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Abstract

k-deficit Banach frames have been defined and studied. It has been proved that if a

Banach space has a Banach frame having k-deficit (k ≥ 0), then its second conjugate space

has a retro Banach frame. Also, we prove results regarding existence of k-deficit Banach

frames in subspaces and super spaces of a Banach space and deduce that ℓ∞ does not have

a k-deficit Banach frame for any k. Finally, we prove the equivalence of two statements

regarding Banach frames.
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1 Introduction

The excess of the frame is the greatest integer n such that n elements can be deleted from

the frame and still leave a complete set, or ∞ if there is no upper bound to the number

of elements that can be removed. In the former case, it can be shown that the frame is

simply a Riesz basis to which finitely many elements have been adjoined [6]. Such frames

are called “near Riesz bases” and behave in many respects like Riesz bases. A frame with

infinite excess need not contain a Riesz basis as a subset; an example was constructed in [2].

R. Balan et al. [1] studied deficits and excesses of frames in Hilbert spaces and proved

that if ℱ is any complete sequence in a Banach space which has infinite excess, then there

exists a countably infinite subset G ⊂ ℱ such that ℱ ∖ G is complete. They also related

the concepts of deficit and excess of a Bessel sequence to the dimension of the kernels of

the analysis operator and the synthesis operator associated with the Bessel sequence. They
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proved several other results and applied them to the specific cases of Weyl-Heisenberg and

wavelet system.

The concept of ∗excess in Banach spaces was defined and studied in [12].

In the present paper, we define and study k-deficit Banach frames and prove that if E

has a Banach frame having k-deficit, then E∗∗ has a retro Banach frame. Also, if a Banach

space E has a Banach frame having k-deficit (k ≥ 0), then every closed subspace of E also

has a Banach frame having k1-deficit, for some k1 ≤ k. Further, it has been proved that

if a Banach space E has a k-deficit Banach frame, then every superspace of E with finite

co-dimension also has a k-deficit Banach frame. Finally, we prove the equivalence of two

statements regarding Banach frames.

2 Preliminaries

Throughout this paper E will denote a Banach space over the scalar field K (ℝ or ℂ), E∗

the conjugate space of E, [xn] the closed linear span of {xn} in the norm topology of E, [f̃n]

the closed linear span of {fn} in the �(E∗, E)-topology, Ed the associated Banach space of

the scalars-valued sequences indexed by ℕ.

A sequence {fn} in E∗ is said to be total over E if {x ∈ E : fn(x) = 0, n ∈ ℕ} = {0}.
The following result which is refered in this paper is listed in the form of a lemma.

Lemma 1 ([9]). If E is a Banach space and {fn} ⊂ E∗ is total over E, then E is linearly

isometric to the associated Banach space Ed = {{fn(x)} : x ∈ E}, where the norm is given

by ∥{fn(x)}∥Ed
= ∥x∥E, x ∈ E.

Definition 2 ([5]). Let E be a Banach space and Ed an associated Banach space of scalar

valued sequences indexed by ℕ. Let {fn} ⊂ E∗ and S : Ed → E be given. Then the pair

({fn}, S) is called a Banach frame for E with respect to Ed if

(i) {fn(x)} ∈ Ed, for each x ∈ E
(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A∥x∥E ≤ ∥{fn(x)}∥Ed
≤ B∥x∥E, x ∈ E (1)

(iii) S is a bounded linear operator such that

S({fn(x)}) = x, x ∈ E.

The positive constants A and B, respectively, are called lower and upper frame bounds of

the Banach frame ({fn}, S). The operator S : Ed → E is called the reconstruction operator

(or the pre-frame operator). The inequality (2.1) is called the frame inequality. It is easy to

observe that frame bounds need not be unique. Further, if T : E → Ed is the coefficient map

given by T (x) = {fn(x)}, x ∈ E, then (∥S∥)−1 and ∥T∥ satisfying A ≤ ∥S∥−1 ≤ ∥T∥ ≤ B,

are also frame bounds for the Banach frame ({fn}, S).
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The Banach frame ({fn}, S) is called tight if A = B and normalized tight if A = B = 1.

Also, the Banach frame ({fn}, S) is said to be exact if there exists no reconstruction operator

S0 such that ({fn}n∕=i, S0) (i ∈ ℕ) is a Banach frame for E.

For more results and concepts regarding frames in Banach spaces, one may refer to

[3, 4, 10, 11].

Finally, in this section, we give the following definition of a retro Banach frame introduced

in [7].

Definition 3. Let E be a Banach space and E∗ be its conjugate space. Let (E∗)d be a

Banach space of scaler valued sequences associated with E∗ indexed by ℕ. Let {xn} ⊂ E

and T : (E∗)d → E∗ be given. The pair ({xn}, T ) is called a retro Banach frame (RBF) for

E∗ with respect to (E∗)d if

(i) {f(xn)} ∈ (E∗)d, for each f ∈ E∗,

(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A∥f∥E∗ ≤ ∥{f(xn)}∥(E∗)d ≤ B∥f∥E∗ , f ∈ E∗ (2)

(iii) T is a bounded linear operator such that

T ({f(xn)}) = f, f ∈ E∗.

The positive constant A and B, respectively, are called the lower and the upper frame

bounds of the retro Banach frame ({xn}, T ). The operator T : (E∗)d → E∗ is called the

reconstruction operator (or, the pre-frame operator). The inequality (2.2) is called the retro

frame inequality. As in case of Banach frames, the retro Banach frame is called tight if A = B

and is said to be exact if there exists no reconstruction operator T0 such that ({xn}i ∕=i, T0)

(i ∈ ℕ) is a retro Banach frame for E∗. Further, in view of Lemma 3.1 in [7], if ({xn}, T )

is an exact retro Banach frame for E∗, then there exists a sequence {fn} ⊂ E∗ such that

fi(xj) = �ij (Kronecker delta), for all i, j ∈ ℕ. The seqeuence {fn} ⊂ E∗ is called an

admissible sequence to the retro Banach frame ({xn}, T ).

3 Main Results

Definition 4. A Banach frame ({fn}, S) ({fn} ⊂ E, S : Ed → E) is said to have k-deficit

if there exists an integer k ≥ 0 such that every (k + 1) dimensional subspace Ak+1 of

E∗ meets [fn] non-trivially and there exists a k-dimensional subspace Bk of E∗ such that

Bk ∩ [fn] = {0}.

Regarding existence of k-deficit Banach frames, we have
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Example 5. (a) Let E = c0 and let {en} be the sequence of unit vectors in E and {gn}
be the sequence of unit vectors in E∗. Then, by Lemma 1, there exists an associated

Banach space Ed = {{gn(x)} : x ∈ E} and a reconstruction operator T : Ed → E such

that ({gn}, T ) is a Banach frame for E with respect to Ed. Also, gi(ej) = �ij, for all

i, j ∈ ℕ. Further, since [gn] = E∗, ({gn}, T ) is a 0-deficit Banach frame.

(b) Let E = ℓ1 and let {en} be the sequence of unit vectors in E and {fn} be the sequence

of unit vectors in E∗. Then, as in Example 5(a), there exists an associated Banach space

Ed and a reconstruction operator S : Ed → E such that ({fn}, S) is a Banach frame for

E with respect to Ed. Also, fi(ej) = �ij, for all i, j ∈ ℕ. But [fn] ∕= E∗. So, ({fn}, S) is

not a 0-deficit Banach frame for E.

(c) Let J be the James space [13]. Let {en} be the sequence of unit vectors in J . Define

{yn} ⊂ J and {gn} ⊂ J∗ by

yn =
n∑

i=1

ei , n ∈ ℕ

gn = en − en+1 , n ∈ ℕ

Then gi(yj) = �ij, for all i, j ∈ ℕ. Also, {gn} is total over J . So, by Lemma 1, there exists

an associated Banach space Jd = {{gn(x)} : x ∈ J} with norm ∥{gn(x)}∥Jd = ∥x∥J ,

x ∈ J and a reconstruction operator T : Jd → J such that ({gn}, T ) is a Banach frame

for J with respect to Jd. Further, since e1 /∈ [gn], en ∈ [gn] for all n = 2, 3, . . . and

[en] = J∗, it follows that dim J∗ − dim[gn] = 1. Hence ({gn}, T ) is a 1-deficit Banach

frame for J .

Theorem 6. If E has a k-deficit Banach frame (k > 0), then E∗∗ has a retro Banach frame

with respect to some associated Banach space.

Proof. Let ({fn}, S) be a Banach frame for E having k-deficit. Let {gi}ki=1 ⊂ E∗ be a linearly

independent set such that E∗ = [fn]⊕ [gi]
k
i=1. Define a sequence {ℎn} ⊂ E∗ by⎧⎨⎩ℎ1 = gk

ℎn = fn−1, n = 2, 3, . . .

Then {ℎn} is a finitely linearly independent sequence in E∗. If ℎn(x) = 0, for all n ∈ ℕ,

then, by the frame inequality for the Banach frame ({fn}, S), x = 0. Therefore, by Lemma

1, there exists an associated Banach space Ed0 = {{ℎn(x)} : x ∈ E} with norm given by

∥{ℎn(x)}∥Ed0
= ∥x∥E, x ∈ E together with a reconstruction operator S0 : Ed0 → E given by

S0({ℎn(x)}) = x, x ∈ E such that ({ℎn}, S0) is a Banach frame for E with respect to Ed0 .

Since ({fn}, S) have k-deficit, dim(E∗∖[fn]) = k. So dim(E∗∖[ℎn]) = k−1. Then, there exists

a (k− 1)-dimensional subspace B of E∗ such that B ∩ [ℎn] = {0}. If A is any k-dimensional
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subspace of E∗, then A∩ [ℎn] ∕= {0} because otherwise dim(E∗ ∖ [ℎn]) = k. Hence ({ℎn}, S0)

is a (k−1)-deficit Banach frame for E. Repeating the above process (k−1)-times, we obtain

a sequence {�n} ⊂ E∗ and a bounded linear operator T : {{�n(x)} : x ∈ E} → E such that

({�n}, T ) is a 0-deficit Banach frame for E. This gives [�n] = E∗. Hence, by Lemma 1,

there exits an associated Banach space (E∗∗)d = {{�(gn)} : � ∈ E∗∗} with norm given by

∥{�(gn)}∥(E∗∗)d = ∥�∥E∗∗ , � ∈ E∗∗ together with a reconstruction operator ∪ : (E∗∗)d → E∗∗

given by ∪({�(gn)}) = �, � ∈ E∗∗ such that ({gn},∪) is a retro Banach frame for E∗∗ with

respect to (E∗∗)d.

Next, we prove that if a Banach space has a Banach frame having k-deficit (k ≥ 0), then

every closed subspace of it also has a Banach frame having k1-deficit (k1 ≤ k).

Theorem 7. If E has a Banach frame having k-deficit (k ≥ 0), then every closed subspace

G of E has a Banach frame having k1-deficit, for some k1 ≤ k.

Proof. Let ({fn}, S)({fn} ⊂ E∗, S : Ed → E) be a Banach frame for E having k-deficit

(k ≥ 0). Then, there exists a k-dimensional subspace Bk of E∗ such that E∗ = [fn] ⊕ Bk.

Let G be a closed subspace of E. Let gn = fn∣G, n ∈ ℕ. Then {gn} ⊂ G∗. If x ∈ G is such

that gn(x) = 0 for all n ∈ ℕ, then fn(x) = 0, n ∈ ℕ. So, by the frame inequality for the

Banach frame ({fn}, S), x = 0. Therefore, by Lemma 1, there exists an associated Banach

space Gd = {{gn(x)} : x ∈ G} with norm ∥{gn(x)∥Gd
= ∥x∥G, x ∈ G, together with a

reconstruction operator T : Gd → G such that ({gn}, T ) is a Banach frame for G. Further,

we have G∗ = [gn]⊕Ak1 , where Ak1 is a k1-dimensional subspace of G∗ with k1 = dimD ≤ k,

where D = {f ∈ G∗ : f ∈ �∣G,∀ � ∈ Bk} .

Corollary 8. The Banach space ℓ∞ does not have a k-deficit Banach frame for any k.

Note. The Banach space ℓ∞ does have a Banach frame [8].

The next result is regarding the existence of a Banach frame having k-deficit Banach

frame in every superspace with finite co-dimension, of a Banach space having k-deficit Banach

frame.

Theorem 9. If E has a k-deficit Banach frame, then every superspace X of E with finite

co-dimension also has a k-deficit Banach frame.

Proof. Let ({fn}, S)({fn} ⊂ E∗, S : Ed → E) be a k-deficit Banach frame for E. Let

dimX/E = m and let F be an m-dimensional subspace of X such that X = E ⊕ F . Let

({yi}mi=1, U) be an exact retro Banach frame for F ∗ with admissible sequence {gi}mi=1 ⊂ F ∗.

For each n ∈ ℕ, let �n be the extension of fn to X such that �n(y) = 0, n ∈ ℕ; y ∈ F

and for each j = 1, 2, . . . ,m, let  j be the extension of gj to X such that  j(z) = 0, for all
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j = 1, 2, . . . ,m; z ∈ E. Define {ℎn} ⊂ E∗ by

ℎi =

⎧⎨⎩ i, i = 1, 2, . . . ,m

�i−m, i ≥ m+ 1

Let x ∈ X be such that ℎn(x) = 0, for all n ∈ ℕ. Since X = E ⊕ F , there exists an x0 ∈ E
and y0 ∈ F such that x = x0 + y0. Then⎧⎨⎩ i(x0 + y0) = 0, i = 1, 2, . . . ,m

�i−m(x0 + y0) = 0, i ≥ m+ 1

So ⎧⎨⎩gi(y0) = 0, i = 1, 2, . . . ,m

fj(x0) = 0, j = 1, 2, . . .

This gives x = 0. Therefore, by Lemma 1, there exists an associated Banach space Xd =

{{ℎn(x)} : x ∈ X} with norm ∥{ℎn(x)}∥Xd
= ∥x∥X , x ∈ X together with a reconstruction

operator S1 : Xd → X given by S1({ℎn(x)}) = x, x ∈ X such that ({ℎn}, S1) is a Banach

frame for X with respect to Xd. Further, since ({fn}, S) is a k-deficit Banach frame for E

and dimF ∗ = m, it follows that ({ℎn}, S1) is a k-deficit Banach frame for X.

The following result gives a characterization of Banach frames having zero deficit.

Theorem 10. For a sequence {fn} ⊂ E∗, there exists an associated Banach space Ed and

a reconstruction operator S : Ed → E such that ({fn}, S) is a Banach frame for E having

zero deficit if and only if there exists an associated Banach space (E∗∗)d together with a

reconstruction operator U : (E∗∗)d → E∗∗ such that ({fn}, U) is a retro Banach frame for

E∗∗.

Proof. Suppose first that ({fn}, U) is a retro Banach frame for E∗∗. Then, by Theorem

3.1 in [7], [fn] = E∗. Therefore, by Lemma 1, there exists an associated Banach space

Ed = {{fn(x)} : x ∈ E} and a reconstruction operator S : Ed → E such that ({fn}, S) is a

Banach frame for E with respect to Ed.

The other part of the result follows in view of the arguments used in Theorem 6.

Finally, we prove the equivalence of two statements regarding Banach frames.

Theorem 11. Let ({fn}, T ) ({fn} ⊂ E∗, T : Ed → E) be a Banach frame for E with

respect to Ed. Let u be the canonical mapping of E into [fn]∗. Then, for an integer k ≥ 0,

dim([fn]∗∖u(E)) = k if and only if there exists a linearly independent set {gi}ki=1 ⊂ [fn]∗∖u(E)

such that, for every bounded �(E, [fn])-Cauchy sequence {zj} ⊂ E, there exists a unique

x ∈ E and a uniquely determined finite set {�i}ki=1 of scalars satisfying

lim
j→∞

fn(zj) = fn(x) +
k∑

i=1

�igi(fn), n ∈ ℕ
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Proof. Since ({fn}, T ) is a Banach frame for E with respect to Ed, there exists constants

A,B with 0 < A ≤ B <∞ such that

A∥x∥2 ≤ ∥{fn(x)}∥Ed
≤ B∥x∥2, x ∈ E (3)

Suppose first that dim([fn]∗ ∖ u(E)) = k. Let {gi}ki=1 be a linearly independent set in

[fn]∗ ∖ u(E) such that

[fn]∗ = [gi]
k
i=1 ⊕ u(E). (4)

Let {zj} be a bounded �(E, [fn])-Cauchy sequence in E. Then sup
1≤j<∞

∥u(zj)∥ < ∞. Since

[fn] is separable, there exists a subsequence {u(zj
k
)} of {u(zj)} and a g ∈ [fn]∗ such that

g = �([fn]∗, [fn])− lim
k→∞

u(zj
k
) .

This gives

g(f) = lim
k→∞

u(zj
k
)(f)

= lim
k→∞

f(zk), for all f ∈ [fn].

Therefore, by (3.1) and (3.2), there exists a unique x ∈ E and unique scalars {�i}ki=1 ⊂ K
such that

lim
k→∞

f(zk) = g(f) = f(x) +
k∑

i=1

�igi(f), f ∈ [fn].

Conversely, let � ∈ [fn]∗ ∖ u(E) be any element such that ∥�∥ = 1. Let �0 ∈ SE∗∗ such

that � = �0∣[fn]. Since SE is �([fn]∗, [fn])-dense in S[fn]∗ , there exists a sequence {zj} in SE

such that{u(zj)} is �([fn]∗, [fn])-conergent to �. Then �(fn) = lim
j→∞

fn(zj),n ∈ ℕ. So {zj} is

a bounded �(E, [fn])-Cauchy sequence in E. Therefore, there exists an x ∈ E and unique

scalers {�i}ki=1 ⊂ K such that

�(fn) = fn(x) +
k∑

i=1

�igi(fn), n ∈ ℕ

This gives � = u(x) +
∑k

i=1 �igi. So, we have

�+ u(E) =
k∑

i=1

�i(gi + u(E)).

This can be done for each �∈ [fn]∗ ∖ u(E). Hence dim([fn]∗ ∖ u(E))=k .
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