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Introduction

In 2012, E. Ekici and T. Noiri [1] introduced the notion of connectedness for
ideal topological spaces defining ?-connectedness, but their concept is not a
generalization of connectedness, as it turns out to be a stronger version than
that. In 2015, S. Modak and T. Noiri [8] presented new forms of connect-
edness in ideal topological spaces through the notions of ??-connectedness
and ?-cl-connectedness, but here, too, a generalization is not obtained. We
want to point out here that some authors, such as Modak and Noiri [7], have
already obtained generalizations of connectedness but without using ideals.

In this work, we introduce and study the �-connected spaces. This con-
cept is a generalization of the connectedness, and therefore, of the concepts
of Ekici-Noiri and Modak-Noiri. We present several examples, and we also
characterize the �-connected subspaces of some ideal topological spaces hav-
ing R as their underlying set.

1 Preliminaries

The ideal topological spaces have been introduced in Vaidyanathaswamy [9]
and Kuratowski [4] books. An ideal I on a set X is a subset of P(X), the
power set of X, such that: if A ⊆ B ⊆ X and B ∈ I, then A ∈ I; and if A
∈ I and B ∈ I, then A ∪B ∈ I.

Some useful ideals on X are: P(A), where A ⊆ X; the ideal If (X) of all
finite subsets of X; the ideal Ic (X) of all countable subsets of X; the ideal
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In (X, τ) of all nowhere dense subsets in a topological space (X,τ). When
there is no chance for confusion, we write In instead of In (X, τ).

If (X,τ) is a topological space and I is an ideal on X, then (X,τ ,I) is
called an ideal topological space. If τ ∩I = {∅}, then I is said to be codense.

Let f : X → Y be a function. If I is an ideal on X, the set f(I) =
{f(I) : I ∈ I} is an ideal on Y [5]; If f is injective and J is an ideal on Y ,
then the set f−1 (J ) = {f−1 (J) : J ∈ J } is an ideal on X [5] ; If J is an
ideal on Y , the set If,J = {A ⊆ X : there is a J ∈ J with A ⊆ f−1(J)} is
an ideal on X [6].

Given an ideal space (X, τ, I) and a set A ⊆ X, we denote by A∗ (I)
the set {x ∈ X : U ∩ A /∈ I for every U ∈ τ with x ∈ U}, written simply as
A∗ when there is no chance for confusion. It is clear that A∗ ⊆ A, where A
is the closure of A in (X,τ). Sometimes we will use the notation adhτ (A)
instead of A.

A Kuratowski closure operator for a topology τ ∗ (I), finer than τ , is
defined by Cl∗ (A) = A∪A∗ for all A ⊆ X [9]. When there is no chance for
confusion, τ ∗ (I) is denoted by τ ∗. The topology τ ∗ has as a base β (τ, I) =
{V \I : V ∈ τ and I ∈ I} [2].

Two nonempty sets A and B are ??-separated [8] in the space (X, τ, I)
if A? ∩ B = A ∩ B? = A ∩ B = ∅. The nonempty sets A and B are
?-cl-separated [8] in (X, τ, I) if A? ∩B = A ∩B? = A ∩B = ∅.

If (X,τ) is a topological space and A ⊆ X, then
0

A is the interior of A, and
A′ is the set of accumulation points of A. Furthermore, for {A,B} ⊆ P(X),
the sets A and B are separated if A ∩ B = ∅ = A ∩ B. If B and C are
disjoint subsets of A and A = B ∪ C, we will write A = B t C.

Finally, throughout this work we will use the following topologies in R:
C = {∅,R} ∪ {(a,∞) : a ∈ R}; L is the (Sorgenfrey) topology of all V ⊆ R
such that for each a ∈ V , there is a number b > a such that [a, b) ⊆ V ; and
γ is the topology in which the neighborhoods of any nonzero point being
as in the usual topology U , while neighborhoods of 0 have the form U\F ,
where U is a neighborhood of 0 in U and F = {1/n : n ∈ Z+}.

2 The �-connected spaces

We begin this section by recalling the concepts defined by Ekici and Noiri [1]
and Modak and Noiri [8].

An ideal topological space (X, τ, I) is said to be ?-connected [1] if there
are no disjoint and nonempty sets U ∈ τ and V ∈ τ ∗ such that X = U ∪ V .
A subset A is defined to be ?-connected if (A, τA, IA) is ?-connected, where
τA = {A ∩ U : U ∈ τ} and IA = {A ∩ I : I ∈ I}.

The ideal topological space (X, τ, I) is said to be ??-connected [8] if
there are no nonempty ??-separated sets A and B such that X = A ∪ B.
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Further, (X, τ, I) is said to be ?-cl-connected [8] if there are no nonempty
?-cl-separated sets A and B such that X = A ∪B.

It is evident that if (X, τ, I) is ?-connected, then (X, τ) is connected.
Moreover, from ??-connectedness, it follows the ?-cl-connectedness [8], and
it is easy to see that ?-cl-connectedness implies connectedness.

In this section, we are going to present a definition of connectedness for
ideal spaces, which we call �-connectedness, that is more general than that of
connectedness. We will also present properties and some characterizations
of these new spaces, as well as some examples having the set R as the
underlying set in which it is possible to establish necessary and sufficient
conditions for a subset to be �-connected.

Definition 1 A subset A of an ideal topological space (X, τ, I) is said to be
�-connected if for all {U, V } ⊆ τ with A = (A ∩ U) t (A ∩ V ), we have that
A ∩ U ∈ I or A ∩ V ∈ I. The space (X, τ, I) is said to be �-connected if X
is �-connected.

Let us make several remarks. If I ∈ I then I is �-connected; If A is
connected, then A is �-connected. In the space (X, τ, {∅}), a subset A is
�-connected if and only if A is connected. If I is a codense ideal in X then
the space (X, τ, I) is �-connected if and only if (X, τ) is connected. The
space (X, τ, I) is �-connected if and only if for all disjoint closed sets F and
G, from X = F ∪G, it follows that F ∈ I or G ∈ I. The space (X, τ, I) is
�-connected if and only if for each open and closed subset U , we have U ∈ I
or X\U ∈ I. Finally, the set A is �-connected if and only if (A, τA, IA) is
�-connected.

Hence we have that if (X, τ, I) is an ideal space, then

(X, τ, I) ?-connected ⇒ (X,τ) connected ⇒ (X, τ, I) �-connected.

Neither of these implications is reversible. IfX = {0, 1, 2}, I = P ({1, 2})
and τ = {∅, X, {0} , {1, 2}}, then (X, τ, I) is �-connected but (X, τ) is not
connected.

Theorem 1 If A is �-connected in the ideal topological space (X, τ, I) and
I ∈ I, then A ∪ I is �-connected. In particular, if A is connected in (X, τ)
and I ∈ I, then A ∪ I is �-connected.

Proof. We can assume that I\A 6= ∅. It is clear that A ∪ I = A ∪ (I\A)
and I\A ∈ I. Suppose that there is a {U, V } ⊆ τ such that A ∪ I =
[(A ∪ I) ∩ U ]t[(A ∪ I) ∩ V ]. This implies that A = (A ∩ U)t(A ∩ V ). Since
A is �-connected, we have that A∩U ∈ I or A∩V ∈ I. Suppose, without loss
of generality, that A∩U ∈ I. Then (A ∪ I)∩U = (A ∩ U)∪[(I\A) ∩ U ] ∈ I.
�
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If A is �-connected in (X, τ, I) and there is no a �-connected set B ⊆ X
with A ⊆ B and A 6= B, then A is said to be maximal �-connected.

Corollary 1 Let (X, τ, I) be an ideal topological space. Then
1) For each maximal �-connected set A ⊆ X, it is true that

⋃
I∈I

I ⊆ A.

2) If X is not �-connected and A ⊆ X is �-connected, then X\A /∈ I. Hence,
if X\

⋃
I∈I

I ⊆ A, then X\A is an infinite set.

Below we present a list of examples, in which we characterize the �-
connected subspaces of various ideal topological spaces.

We start with some trivial examples.

Example 1 1) If I is an ideal on X, then in the space (X, {∅, X} , I)
each A ⊆ X is �-connected.

2) In the space (X,P (X) , I), a subset A is �-connected if and only if for
each B ⊆ A, B ∈ I or A\B ∈ I.

3) If B ⊆ R, then in the space (R,L,P (B)), the only �-connected subsets
are ∅ and those that have the form {a}∪D, where a ∈ R and D ⊆ B.
In fact, according to Theorem 1, any of these sets is �-connected. Now,
if A ⊆ X and {a, b} ⊆ A\B with a < b, then A = [A ∩ (−∞, b)] t
[A ∩ [b,∞)] with {A ∩ (−∞, b) , A ∩ [b,∞)} ∩ P (B) = ∅, because a ∈
A ∩ (−∞, b), b ∈ A ∩ [b,∞) and {a, b} ∩ B = ∅. Hence, A is not
�-connected.

And now we go with some non-trivial examples.

Proposition 1 In the space (R,L, Ic(R)), a subset A is �-connected if and
only if A is countable.

Proof. By Theorem 1, if A is countable then A is �-connected.
Now, suppose that A is not countable. Then there exists r ∈ R such

that (−∞, r) ∩A and [r,∞) ∩A are not countable. In fact, given that A =⋃
n∈Z

([n, n+ 1] ∩ A), there exists N ∈ Z such that the set A1 = [N,N + 1]∩A

is not countable. We define α = inf A1 and β = supA1. Consider the sets
B = {x ∈ [α, β] : [α, x] ∩ A1 is countable} and C = {x ∈ [α, β] : [x, β] ∩ A1

is countable}. It is clear that α ∈ B, β ∈ C and B ∩ C = ∅. Further, B
and C are intervals given that if, for example, {u, v} ⊆ B and u < z < v,
then z ∈ [α, β] and [α, z]∩A1 is countable, because [α, v]∩A1 is countable.

Now, if a = supB, then a ∈ B. This is clear if B = {α}. If B 6= {α}
and {an} is an increasing succesion in [α, a) ⊆ B, such that an → a in the
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space (R,U), then A1 ∩ [α, a) =
⋃
n≥1

([α, an] ∩ A1), and thus, A1 ∩ [α, a) is

countable. This implies that A1 ∩ [α, a] is countable, and hence, a ∈ B.
Similarly, it can be verified that if b = inf C, then b ∈ C. On the other
hand, since A1 is not countable, we have that a < b. If we put r = (a+ b)/2,
then we have the announced result.

Since A = [(−∞, r) ∩ A] t [[r,∞) ∩ A], with {(−∞, r) , [r,∞)} ⊆ L, we
can conclude that A is not �-connected. �

Proposition 2 In the space (R,L, If (R)), a subset A is �-connected if and
only if A is finite or A is an infinite set such that: a) A is bounded; b)
there exists a ∈ A such that A′ = {a} in (R,L); c) for each r ∈ R, we have
A ∩ [r,∞) ∈ If (R) or A ∩ (−∞, r) ∈ If (R).

Proof. Note that, according to Proposition 1, if A is �-connected in (R,L,
If (R)), then A is countable.

Let us prove the sufficient first. Suppose that A ⊆ R is an infinite set
such that the conditions a), b) and c) are satisfied. Put α = inf A and
β = supA. It is clear that α ≤ a < β. Suppose that {U, V } ⊆ L and
A = (A ∩ U) t (A ∩ V ). Without loss of generality we can assume that
a ∈ U ∩ A. Then there exists ε ∈ (0, β − a) such that [a, a+ ε) ⊆ U .
Further, given that a ∈ A′ and (R,L) is a T1 space, then [a, a+ ε) ∩ A is
infinite. The condition c) implies that [α, a]∩A and [a+ ε, β]∩A are finite.
Since V ∩ A ⊆ ([α, a] ∩ A) ∪ ([a+ ε, β] ∩ A), the set V ∩ A is finite. Thus,
A is �-connected.

Now, let us prove the necessity. Suppose that A ⊆ R is �-connected and
infinite.

Since A = ((−∞, 0) ∩ A) t ([0,∞) ∩ A), we have (−∞, 0) ∩ A ∈ If (R)
or [0,∞) ∩ A ∈ If (R), and thus there exists inf A or there exists supA.

First, suppose that there exists a0 = inf A, but A has no upper bounds.
Then there is a sequence {a1, a2, a3, ...} ⊆ A such that for each n ≥ 0,
an+1 > max {n, an}. It is clear then that [a0,∞) =

⋃
n≥0

[an, an+1) and A =[ ⋃
n≥0

(A ∩ [a2n, a2n+1))

]
t
[ ⋃
n≥0

(A ∩ [a2n+1, a2n+2))

]
, and hence A is not �-

connected. Thus, A has upper bounds.
A similar argument allows us to conclude that if there exists b = supA,

then A has lower bounds. We conclude that A is bounded and denote
α = inf A and β = supA.

There is no a strictly increasing sequence in A.
Suppose, towards a contradiction, that {un} is a strictly increasing se-

quence in A. We define γ = sup {un : n ≥ 1}. Thus, α ≤ u1 < u2 <
u3 < · · · < γ ≤ β. If we put U = [α, u1) ∪ [u2, u3) ∪ [u4, u5) ∪ · · · and
V = [γ,∞)∪[u1, u2)∪[u3, u4)∪···, then {U, V } ⊆ L, A = (A ∩ U)t(A ∩ V ),
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but A ∩ U /∈ If (R) and A ∩ V /∈ If (R). This contradicts that A is �-
connected.

The set A has at most one accumulation point in (R,L). If u1 < u2 are
accumulation points of A in (R,L), then A = ((−∞, u2) ∩ A)t([u2,∞) ∩ A)
with {(−∞, u2) ∩ A, [u2,∞) ∩ A} ∩ If (R) = ∅, but this is impossible since
A is �-connected.

In the space (R,U), A has an accumulation point. We are going to prove
that this point is an accumulation point of A in (R,L).

Let x0 be an accumulation point of A in (R,U). Since there is no a
strictly increasing sequence in A, we have that x0 < β. We select a r ∈
(0, β − x0). The set (x0 − r, x0 + r) ∩ A is infinite, but (x0, x0 + r) ∩ A
cannot be finite since otherwise there would be a strictly increasing sequence
in (x0 − r, x0) ∩ A.

Hence, (x0, x0 + r) ∩ A is infinite. Thus, x0 is an accumulation point of
A in (R,L).

Let us show that x0 ∈ A. Suppose the opposite, namely, x0 /∈ A. Since
x0 is an accumulation point of A in (R,L), there exists a strictly decreasing
sequence {zn} in A such that zn → x0 in (R,L). If we put U = [α, x0) ∪
[z1,∞) ∪ [z3, z2) ∪ [z5, z4) ∪ · · · and V = [z2, z1) ∪ [z4, z3) ∪ · · ·, then A =
(A ∩ U) t (A ∩ V ) with {A ∩ U,A ∩ V } ∩ If (R) = ∅. This is impossible
since A is �-connected.

Finally, if r ∈ R, then A = ((−∞, r) ∩ A) t ([r,∞) ∩ A), and since A is
�-connected, we have (−∞, r) ∩ A ∈ If (R) or [r,∞) ∩ A ∈ If (R).

From the obtained results it follows that the conditions a), b) and c) are
satisfied. �

Proposition 3 If U is the usual topology in R, then in the space (R,U ,
If (R)), a subset A is �-connected if and only if the following conditions are
satisfied:
a) Ai is bounded, where Ai is the set of isolated points of A;
b) (Ai)

′
has at most two elements;

c) There is an interval I (eventually ∅ or a singleton) such that A = I ∪Ai
and (Ai)

′ ⊆ I.

Proof. It is observed that for each B ⊆ R, the set Bi is countable, since
(R,U) is a 2-countable space.

Suppose that A ⊆ R and that the conditions a), b) and c) are satisfied.
Let {U, V } ⊆ U be such that A = (A ∩ U) t (A ∩ V ). Thus, it is clear that
(A ∩ V )′ ∩ U = ∅. On the other hand, given that I is connected in (R,U)
and I ⊆ A, we have that I ⊆ U ∩A or I ⊆ V ∩A. Without loss of generality,
we suppose that I ⊆ U ∩ A. Then (V ∩ A) ∩ I = ∅, and thus V ∩ A ⊆ Ai.
This implies that A ∩ V is bounded. If A ∩ V were infinite, there would
be a b ∈ (A ∩ V )′ ⊆ R\U ⊆ R\I ⊆ R\ (Ai)

′
, but this is impossible since



A GENERALIZATION OF CONNECTENDNESS VIA IDEALS 7

(A ∩ V )′ ⊆ (Ai)
′
. In conclusion, A∩V is a finite set, that is, A∩V ∈ If (R).

Therefore A is �-connected.

Conversely, let A be �-connected.

(i) The set Ai is bounded.

Suppose, for example, that Ai has no upper bounds. Then there is a
sequence {an} in Ai such that for each n ≥ 2, an > max {n, an−1}. For each
n ≥ 1 we can choose an αn ∈ (an, an+1) \A. If we put U = (−∞, α1) ∪⋃
n≥1

(α2n, α2n+1) and V =
⋃
n≥1

(α2n−1, α2n), then A = (A ∩ U) t (A ∩ V ) but

A∩U /∈ If (R) and A∩V /∈ If (R). This is not possible since A is �-connected.

(ii) (Ai)
′ ⊆ A.

Suppose there is a z ∈ (Ai)
′ \ A. Given that A = [(−∞, z) ∩ A] t

[(z,∞) ∩ A] and A is �-connected, we have that (−∞, z) ∩ A ∈ If (R) or
(z,∞) ∩ A ∈ If (R). If, for example, (z,∞) ∩ A ∈ If (R), we can select a
number r > z such that (r,∞) ∩ A = ∅. Since z ∈ (Ai)

′
, (2z − r, r) ∩ Ai is

an infinite set, and hence (2z − r, z)∩Ai is an infinite set. Furthermore, we
can build a sequence {vn} in (2z − r, z) ∩ Ai such that vn < vn+1 for each
n ≥ 1 and vn → z, because z ∈ (Ai)

′
and (z, r)∩A is finite. For each n ≥ 1,

we can choose a δn ∈ (vn, vn+1) \A and put W = (−∞, δ1) ∪
⋃
n≥1

(δ2n, δ2n+1)

and T = (z,∞)∪
⋃
n≥1

(δ2n−1, δ2n). Then A = (A ∩W )t(A ∩ T ) but A∩W /∈

If (R) and A ∩ T /∈ If (R), which contradicts with the assumption that A is
�-connected.

(iii) (Ai)
′

has at most two points.

Suppose that {a, b, c} ⊆ (Ai)
′
with a < b < c, and ε ∈ (0,min {(b− a) /2,

(b− c)/2}). The sets (c− ε, c+ ε) ∩ Ai and (a− ε, a+ ε) ∩ Ai are infinite.
Let z ∈ (b− ε, b+ ε) ∩ Ai.

Let ε1 ∈ (0,min {{b+ ε− z, z + ε− b}}) be such that (z − ε1, z + ε1) ∩
A = {z}. For w ∈ (z − ε1, z + ε1) \A, we have A = [(−∞, w) ∩ A] t
[(w,∞) ∩ A] but (−∞, w) ∩ A /∈ If (R) and (w,∞) ∩ A /∈ If (R), which
contradicts the fact that A is �-connected.

(iv) A\Ai is an interval.

Suppose that a < b < c with {a, c} ⊆ A\Ai, and let ε ∈ (0,min {(b− a)/2,
(c− b)/2}). The sets (c− ε, c+ ε) ∩ A and (a− ε, a+ ε) ∩ A are infinite
because A\Ai ⊆ A′.

If b /∈ A, then A = [(−∞, b) ∩ A]t [(b,∞) ∩ A] with (−∞, b)∩A /∈ If (R)
and (b,∞)∩A /∈ If (R), but this is impossible since A is �-connected. Hence
b ∈ A.

Now, suppose b ∈ Ai. We can choose ε1 ∈ (0, ε) such that (b− ε1, b+ ε1)∩
A = {b}, and let r ∈ (b− ε1, b+ ε1) \ {b}. Thus, A = [(−∞, r) ∩ A] t
[(r,∞) ∩ A] with {(−∞, r) ∩ A, (r,∞) ∩ A} ∩ If (R) = ∅ given that
(a− ε, a+ ε)∩A ⊆ (−∞, r)∩A and (c− ε, c+ ε)∩A ⊆ (r,∞)∩A. This is
not possible since A is �-connected. Therefore b /∈ Ai, and hence b ∈ A\Ai.
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(v) If we put I = A\Ai, then A = I ∪ Ai. Obviously, (Ai)
′ ∩ Ai = ∅.

Hence, by (ii), we have that (Ai)
′ ⊆ I, and the proof is complete. �

Example 2 As a consequence of Proposition 3, we have that the sets A1 =
[0, 1]∪{1 + (1/n) : n ∈ Z+}, A2 = {−1/n : n ∈ Z+}∪[0, 1]∪{1 + (1/n) : n ∈
Z+} and A3 = I ∪ F , where I is an interval and F ⊆ R is finite, are
�-connected sets in the ideal space (R,U , If (R)). Note that (Ai1)

′
= {1},

(Ai2)
′

= {0, 1} and (Ai3)
′

= ∅. On the other hand, the sets A4 = [0, 1) ∪
{1 + (1/n) : n ∈ Z+} and A5 = [0, 1] ∪ {1 + (1/n) : n ∈ Z+} ∪ Z are not �-
connected.

Proposition 4 In the space (R,U , Ic(R)), a subset A is �-connected if and
only if there is an interval I (eventually ∅ or a singleton) and a countable
set J such that A = I ∪ J .

Proof. By Theorem 1, if I is an interval and J ⊆ R is countable, then I ∪J
is �-connected.

For the converse, suppose thatA ⊆ R satisfies the following requeriments:
1) A is �-connected on (R,U , Ic(R)); and 2) For each interval I ⊆ A, we
have that A\I /∈ Ic(R). Hence, A /∈ Ic(R) and A 6= R.

In this case, there exists d ∈ R\A. Thus, (−∞, d)∩A ∈ Ic(R) or (d,∞)∩
A ∈ Ic(R) because A is �-connected. Without loss of generality, we suppose
that (−∞, d)∩A ∈ Ic(R), and thus (d,∞)∩A /∈ Ic(R). Since A /∈ Ic(R), we
can conclude that the set D = {x ∈ R : x /∈ A and (−∞, x) ∩ A ∈ Ic(R)} is
bounded above. Note that D is not countable since (−∞, d) \A ⊆ D. We
define α = supD. If {dn} is a sequence in D such that dn → α, we have
that (−∞, α) ∩ A =

⋃
n≥1

[(−∞, dn) ∩ A] and hence (−∞, α) ∩ A ∈ Ic(R).

But A /∈ Ic(R), and then (α,∞)∩A /∈ Ic(R). Hypothesis 2 about A implies
that (α,∞) * A, and therefore, there is a b > α such that b /∈ A. Consider
the set E = {x > α : x /∈ A}. It is clear that b ∈ E, and that if x ∈ E then
(−∞, x) ∩A /∈ Ic(R). Moreover, if x ∈ E, then (x,∞) ∩A ∈ Ic(R) because
A is �-connected. Hence, if we put β = inf E, then it is easy to see that
(β,∞)∩A ∈ Ic(R), and which implies that α < β because A /∈ Ic(R). Using
Hypothesis 2 again, we have that (α, β) * A, and thus there is a u ∈ (α, β)
such that u /∈ A. Then u ∈ E and β ≤ u, and we come to contradiction.

All the above allows us to conclude that if A is �-connected in (R,U ,
Ic(R)), then there is an interval I ⊆ A (eventually ∅ or a singleton) and
J ∈ Ic(R) such that A\I = J . Hence A = I ∪ J . �

Proposition 5 In the space (R,U , In), a set A is �-connected if and only if
there is an interval E and J ∈ In such that A = E ∪ J . It is possible that,
in some cases, E = ∅.



A GENERALIZATION OF CONNECTENDNESS VIA IDEALS 9

Proof. The sufficiency follows from Theorem 1.
Let us prove the necessity. Suppose that A ⊆ R is �-connected in

(R,U , In).

(a) Let us initially consider the case in which
0

A 6= ∅. Since A is �-
connected, there is only one maximal interval E with more than one element
contained in A. We have that A\E ∈ In. Indeed, suppose that there is a

u ∈
0

A\E. Thus, there exists ε > 0 such that (u− ε, u+ ε) ⊆ A\E.

(i) Suppose there exists inf(E) and sup (E). Since
0

A\E ⊆
0

R\E =
(−∞, inf(E)) ∪ (sup(E),∞), we have u < inf(E) or sup(E) < u. If u <
inf(E), we can assume that ε < inf(E) − u. By the maximality of E, it is
clear that {inf(E), sup(E)} ⊆ E and (u+ ε, inf(E)) * A.

Choose v ∈ (u+ ε, inf(E)) \A. If r ∈ (u− ε, u+ ε), then there ex-
ists a sequence {an} in A\E such that an → r. We can assume that
an ∈ (u− ε, u+ ε) for each n ≥ 1. Hence, r ∈ A ∩ (−∞, v). Thus,
(u− ε, u+ ε) ⊆ A ∩ (−∞, v). Furthermore, E ⊆ A ∩ (v,∞). This al-
lows us to conclude that {A ∩ (−∞, v) , A ∩ (v,∞)} ∩ In = ∅. But since
A = [A ∩ (−∞, v)]t [A ∩ (v,∞)] and A is �-connected, we reached a contra-
diction. Analogously we obtain a contradiction by supposing that sup(E) <
u.

(ii) If there exists inf(E) but not sup(E) or if there exists sup(E) but
not inf(E), we can proceed as in the case (i) to arrive to a contradiction.

Hence, there is a J ∈ In with A\E = J , and thus A = E ∪ J .

(b) Suppose now that
0

A = ∅. We are going to show that A ∈ In. If

A /∈ In, then there is an interval (a, b) ⊆ A. Given that
0

A = ∅, we can
choose a z ∈ (a, b) \A. In this case, we have that (a, z) ⊆ A ∩ (−∞, z) and
(z, b) ⊆ A ∩ (z,∞), and hence {A ∩ (−∞, z) , A ∩ (z,∞)} ∩ In = ∅, which
is not possible since A = [A ∩ (−∞, z)]t [A ∩ (z,∞)] and A is �-connected.
�

Note also that, as it is easy to see, in the space (R,L, In), a set A is
�-connected if and only if A ∈ In.

Theorem 2 The space (X, τ, I) is �-connected if and only if for each con-
tinuous function f : (X, τ) → ({0, 1} ,P ({0, 1})), it holds f−1 ({0}) ∈ I or
f−1 ({1}) ∈ I.

Proof. Suppose that f : (X, τ) → ({0, 1} ,P ({0, 1})) is continuous. Since
X = f−1 ({0}) t f−1 ({1}) then, f−1 ({0}) ∈ I or f−1 ({1}) ∈ I.

For the converse, let us assume that {U, V } ⊆ τ\ {∅} and X = U t V .
The function f : (X, τ)→ ({0, 1} ,P ({0, 1})) defined by f (x) = 1 if x ∈ U
and f (x) = 0 if x ∈ V is continuous. Thus, V = f−1 ({0}) ∈ I or U =
f−1 ({1}) ∈ I. �
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For ideal topological space (X, τ, I), denote by I the ideal of all A ⊆ X
such that there is a J ∈ I with A ⊆ J (see [5] for details). Note that I ∈ J
if and only if I ∈ J .

Theorem 3 If A and B are subsets of the space (X, τ, I) and A is �-
connected, then:
1) If A ⊆ B ⊆ A, then B is �-connected in the space

(
X, τ, I

)
.

2) If A ⊆ B ⊆ A ∪ A?, then B is �-connected in the space (X, τ, I).

Proof. 1) Suppose that there exists {U, V } ⊆ τ such that B = (B ∩ U) t
(B ∩ V ). Hence, A = (A ∩ U)t (A ∩ V ), and thus A∩U ∈ I or A∩ V ∈ I.
If A∩U = I ∈ I, then A ⊆ I ∪ (X\U), and therefore, B ⊆ A ⊆ I ∪ (X\U).
Thus, B ∩ U ⊆ I and B ∩ U ∈ I. Similarly, if A ∩ V ∈ I, then B ∩ V ∈ I.
This implies that B is �-connected in

(
X, τ, I

)
.

2) This can be easily verified. �

The following example shows that if a set A is �-connected with respect
to an ideal I, it is not necessarily that A is �-connected with respect to I.

Example 3 Let X = {0, 1, 2}, τ = {∅, X, {0} , {1, 2}}, I = {∅, {1}} and
A = {0, 1}. Then A is �-connected in (X, τ, I). However, A = X is not
�-connected in (X, τ, I) because X = {0}∪{1, 2} but {{0} , {1, 2}}∩I = ∅.

The three theorems that follow show us how to build �-connected sets

from some known ones. If I is an ideal on X, then the ideal P
(⋃
I∈I

I

)
is

denoted by I~. Note that I ⊆ I~.

Theorem 4 1) If {Aα}α∈∆ is a collection of �-connected subsets of an ideal
topological space (X, τ, I) and there exists a ∈

⋂
α∈∆

Aα such that {a} /∈ I,

then the set A =
⋃
α∈∆

Aα is �-connected in the space (X, τ, I~).

2) If A and B are �-connected subsets of (X, τ, I) such that A ~ B 6= ∅,

then A∪B is �-connected in (X, τ, I). Here A~B = A\
⋃
I∈I

I ∩
(
B\

⋃
I∈I

I

)
.

In the particular case I = {∅}, if A and B are connected sets in the space
(X, τ) and A ∩B 6= ∅, then A ∪Bis connected.

Proof. 1) Suppose that there is {U, V } ⊆ τ such that A = (A ∩ U) t
(A ∩ V ). Then, for each α ∈ ∆, Aα = (Aα ∩ U) t (Aα ∩ V ), and hence
Aα ∩ U ∈ I or Aα ∩ V ∈ I. If a ∈ U , then {a} ⊆ U ∩ Aα, and thus
U ∩ Aα /∈ I for all α ∈ ∆. This implies that V ∩ Aα ∈ I for all α ∈ ∆, and
then V ∩ A ∈ I~. Similarly, if a ∈ V , we obtain that U ∩ A ∈ I~.

2) Suppose that z ∈ A~B. Let {U, V } ⊆ τ and A∪B = [(A ∪B) ∩ U ]t
[(A ∪B) ∩ V ]. This implies that B = (B ∩ U)t(B ∩ V ) and A = (A ∩ U)t
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(A ∩ V ). Without loss of generality, we can assume z ∈ U . Since {z} /∈ I,
we have that B ∩ U /∈ I, and thus B ∩ V ∈ I because B is �-connected.

Now, there is an element a ∈ U ∩
(
A\

⋃
I∈I

I

)
. Since {a} /∈ I, we have

U ∩ A /∈ I, and in this case A ∩ V ∈ I, because A is �-connected. Under
these conditions, (A ∪B) ∩ V ∈ I. Thus, A ∪B is �-connected. �

Corollary 2 If (X, τ, I) is an ideal space such that I is closed for arbitrary
unions, then for each a ∈ X\

⋃
I∈I

I, there is a maximal �-connected set P(a)

such that a ∈ P(a). Furthermore, sets P(a)\
⋃
I∈I

Idetermine a partition of

X\
⋃
I∈I

I.

Proof. It is clear that in this case, I~ = I. If a ∈ X\
⋃
I∈I

I, then {a} /∈ I.

If H = {A ⊆ X : a ∈ A and A is � -connected}, then {a} ∈ H. The set
P(a) =

⋃
H∈H

H is a maximal �-connected. Now, if {a, b} ⊆ X\
⋃
I∈I

I and

there is c ∈
(
P(a)\

⋃
I∈I

I

)
∩
(
P(b)\

⋃
I∈I

I

)
, then P(a)∪P(b) is �-connected

given that {c} /∈ I. The maximality of P(a) and P(b) forces that P(a) =
P(a) ∪ P(b) = P(b). �

Note that, according to Corollary 1,
⋃
I∈I

I ⊆ P(a) for all a ∈ X\
⋃
I∈I

I.

The sets P(a) are what one might call the �-connected components
of (X, τ, I).

If A and B are �-connected and A ∩ B 6= ∅, then it may happen that
A ∪B is not �-connected, which the following example shows.

Example 4 If (X, τ, I) and A are as in Example 3 and B = {1, 2}, then A
and B are �-connected sets but A ∪B = X is not �-connected.

Theorem 5 If {An}n∈Z+ is a collection of �-connected subsets of an ideal
space (X, τ, I) such that for each n ∈ Z+, there exists zn ∈ An ∩ An+1 with
{zn} /∈ I, then the set A =

⋃
n∈Z+

An is �-connected in the space (X, τ, I~).

Proof. For each n ≥ 1, define Bn = A1 ∪ A2 ∪ · · ·An. It is clear that⋃
n≥1

Bn =
⋃
n≥1

An,
⋂
n≥1

Bn = A1 and B1 is �-connected in (X, τ, I). Suppose

that for some k ∈ Z+, Bk is �-connected in (X, τ, I). Since Bk+1 = Bk∪Ak+1,
zk ∈ Ak ∩ Ak+1 ⊆ Bk ∩ Ak+1 and {zk} /∈ I, then it is easy to see that Bk+1

is �-connected in (X, τ, I). Now, given that z1 ∈ A1 =
⋂
n≥1

Bn and {z1} /∈ I,

we have that
⋃
n≥1

Bn is �-connected in (X, τ, I~) by Theorem 4. �
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Without the hypothesis that for each n ≥ 1, there is zn ∈ An ∩ An+1

with {zn} /∈ I, it is possible that the conclusion of the theorem turns out
to be false. On the other hand, it is also possible that under the hypothesis
of Theorem 5, it is not true that the set A =

⋃
n∈Z+

An is �-connected in

(X, τ, I). The following example illustrates these two situations.

Example 5 1) If 2Z is the set of even integers then in the space (Z,P(Z),
Pf (2Z)), we have that the set An = {n, n+ 1} is �-connected for each
n ∈ Z but the set Z =

⋃
n∈Z

An is not �-connected in (Z,P(Z),P(2Z))

(see Example 1). Note that (Pf (2Z))~ = P(2Z).

2) If A is the set of all positive odd integers and Pf (A) is the collection
of all finite B ⊆ A, then in the space (Z,P(Z),Pf (A)), we have that
the set An = {2k + 1 : 0 ≤ k ≤ n− 1} ∪ {2} is �-connected for each
n ≥ 1. Furthermore, 2 ∈ An ∩ An+1 for all n ≥ 1 and {2} /∈ Pf (A).
However, the set D =

⋃
n≥1

An is not �-connected in (Z,P(Z),Pf (A)).

Theorem 6 1) If in the space (X, τ, I) there is a singleton {a} /∈ I such
that for each x ∈ X, there exists a �-connected set Ex satisfying {a, x} ⊆ Ex,
then (X, τ, I~) is �-connected.
2) If in the space (X, τ, I), for each {x, y} ⊆ X, there exists a �-connected
set Ex,y with {x, y} ⊆ Ex,y, then (X, τ, I~) is �-connected.

Proof. 1) This is a consequence of Theorem 4 given that X =
⋃
x∈X

Ex,

a ∈
⋂
a∈X

Ex and {a} /∈ I.

2) If X =
⋃
I∈I

I, then the statement is obvious. If X 6=
⋃
I∈I

I, one can

choose a ∈ X\
⋃
I∈I

I and then apply 1). �

Note that under any of the assumptions of Theorem 6, (X, τ, I) does not
have to be �-connected. In the following example we show this.

Example 6 If I = Pf (R\ {0}), then in the space (R,L, I), we have that
{0} /∈ I and Er = {0, r} is �-connected for each r ∈ R. Despite this,
(R,L, I) is not �-connected given that R = (−∞, 1)∪ [1,∞) but {(−∞, 1) ,
[1,∞)} ∩ I = ∅. Further, note that Er,s = {r, s} is �-connected for each
{r, s} ⊆ R.

In the theorem that follows, we characterize �-connectedness in terms of
separated sets.
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Theorem 7 The set A is �-connected in the space (X, τ, I) if and only if
for each pair of separated sets H and K, from A = H ∪ K it follows that
H ∈ I or K ∈ I.

Proof. If A = H ∪ K and H and K are separated sets, then H and K
are closed sets in A. Given that A is �-connected, we have that H ∈ I or
K ∈ I.

Conversely, if A = H tK where H and K are closed sets in A, then H
and K are separated sets. The hypothesis implies that H ∈ I or K ∈ I.
Hence, A is �-connected. �

Corollary 3 If the set A is �-connected in the space (X, τ, I) and H and
K are separated sets such that A ⊆ H ∪K, then A ∩H ∈ I or A ∩K ∈ I.

Proof. Since A = (A ∩H)t (A ∩K) and A∩H, A∩K are separated sets,
we have that A ∩H ∈ I or A ∩K ∈ I by Theorem 7. �

Theorem 8 If (X, τ, I) is an ideal space, {A,B} ⊆ τ , A ∩ B is connected
and A ∪B is �-connected, then A and B are �-connected sets.

Proof. Suppose that {U, V } ⊆ τ and A = U tV . Then A∩B = (U ∩B)t
(V ∩B) and since A∩B is connected, we have that U∩B = ∅ or V ∩B = ∅.
Suppose that U ∩ B = ∅. Given that A ∪ B = U t (V ∪B) and A ∪ B is
�-connected, we have that U ∈ I or V ∪ B ∈ I, and thus U ∈ I or V ∈ I.
Similarly, if V ∩ B = ∅, we obtain that U ∈ I or V ∈ I. Hence, A is
�-connected. The �-connectedness of B can be shown in the similar way. �

Now we present some functional properties of �-connectedness.

If f : X → Y is a function and I is an ideal on X, we will denote by J If
the set {B ⊆ Y : f (f−1 (B)) ∈ f(I)}. It is clear that J If is an ideal on Y
and that f(I) ⊆ J If . Moreover, if f is surjective, then f(I) = J If .

Example 7 If X = {0, 1}, Y = {0, 1, 2}, I = {∅, {0}} and f : X → Y
is defined by f(0) = 0 and f(1) = 1, then f(I) = {∅, {0}} and {2} ∈ J If .
Hence, f(I) 6= J If .

Theorem 9 1) If f : (X, τ)→ (Y, β) is a continuous function and I is an
ideal on X such that (X, τ, I) is �-connected, then f(X) is �-connected in(
Y, β,J If

)
.

2) If f : (X, τ) → (Y, β) is a bijective open function and (Y, β,J ) is �-
connected, then (X, τ, f−1 (J )) is �-connected.
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Proof. 1) Suppose that H and K are separated sets in Y such that f(X) =
H ∪K. Given that f−1(H) and f−1(K) are separated sets in X and X =
f−1(H) ∪ f−1(K), we have that f−1(H) ∈ I or f−1(K) ∈ I, and thus
f (f−1(H)) ∈ f(I) or f (f−1(K)) ∈ f(I). Hence, H ∈ J If or K ∈ J If .

2) This statement is verified without difficulty. �

Corollary 4 If f : (X, τ) → (Y, β) is a continuous surjective function and
I is an ideal on X such that (X, τ, I) is �-connected, then (Y, β, f(I)) is
�-connected.

Corollary 5 If f : (X, τ)→ (Y, β) is continuous and the space (X, τ, I) is
�-connected, then the set Gr(f) = {(x, f (x)) : x ∈ X} is �-connected in the
space (X × Y, τ × β,J (f, I)) where J (f, I) is the ideal {J ⊆ X × Y : p1 (J
∩Gr(f)) ∈ I}. Here p1 : X × Y → X is the first projection.

Proof. It is not difficult to verify that J (f, I) is an ideal on X × Y .
Since the function g : X → X × Y defined by g(x) = (x, f(x)) for all
x ∈ X is continuous, Theorem 9 implies that Gr(f) is �-connected in(
X × Y, τ × β,J Ig

)
. Now, given that g is injective, we have that for each

J ⊆ X×Y , g (g−1 (J)) ∈ g (I) if and only if g−1 (J) ∈ I. Furthermore, for all
J ⊆ X × Y , it is true that g−1 (J) = p1 (J ∩Gr (f)). Hence, J Ig = J (f, I).
�

Corollary 6 If (X∗, d∗)is the completion of a metric space (X, d) and (X, d,

I) is a �-connected space, then
(
X∗, d∗,J Ij

)
is �-connected, where j : X →

X∗ is the inclusion funtion. Note that J Ij = {I ∪ A : I ∈ I and A ⊆ X∗\X}.

A surjective function f : (X, τ)→ (Y, β) is a quotient function if for each
B ⊆ Y , we have f−1 (B) ∈ τ if and only if B ∈ β.

Theorem 10 Let f : (X, τ) → (Y, β) be a quotient funtion with f−1 ({y})
connected for each y ∈ Y . Let (Y, β,J ) be a �-connected space. Then
(X, τ, If,J ) is �-connected.

Proof. Suppose that there is {U, V } ⊆ τ such that X = UtV . If U = ∅ or
V = ∅, then {U, V }∩If,J 6= ∅. Thus, we can assume that U 6= ∅ and V 6=
∅. There is no y0 ∈ Y such that f−1 ({y0})∩U 6= ∅ and f−1 ({y0})∩V 6= ∅
since the set f−1 ({y0}) is connected. Hence, there is {Y1, Y2} ⊆ P(Y ) with
Y1 ∩ Y2 = ∅, U = f−1 (Y1) and V = f−1 (Y2). Note that {Y1, Y2} ⊆ β since
f is a quotient function. But we have that Y = f (U)t f(V ) = Y1 t Y2, and
since Y is �-connected, we conclude that Y1 ∈ J or Y2 ∈ J . This allows us
to affirm that U ∈ If,J or V ∈ If,J , and thus (X, τ, If,J ) is �-connected. �
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We recall that a topological space (X, τ) is said to be completely Haus-
dorff if for each {a, b} ⊆ X with a 6= b, there exists a continuous funtion
f : X → [0, 1] such that f (a) = 0 and f(b) = 1.

Theorem 11 If (X, τ, I) is a �-connected space having more than one point
such that I is codense and (X, τ) is completely Hausdorff, then X is not
countable.

Proof. Let {a, b} ⊆ X, a 6= b, and suppose that f : X → [0, 1] is a
continuous function such that f(a) = 0 and f(b) = 1. If r ∈ (0, 1), U =
f−1 ([0, r)) and V = f−1 ((r, 1]), then U and V are disjoint and nonempty
open sets in (X, τ) and, since (X, τ, I) is �-connected and I is codense,
we have that X 6= U ∪ V . Thus, there is xr ∈ X such that f(xr) = r.
Additionally, it is clear that if {r1, r2} ⊆ (0, 1) and r1 6= r2, then xr1 6= xr2 .
Therefore, X is not countable. �

Corollary 7 If (X, τ) is a T4 space with more than one point and I is a
codense ideal in X such that (X, τ, I) is �-connected, then X is not countable.

Proof. By Urysohn’s Lemma, each T4 space is a completely Hausdorff
space. �

The following property is related to the intersection of �-connected sets.

Theorem 12 Suppose that:

1) (X, τ) is a compact and Hausdorff space;

2) {Aα}α∈∆ is a collection of closed and �-connected subsets of (X, τ, I);

3) There exists a ∈
⋂
α∈∆

Aα such that {a} /∈ I;

4) For each pair α 6= β in ∆, there exists θ ∈ ∆ such that Aθ ⊆ Aα and
Aθ ⊆ Aβ.

Then the set A =
⋂
α∈∆

Aα is �-connected.

Proof. . Suppose that A is not �-connected. Then there exists {U, V } ⊆ τ
such that A = (A ∩ U) t (A ∩ V ) and {A ∩ U,A ∩ V } ∩ I = ∅. Note that
A ∩ U 6= ∅ and A ∩ V 6= ∅. Since A is closed and the sets A ∩ U and
A∩V are closed in A, these sets are closed in X, and thus are compact. But
(X, τ) is Hausdorff, and hence there are disjoint open sets T and R such that
A∩U ⊆ T and A∩V ⊆ R. It is clear that A∩U ⊆ Aα∩T , A∩V ⊆ Aα∩R,
and that Aα\(T ∪ R) is closed for each α ∈ ∆. If there is a λ ∈ ∆ such
that Aλ\(T ∪ R) = ∅, then Aλ = (Aλ ∩ T ) t (Aλ ∩R). Given that Aλ is
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�-connected, we have that {Aλ ∩ T,Aλ ∩R} ∩ I 6= ∅, and thus {a} ∈ I,
which is impossible. Hence Aα\(T ∪R) 6= ∅ for each α ∈ ∆. By hypothesis
4, the collection {Aα\(T ∪R) : α ∈ ∆} has the finite intersection property.
By the compactness of X, we can conclude that

⋂
α∈∆

[Aα\ (T ∪R)] 6= ∅ or,

equivalently, A\ (T ∪R) 6= ∅. This is not possible, since A ⊆ T ∪R. �

Theorem 13 Suppose that (X, τ, I) is �-connected, Y ⊆ X is connected
and that X\Y = A ∪ B, where A and B are separated sets in X. Then
Y ∪ A and Y ∪B are �-connected.

Proof. We will proceed with Y ∪A. Suppose that H and K are separated
sets in X such that Y ∪ A = H ∪ K. Since Y is connected, we have that
Y ⊆ H or Y ⊆ K. Without loss of generality, suppose that Y ⊆ H. Thus,
K ⊆ A, and hence K ∩ B = ∅ = K ∩ B. Now, X = Y ∪ (X\Y ) =
Y ∪ (A ∪B) = (Y ∪ A)∪B = (H ∪K)∪B = (B ∪H)∪K. Also, B ∪H ∩
K =

(
B ∩K

)
∪
(
H ∩K

)
= ∅ and (B ∪H)∩K =

(
B ∩K

)
∪
(
H ∩K

)
= ∅.

Given that X is �-connected, it is true that B∪H ∈ I or K ∈ I by Theorem
7 In this case H ∈ I or K ∈ I, and therefore, Y ∪ A is �-connected. �

In the next theorem we establish a relationship between the �-connected-
ness of a Tychonoff space and the �-connectedness of its Stone-Cĕch com-
pactification.

Theorem 14 Let (β (X) , β (τ)) be the Stone-Cĕch compactification of the
Tychonoff space (X, τ).

1) If (X, τ, I) is �-connected, then (β (X) , β (τ) , β (I)) is �-connected
where β (I) =

{
B ⊆ β (X) : there is I ∈ I with B ⊆ adhβ(τ) (I)

}
.

2) If (β (X) , β (τ) ,J ) is �-connected, then (X, τ,JX) is �-connected. In
particular, if I is an ideal on X and (β (X) , β (τ) , I) is �-connected,
then (X, τ, I) is �-connected.

Proof. 1) Note that I is an ideal on β (X). Since β (τ)X = τ , we have
that X is �-connected in (β (X) , β (τ) , I). Theorem 3 implies that the set
adhβ(τ) (X) = β (X) is �-connected on (β (X) , β (τ) , β(I)).

2) Suppose that U and V are disjoint and nonempty open sets such that
X = U ∪ V . The characteristic function χU : X → {0, 1} is continuous, and
thus, it can be extended to a continuous function F : β (X)→ {0, 1}. Hence,
β (X) = F−1 ({0}) t F−1 ({1}) with U ⊆ F−1 ({1}) and V ⊆ F−1 ({0}).
Given that (β (X) , β (τ) ,J ) is �-connected, we have that F−1 ({1}) ∈ J or
F−1 ({0}) ∈ J , and thus U ∈ JX or V ∈ JX . �
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Let C be a collection of open sets in a topological space (X, τ). If a and
b are points in X, then a finite sequence U1, U2, ..., Um of sets in C is said
to be a simple chain connecting a with b modulo C if any of the following
conditions are true:

(i) m = 1 and {a, b} ⊆ U1;

(ii) m > 1, a ∈ U1 only, b ∈ Um only, and Ui ∩ Uj 6= ∅ iff |i− j| ≤ 1.

In this case, we will write a C b

Theorem 15 Suppose that (X, τ, I) is �-connected and {a} /∈ I for some
a ∈ X. If C is an open cover of X and if F = {x ∈ X : a C x}, then
X\F ∈ I.

Proof. It is well known that F is an open and closed set (see, for example,
[10], section 26). Given that (X, τ, I) is �-connected, we have that F ∈ I or
X\F ∈ I. But since a ∈ F and {a} /∈ I, we conclude that X\F ∈ I. �

Our last statement establishes a relationship between �-connectedness
and simple extensions of topologies.

We recall that if (X, τ) is a topological space and A ⊆ X, then the simple
extension of τ over A is the topology τ (A) = {U ∪ (V ∩ A) : {U, V } ⊆ τ}.

Theorem 16 If (X, τ, I) is an ideal space and the set F ∈ I is closed, then
(X, τ (F ) , I) is � -connected if and only if

(
X\F, τX\F , IX\F

)
is �-connected.

Proof. Suppose that {U, V } ⊆ τ and X\F = UtV . Then X = Ut(V ∪ F )
with {U, V ∪ F} ⊆ τ (F ). The hypothesis implies that U ∈ I or V ∪F ∈ I,
and thus U ∈ I or V ∈ I. Since U ⊆ X\F and V ⊆ X\F , we have that
U ∈ IX\F or V ∈ IX\F .

Conversely, if {U1, U2, V1, V2} ⊆ τ and X = [U1 ∪ (V1 ∩ F )] t [U2 ∪ (V2∩
F )], then X\F = (U1\F ) t (U2\F ), and hence {U1\F,U2\F} ∩ IX\F 6= ∅.
Since IX\F ∪ {F} ⊆ I, we obtain {U1, U2} ∩ I 6= ∅, which allows us to
conclude that {U1 ∪ (V1 ∩ F ) , U2 ∪ (V2 ∩ F )} ∩ I 6= ∅. �
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