a+ 2b)2β2)3/2
.

2. Under the action of the subgroup B, orbit passing through (α, β) satisfies
the equation x = (R + Y )y, where R = α/β and Y = (3a)−1 log (y/β). The
derived representation is ((3aα+β), 3aβ). The curvature of B-orbit at t = 0
is equal to

κB|t=0 =
9a2β2

((3aα + β)2 + 9a2β2)
3/2
.

3. The action of the subgroup C defines orbit passing through (α, β) as
parabola of the form y2 = 2x+ c, where c = β2 − 2α. The derived represen-
tation is (β, 1). The curvature of C-orbit is

κC |t=0 =
1

(1 + β2)3/2
.

4. Under the action of D, orbit passing through the point (α, β) satisfies the

equation
x

y
=
α cos θ − β sin θ

α sin θ + β cos θ
, where θ =

b

6a
log

(
x2 + y2

α2 + β2

)
. The derived

representation is ((3aα− bβ), (3aβ + bα)). For D-orbit, the curvature is

κD|t=0 =
b√

(9a2 + b2)(α2 + β2)
.

Proof. Here, we demonstrate the proof for the one-parameter subgroup A1

only, as the proofs for the remaining one-parameter subgroups are similar.
The A1-orbit passing through (α, β) is defined asO = {g·(α, β) : g ∈ A1}.

Let the position vector at time t be (x, y). Then, under the action of A1 on
(α, β), we get

x = et(2a+b)α and y = et(a+2b)β.

Therefore, eliminating t, we have

y =
β

αn
xn = cxn, where n =

a+ 2b

2a+ b
and c =

β

αn
.
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The derived representation (see Subsection 1.1) is obtained as

dA1(α, β) =
∂

∂t

∣∣∣∣
t=0

{ eat 0 0
0 ebt 0
0 0 e−(a+b)t

 · (α, β)

}

=
∂

∂t

∣∣∣∣
t=0

[e(2a+b)tα, e(a+2b)tβ]

= ((2a+ b)α, (a+ 2b)β).

Using the formula for the curvature of the parametric function f(t) =
(et(2a+b)α, et(a+2b)β), we obtain

κA1|t=0 =
(2a+ b)(a+ 2b)(b− a)αβ

((2a+ b)2α2 + (a+ 2b)2β2)3/2
.

�

X

Y

O

p( , )

1

(a) A1-orbit when
n > 1

X

Y

O

p( , )

1

(b) A1-orbit when
0 < n < 1

X

Y

p( , )

O

1

(c) A1-orbit when
n < 0

Figure 1: A1-Orbit passing through the point (α, β)

X

Y

O

1

(a) B-orbit when a > 0

X

Y

O

1

(b) B-orbit when a < 0

Figure 2: Orbits for subgroup B
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Figure 3: Orbits for
subgroup C

Figure 4: Orbits for
subgroup D

Remark 5 1. If a = b, then the A1-orbit passing through (α, β) is a straight
line of the form

y =
β

α
x.

2. If β = 0, then the B-orbits are straight lines of the form y = 0.

Figure 5: A1-orbit
when a = b

O X

Y

1

Figure 6: B-Orbit
passing through (α, 0)

3. If a = 0, then the D-orbit passing through the point (α, β) is a circle
centered at the origin with radius

√
α2 + β2. However, the D-orbit passing

through the point (s, 0) is a Logarithmic spiral with curvature

κD|t=0 =
b

s
√

(9a2 + b2)
.

Figure 7: D-orbits
when a = 0

Figure 8: D-orbit
passing through (s, 0)
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5 One-parameter subgroups and fixed point

The one-parameter subgroups A1, B, C, D of SL(3,R) possess fixed points,
and we are going to characterise these subgroups up to conjugacy in terms
of fixed points.

A point [x] is called a fixed point under the SL(3,R) action if A[x] = [x]
in RP2, A ∈ SL(3,R), see [9]. As x ∼ λx in projective space RP2, the fixed
point [x] ∈ RP2 can be viewed as an eigenvector in R3 due to the fact that
if [x] ∈ RP2 is a fixed point of A ∈ SL(3,R), then A[x] = [x] = [λx] = λ[x]
for some non zero λ ∈ R.

Lemma 2 The number of fixed points for the one-parameter subgroups A1,
B, C, D are three, two, one, and one, respectively.

Proof. Based upon the eigenvalues and the eigenvectors of these four one-
parameter subgroups of SL(3,R), there are four cases to follow.

The subgroup A1 has three distinct eigenvalues and the corresponding
three eigenvectors are linearly independent (see equation (8)). Thus, the
number of fixed points for A1 is three.

The subgroup B has two real eigenvalues λ1 with algebraic multiplicity
2 and geometric multiplicity 1 and another real eigenvalue λ2. Hence, B
obtains two linearly independent real eigenvectors, one corresponding to λ1
and the other corresponding to λ2 (see equation (9)). Therefore, there are
two fixed points for B.

The subgroup C has real eigenvalue λ with algebraic multiplicity 3 and
geometric multiplicity 1 (see equation (10)). Hence, C obtains only one real
eigenvector, and thus, the number of fixed points for C is one.

The subgroup D has one real eigenvalue and two complex conjugate
eigenvalues (see equation (11)), which implies that D has only one real eigen-
vector and two complex conjugate eigenvectors. As the space is considered
to be RP2, the number of fixed points for D is one. �

Conclusion

We have discussed the action of the transformation group SL(3,R) on the
two-dimensional homogeneous space. Here, we have mainly focused on the
one-parameter subgroups (up to conjugacy), which were originally intro-
duced to define infinitesimal transformations that generate the Lie algebra.
Under the one-parameter subgroup action, we get different orbits such as
power curves, parabolas, logarithmic spirals, etc. These are the natural in-
variants for the respective subgroups since orbits remain invariant under the
group action. We have also obtained the derived representations of the vec-
tor fields. Curvatures and fixed points of these one-parameter subgroups are
also studied.
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