Some fixed point theorems for pointwise R-weakly commuting hybrid mappings in metrically convex spaces

Amit Singh*, R.C. Dimri** and Smita Joshi
Department of Mathematics, H.N.B. Garhwal University
Srinagar (Garhwal)-246174, India.
* singhamit841@gmail.com
** dimrirc@gmail.com

Abstract

In the present paper we prove some coincidence common fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces by using the notion of pointwise R-weakly commuting mappings.

Key Words: Fixed point, hybrid contractive condition, metrically convex metric spaces, R-weakly commuting mappings.
Mathematics Subject Classification 2000: Primary 54H25, 47H10.

1 Introduction

Fixed point theorems for single-valued and multivalued mappings have been studied extensively and applied to diverse problems during the last few decades. Nadler [17] introduced the concept of multivalued contraction mappings and established that a multivalued contraction mapping possesses a fixed point in a complete metric space. Subsequently, many authors have generalized Nadler's fixed point theorem in different ways. Assad and Kirk [4] gave sufficient conditions for non-self mappings to ensure the fixed point by proving a result on multivalued contractions in complete metrically convex metric spaces. Several authors proved some fixed point theorems for non-self mappings (see, for instance [1], [2], [11], [12], [13], [15], [19]).

Recently, Imdad and Khan [12] and Dhage, Dolhare and Petrusel [8] proved some fixed point theorems for a sequence of set-valued mappings which generalize several results due
to Itoh [13], Khan [15], Ahmad and Imdad [1, 2], Ahmad and Khan [3] and others. The purpose of this paper is to prove some coincidence and common fixed point theorems for a sequence of hybrid type non-self mappings satisfying certain contraction condition by using R-weakly commutativity between multivalued mappings and single-valued mappings. Our results generalize and unify the results due to Imdad and Khan [12], Khan [15], Itoh [13], Ahmad and Imdad [1, 2], Ahmad and Khan [3] and several others.

2 Preliminaries

Let (X, d) be a metric space. Then following Nadler [17], we recall
(i) $C B(X)=\{\mathrm{A}: \mathrm{A}$ is nonempty closed and bounded subset of X$\}$
(ii) $C(X)=\{\mathrm{A}: \mathrm{A}$ is nonempty compact subset of X$\}$
(iii) For nonempty subsets A, B of X and $x \in X, d(x, A)=\inf \{d(x, a): a \in A\}$,

$$
\begin{equation*}
H(A, B)=\max [\{\operatorname{supd}(a, B): a \in A\},\{\operatorname{supd}(A, b): b \in B\}] . \tag{1}
\end{equation*}
$$

It is well known that $C B(X)$ is a metric space with the distance H which is known as Hausdroff-Pompeiu metric on X.
The following definitions and lemmas will be frequently used in the sequel.
Definition 1 [10]. Let K be a nonempty subset of a metric space $(X, d), T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The pair (F, T) is said to be pointwise R-weakly commuting on K if for given $x \in K$ and $T x \in K$, there exists some $R=R(x)>0$ such that

$$
\begin{equation*}
d(T y, F T x) \leq R \cdot d(T x, F x) \tag{2}
\end{equation*}
$$

for each $y \in K \bigcap F x$. Moreover, the pair (F, T) will be called R-weakly commuting on K if (2) holds for each $x \in K$ and $T x \in K$ with some $R>0$.

If $R=1$, we get the definition of weak commutativity of (F, T) on K. For $K=X$ definition 11 reduces to "Pointwise R-weakly commutativity" for single valued self mappings due to Pant [18].

Definition 2 [9, 10]. Let K be a nonempty subset of a metric space $(X, d), T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The pair (F, T) is said to be weakly commuting if for every $x, y \in K$ with $x \in F y$ and $T y \in K$, we have

$$
\begin{equation*}
d(T x, F T y)=d(T y, F y) \tag{3}
\end{equation*}
$$

Definition 3 [10]. Let K be a nonempty subset of a metric space $(X, d), T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The pair (F, T) is said to be compatible if for every sequence $\left\{x_{n}\right\} \subset K$, from the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(F x_{n}, T x_{n}\right)=0 \tag{4}
\end{equation*}
$$

and $T x_{n} \in K$ (for every $n \in N$) it follows that $\lim _{n \rightarrow \infty} d\left(T y_{n}, F T x_{n}\right)=0$, for every sequence $\left\{y_{n}\right\} \subset K$ such that $y_{n} \in F x_{n}, n \in N$.

For hybrid pairs of self type mappings these definitions were introduced by Kaneko and Seesa [14].

Definition 4 [11]. Let K be a nonempty subset of a metric space $(X, d), T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The pair (F, T) is said to be quasi-coincidentally commuting if for all coincidence points ' x ' of $(T, F), T F x \subset F T x$ whenever $F x \subset K$ and $T x \in K$ for all $x \in K$.

Definition 5 [11]. A mapping $T: K \rightarrow X$ is said to be coincidentally idempotent w.r.t. mapping $F: K \rightarrow C B(X)$, if T is idempotent at the coincidence points of the pair (F, T).

Definition 6 [4]. A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$
\begin{equation*}
d(x, z)+d(z, y)=d(x, y) \tag{5}
\end{equation*}
$$

Lemma 1 [4]. Let K be a nonempty closed subset of a metrically convex metric space (X, d), if $x \in K$ and $y \notin K$ then there exists a point $z \in \delta K$ (the boundary of K) such that $d(x, z)+d(z, y)=d(x, y)$.

Lemma 2 17. Let $A, B \in C B(X)$ and $a \in A$, then for any positive number $q<1$ there exists $b=b(a)$ in B such that $q \cdot d(a, b)=H(A, B)$.

3 Main results

Theorem 1 Let (X, d) be a complete metrically convex metric space and K is a nonempty closed subset of X. Let $\left\{F_{n}\right\}_{n=1}^{\infty}: K \rightarrow C B(X)$ and $S, T: K \rightarrow X$ satisfying
(iv) $\delta K \subseteq S K \bigcap T K, F_{i}(K) \bigcap K \subseteq S K, F_{j}(K) \bigcap K \subseteq T K$
(v) $T x \in \delta K \Rightarrow F_{i}(x) \subseteq K, S x \in \delta K \Rightarrow F_{j}(x) \subseteq K$ and

$$
\begin{gather*}
H\left[F_{i}(x), F_{j}(y)\right] \leq a d(T x, S y)+b \max \left\{d\left(T x, F_{i}(x)\right), d\left(S y, F_{j}(y)\right)\right\} \\
+c \max \left\{d(T x, S y), d\left(T x, F_{i}(x)\right), d\left(S y, F_{j}(y)\right)\right\} \tag{6}
\end{gather*}
$$

where $i=2 n-1, j=2 n,(n \in N), i \neq j$ for all $x, y \in K$ with $x \neq y, a, b \geq 0$ and $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<q<1$,
(vi) $\left(F_{i}, T\right)$ and $\left(F_{j}, S\right)$ are pointwise R-weakly commuting pairs,
(vii) $\left\{F_{n}\right\}, S$ and T are continuous on K.

Then $\left(F_{i}, T\right)$ and $\left(F_{j}, S\right)$ have a point of coincidence.
Proof. Firstly, we proceed to construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the following way:
Let $x \in \delta K$. Since $\delta K \subseteq T K$ there exists a point $x_{0} \in K$ such that $x=T x_{0}$. From the implication $T x_{0} \in \delta K$ which implies $F_{1}\left(x_{0}\right) \subseteq F_{1}(K) \bigcap K \subseteq S K$. Let $x_{1} \in K$ be such that $y_{1}=S x_{1} \in F_{1}\left(x_{0}\right) \subseteq K$. Since $y_{1} \in F_{1}\left(x_{0}\right)$ there exists a point $y_{2} \in F_{2}\left(x_{1}\right)$ such that

$$
\begin{equation*}
q \cdot d\left(y_{1}, y_{2}\right) \leq H\left[F_{1}\left(x_{0}\right), F_{2}\left(x_{1}\right)\right] \tag{7}
\end{equation*}
$$

Suppose $y_{2} \in K$. Then $y_{2} \in F_{2}(K) \bigcap K \subseteq T K$ implies that there exists a point $x_{2} \in K$ such that $y_{2} \in T x_{2}$. Otherwise, if $y_{2} \notin K$, then there exists a point $p \in \delta K$ such that

$$
d\left(S x_{1}, p\right)+d\left(p, y_{2}\right)=d\left(S x_{1}, y_{2}\right)
$$

Since $p \in \delta K \subseteq T K$, there exists a point $x_{2} \in K$ with $p=T x_{2}$ so that

$$
d\left(S x_{1}, T x_{2}\right)+d\left(T x_{2}, y_{2}\right)=d\left(S x_{1}, y_{2}\right)
$$

Let $y_{3} \in F_{3}\left(x_{2}\right)$ be such that

$$
q \cdot d\left(y_{2}, y_{3}\right) \leq H\left[F_{2}\left(x_{1}\right), F_{3}\left(x_{2}\right)\right]
$$

Thus on repeating the foregoing arguments, we obtain two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that
(viii) $y_{2 n} \in F_{2 n}\left(x_{2 n-1}\right), y_{2 n+1} \in F_{2 n+1}\left(x_{2 n}\right)$,
(ix) $y_{2 n} \in K \Rightarrow y_{2 n}=T x_{2 n}$ or $y_{2 n} \notin K \Rightarrow T x_{2 n} \in \delta K$ and

$$
d\left(S x_{2 n-1}, T x_{2 n}\right)+d\left(T x_{2 n}, y_{2 n}\right)=d\left(S x_{2 n-1}, y_{2 n}\right)
$$

(x) $y_{2 n+1} \in K \Rightarrow y_{2 n+1}=S x_{2 n+1}$ or $y_{2 n+1} \notin K \Rightarrow S x_{2 n+1} \in \delta K$ and

$$
d\left(T x_{2 n}, S x_{2 n+1}\right)+d\left(S x_{2 n+1}, y_{2 n+1}\right)=d\left(T x_{2 n}, y_{2 n+1}\right)
$$

We denote

$$
\left.\begin{array}{l}
P_{0}=\left\{T x_{2 i} \in\left\{T x_{2 n}\right\}: T x_{2 i}=y_{2 i},\right. \\
P_{1}=\left\{T x_{2 i} \in\left\{T x_{2 n}\right\}: T x_{2 i} \neq y_{2 i},\right. \\
Q_{0}=\left\{S x_{2 i+1} \in\left\{S x_{2 n+1}\right\}: S x_{2 i+1}=y_{2 i+1},\right. \\
Q_{1}=\left\{S x_{2 i+1} \in\left\{S x_{2 n+1}\right\}: S x_{2 i+1} \neq y_{2 i+1} .\right.
\end{array}\right\}
$$

First we show that $\left(T x_{2 n}, S x_{2 n+1}\right) \notin P_{1} \times Q_{1}$ and $\left(S x_{2 n-1}, T x_{2 n}\right) \notin Q_{1} \times P_{1}$. If $T x_{2 n} \in P_{1}$, then $y_{2 n} \neq T x_{2 n}$ and we have $T x_{2 n} \in \delta K$ which implies that $y_{2 n+1} \in F_{2 n+1}\left(x_{2 n}\right) \subseteq K$. Hence $y_{2 n+1}=S x_{2 n+1} \in Q_{0}$. Similarly, one can argue that $\left(S x_{2 n-1}, T x_{2 n}\right) \notin Q_{1} \times P_{1}$.

Now we distinguish the following three cases:
Case 1. If $\left(T x_{2 n}, S x_{2 n+1}\right) \in P_{0} \times Q_{0}$, then

$$
\begin{aligned}
& q \cdot d\left(T x_{2 n}, S x_{2 n+1}\right) \leq H\left[F_{2 n+1}\left(x_{2 n}\right), F_{2 n}\left(x_{2 n-1}\right)\right] \\
& \leq a d\left(T x_{2 n}, S x_{2 n-1}\right)+b \max \{ \left.d\left(T x_{2 n}, F_{2 n+1}\left(x_{2 n}\right)\right), d\left(S x_{2 n-1}, F_{2 n}\left(x_{2 n-1}\right)\right)\right\} \\
&+c \max \left\{d\left(T x_{2 n}, S x_{2 n+1}\right), d(\right.\left.\left.T x_{2 n}, F_{2 n+1}\left(x_{2 n}\right)\right), d\left(T x_{2 n}, F_{2 n+1}\left(x_{2 n}\right)\right)\right\} \\
& \leq a d\left(y_{2 n}, y_{2 n-1}\right)+b \max \left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
&+c \max \left\{d\left(y_{2 n}, y_{2 n-1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{aligned}
$$

which in turn yields

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq\left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { if } d\left(y_{2 n-1}, y_{2 n}\right) \geq d\left(y_{2 n+1}, y_{2 n}\right) \\
\left(\frac{a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { if } d\left(y_{2 n-1}, y_{2 n}\right) \leq d\left(y_{2 n+1}, y_{2 n}\right)
\end{array}\right.
$$

or

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq h d\left(S x_{2 n-1}, T x_{2 n}\right),
$$

where $h=\max \{((a+b+c) / q),(a /(q-b-c))\}<1$, since $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<1$. Similarly if $\left(S x_{2 n-1}, T x_{2 n}\right) \in Q_{0} \times P_{0}$, then

$$
d\left(S x_{2 n-1}, T x_{2 n}\right) \leq\left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), \text { ifd }\left(y_{2 n-2}, y_{2 n-1}\right) \geq d\left(y_{2 n-1}, y_{2 n}\right) \\
\left(\frac{a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), \text { ifd } d\left(y_{2 n-2}, y_{2 n-1}\right) \leq d\left(y_{2 n-1}, y_{2 n}\right)
\end{array}\right.
$$

or

$$
d\left(S x_{2 n-1}, T x_{2 n}\right) \leq h . d\left(S x_{2 n-1}, T x_{2 n-2}\right)
$$

where $h=\max \{((a+b+c) / q),(a /(q-b-c))\}<1$, since $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<1$.
Case 2. If $\left(T x_{2 n}, S x_{2 n+1}\right) \in P_{0} \times Q_{1}$, then

$$
d\left(T x_{2 n}, S x_{2 n+1}\right)+d\left(S x_{2 n+1}, y_{2 n+1}\right)=d\left(T x_{2 n}, y_{2 n+1}\right)
$$

which in turn yields

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq d\left(T x_{2 n}, y_{2 n+1}\right)=d\left(y_{2 n}, y_{2 n+1}\right)
$$

and hence

$$
\begin{aligned}
& q \cdot d\left(T x_{2 n}, S x_{2 n+1}\right) \leq q \cdot d\left(y_{2 n}, y_{2 n+1}\right) \\
& \quad \leq H\left[F_{2 n+1}\left(x_{2 n}\right), F_{2 n}\left(x_{2 n-1}\right)\right] .
\end{aligned}
$$

Now proceeding as in case 1, we have

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq\left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { if } d\left(y_{2 n-1}, y_{2 n}\right) \geq d\left(y_{2 n+1}, y_{2 n}\right) \\
\left(\frac{a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { if } d\left(y_{2 n-1}, y_{2 n}\right) \leq d\left(y_{2 n+1}, y_{2 n}\right)
\end{array}\right.
$$

or

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq h d\left(S x_{2 n-1}, T x_{2 n}\right),
$$

where $h=\max \{((a+b+c) / q),(a /(q-b-c))\}<1$, since $\left\{(\mathrm{a}+2 \mathrm{~b}+2 \mathrm{c})+\left(a^{2}+\mathrm{ab}+\right.\right.$ ac) $/ \mathrm{q}\}<1$. Similarly if $\left(S x_{2 n-1}, T x_{2 n}\right) \in Q_{1} \times P_{0}$, then

$$
d\left(S x_{2 n-1}, T x_{2 n}\right) \leq\left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), \text { if } d\left(y_{2 n-2}, y_{2 n-1}\right) \geq d\left(y_{2 n-1}, y_{2 n}\right) \\
\left(\frac{a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), \text { ifd } d\left(y_{2 n-2}, y_{2 n-1}\right) \leq d\left(y_{2 n-1}, y_{2 n}\right),
\end{array}\right.
$$

or

$$
d\left(S x_{2 n-1}, T x_{2 n}\right) \leq h . d\left(S x_{2 n-1}, T x_{2 n-2}\right),
$$

where $\mathrm{h}=\max \{((\mathrm{a}+\mathrm{b}+\mathrm{c}) / \mathrm{q}),(\mathrm{a} /(\mathrm{q}-\mathrm{b}-\mathrm{c}))\}<1$, since $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<$ 1.

Case 3. If $\left(T x_{2 n}, S x_{2 n+1}\right) \in P_{1} \times Q_{0}$, then $S x_{2 n-1}=y_{2 n-1}$. Now proceeding as in case 1, one gets

$$
\begin{aligned}
& q \cdot d\left(T x_{2 n}, S x_{2 n+1}\right)=q \cdot d\left(T x_{2 n}, y_{2 n+1}\right) \leq q \cdot d\left(T x_{2 n}, y_{2 n}\right)+q \cdot d\left(y_{2 n}, y_{2 n+1}\right) \\
& \leq q \cdot d\left(S x_{2 n-1}, y_{2 n}\right)+H\left[F_{2 n+1}\left(x_{2 n}\right), F_{2 n}\left(x_{2 n-1}\right)\right] \\
& \leq q \cdot d\left(S x_{2 n-1}, y_{2 n}\right)+a d\left(y_{2 n}, y_{2 n-1}\right)+b \max \left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
&+c \max \left\{d\left(y_{2 n}, y_{2 n-1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right)\right\},
\end{aligned}
$$

which in turn yields

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq\left\{\begin{array}{l}
\left(\frac{q+a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { ifd } d\left(y_{2 n-1}, y_{2 n}\right) \leq d\left(y_{2 n+1}, y_{2 n}\right) \\
\left(\frac{q+a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n}\right), \text { ifd } d\left(y_{2 n-1}, y_{2 n}\right) \geq d\left(y_{2 n+1}, y_{2 n} .\right)
\end{array}\right.
$$

Now proceeding as earlier, one also obtain

$$
d\left(S x_{2 n-1}, T x_{2 n}\right) \leq\left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), i f d\left(y_{2 n-2}, y_{2 n-1}\right) \geq d\left(y_{2 n-1}, y_{2 n}\right) \\
\left(\frac{a}{q-b-c}\right) d\left(S x_{2 n-1}, T x_{2 n-2}\right), \text { ifd } d\left(y_{2 n-2}, y_{2 n-1}\right) \leq d\left(y_{2 n-1}, y_{2 n}\right)
\end{array}\right.
$$

Therefore combining above inequalities, we have

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq k \cdot d\left(S x_{2 n-1}, T x_{2 n-2}\right)
$$

where

$$
k=\max \left\{\begin{array}{l}
\left(\frac{a+b+c}{q}\right)\binom{\left.\frac{q+a}{q-b-c}\right),\left(\begin{array}{l}
\frac{a+b+c}{q}
\end{array}\right)\left(\frac{q+a+b+c}{q}\right),}{\left(\frac{a}{q-b-c}\right)}\left(\frac{q+a}{q-b-c}\right),\left(\frac{a}{q-b-c}\right)\left(\frac{q+a+b+c}{q}\right)
\end{array}\right\}<1,
$$

since $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<1$.
To substantiate that, the inequality $\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<1$ implies all foregoing inequalities, one may note that
$\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<q \Rightarrow\left\{(a q+2 b q+2 c q)+\left(a^{2}+a b+a c\right)\right\}<q^{2}$,

$$
a q+a^{2}+b q+a b+c q+a c+b q+c q<q^{2}
$$

or

$$
a q+a^{2}+b q+a b+c q+a c<q^{2}-b q-c q,
$$

or

$$
\left(\frac{a+b+c}{q}\right)\left(\frac{q+a}{q-b-c}\right)<1
$$

and

$$
\left\{(a+2 b+2 c)+\left(a^{2}+a b+a c\right) / q\right\}<q \Rightarrow\left\{(a+b+c)+\left(a^{2}+a b+a c\right) / q\right\}<q
$$

or

$$
\left\{(a q+b q+c q)+\left(a^{2}+a b+a c\right)\right\}<q^{2}
$$

or

$$
a q+a^{2}+a b+a c+b q+c q<q^{2}
$$

or

$$
a q+a^{2}+a b+a c<q^{2}-b q-c q
$$

or

$$
\left(\frac{a}{q-b-c}\right)\left(\frac{q+a+b+c}{q-a}\right)<1
$$

Similarly one can establish the other inequalities as well. Thus in all the cases we have

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq k \max \left\{d\left(S x_{2 n-1}, T x_{2 n}\right), d\left(T x_{2 n-2}, S x_{2 n-1}\right)\right\}
$$

whereas

$$
d\left(S x_{2 n+1}, T x_{2 n+1}\right) \leq k \max \left\{d\left(S x_{2 n-1}, T x_{2 n}\right), d\left(T x_{2 n}, S x_{2 n+1}\right)\right\}
$$

Now on the lines of Assad and Kirk [4], it can be shown by induction that for $\mathrm{n}=1$, we have

$$
d\left(T x_{2 n}, S x_{2 n+1}\right) \leq k^{n} \cdot \delta, d\left(S x_{2 n+1}, T x_{2 n+2}\right) \leq k^{n+\frac{1}{2}} . \delta
$$

Whereas

$$
\delta=k^{-\frac{1}{2}} \max \left\{d\left(T x_{0}, S x_{1}\right), d\left(S x_{1}, T x_{2}\right)\right\}
$$

Thus the sequence $\left\{T x_{0}, S x_{1}, T x_{2}, S x_{3}, \ldots T x_{2 n}, S x_{2 n+1}\right\}$ is a Cauchy sequence and hence converges to a point z in X . Now we assume that there exists a subsequence $\left\{T x_{2 n_{k}}\right\}$ of $\left\{T x_{2 n}\right\}$ which is contained in P_{0}. Further subsequences $\left\{T x_{2 n_{k}}\right\}$ and $\left\{S x_{2 n_{k}+1}\right\}$ both converge to $z \in K$ as K is closed subset of the complete metric space (X, d). Since $T x_{2 n_{k}} \in F_{j}\left(x_{2 n_{k}-1}\right)$
for any even integer $j \in N$ and $S x_{2 n_{k}-1} \in K$. Using pointwise R-weak commutativity of $\left(F_{j}, S\right)$, we have

$$
\begin{equation*}
\left.\left.\left.d\left(S F_{j}\left(x_{2 n_{k}-1}\right)\right), F_{j}\left(S x_{2 n_{k}-1}\right)\right) \leq R_{1} \cdot d\left(F_{j}\left(x_{2 n_{k}-1}\right)\right), S x_{2 n_{k}-1}\right)\right) \tag{8}
\end{equation*}
$$

for every even integer $j \in N$ with some $R_{1}>0$. Also

$$
\begin{equation*}
\left.\left.\left.d\left(S F_{j}\left(x_{2 n_{k}-1}\right)\right), F_{j}(z)\right) \leq d\left(S F_{j}\left(x_{2 n_{k}-1}\right)\right), F_{j}\left(S x_{2 n_{k}-1}\right)\right)+H\left(F_{j}\left(x_{2 n_{k}-1}\right)\right), F_{j}(z)\right) \tag{9}
\end{equation*}
$$

Making $k \rightarrow \infty$ in (8) and (9) and using the continuity of S and F_{j}, we get $d\left(S z, F_{j}(z)\right) \leq 0$ yielding thereby $S z \in F_{j}(z)$, for any even integer $j \in N$.
Since $y_{2 n_{k}+1} \in F_{i}\left(x_{2 n_{k}}\right)$ and $T x_{2 n_{k}} \in K$ for any odd integer $i \in N$. Using pointwise R-weak commutativity of $\left(F_{i}, T\right)$, we have

$$
\left.d\left(T F_{i}\left(x_{2 n_{k}}\right)\right), F_{i}\left(T x_{2 n_{k}}\right) \leq R_{2} \cdot d\left(F_{i}\left(x_{2 n_{k}}\right)\right), T x_{2 n_{k}}\right)
$$

for every odd integer $i \in N$ with some $R_{2}>0$, besides

$$
\left.\left.\left.d\left(T F_{i}\left(x_{2 n_{k}}\right)\right), F_{i}(z)\right) \leq d\left(T F_{i}\left(x_{2 n_{k}}\right)\right), F_{i}\left(T x_{2 n_{k}}\right)\right)+H\left(F_{i}\left(x_{2 n_{k}}\right)\right), F_{i}(z)\right) .
$$

Therefore as earlier the continuity of F_{i} and T implies $d\left(T z, F_{i}(z)\right) \leq 0$ yielding thereby $T z \in F_{i}(z)$, for any odd integer $i \in N$ as $k \rightarrow \infty$.
If we assume that there exists a subsequence $\left\{S x_{2 n_{k}+1}\right\}$ contained in Q_{0}, then analogous arguments establish the earlier conclusions. This concludes the proof.

Remark 1 If we replace condition (6) by the condition

$$
\begin{aligned}
H\left[F_{i}(x), F_{j}(y)\right] & \leq a \max \left\{\frac{1}{2} d(T x, S y), d\left(T x, F_{i}(x)\right), d\left(S y, F_{j}(y)\right)\right\} \\
& +b\left\{d\left(T x, F_{j}(y)\right)+d\left(S y, F_{i}(x)\right)\right\}
\end{aligned}
$$

then we get Theorem 3.4 [12].
Remark 2 If we replace condition (6) by the condition

$$
\begin{aligned}
H\left[F_{i}(x), F_{j}(y)\right] & \leq a \max \left\{\frac{1}{2} d(T x, S y), d\left(T x, F_{i}(x)\right), d\left(S y, F_{j}(y)\right)\right\} \\
& +b\left\{d\left(T x, F_{j}(y)\right)+d\left(S y, F_{i}(x)\right)\right\}
\end{aligned}
$$

and pointwise R-weakly commuting maps by compatible maps, then we get Theorem 3.1 due to Imdad and Khan [12].

Theorem 2 Let (X, d) be a complete metrically convex metric space and K is a nonempty closed subset of X. Let $\left\{F_{n}\right\}_{n=1}^{\infty}: K \rightarrow C B(X)$ and $S, T: K \rightarrow X$ satisfying (6), (iv) and (v). Suppose that
(xi) TK and SK are closed subspaces of X. Then
$\left(^{*}\right)\left(F_{i}, T\right)$ has a point of coincidence,
$\left.{ }^{* *}\right)\left(F_{j}, S\right)$ has a point of coincidence.
Moreover, $\left(F_{i}, T\right)$ has a common fixed point if T is quasi-coincidentally commuting and coincidentally idempotent w.r.t. F_{i} whereas $\left(F_{j}, S\right)$ has a common fixed point provided S is quasi-coincidentally commuting and coincidentally idempotent w.r.t. F_{j}.

Proof. On the lines of Theorem 1, one assumes that there exists a subsequence $\left\{T x_{2 n_{k}}\right\}$ which is contained in P_{0} and $T K$ as well as $S K$ are closed subspaces of X. Since $\left\{T x_{2 n_{k}}\right\}$ is Cauchy in $T K$, it converges to a point $u \in T K$. Let $v \in T^{-1} u$, then $T v=u$. Since $\left\{S x_{2 n_{k}+1}\right\}$ is a subsequence of Cauchy sequence, $\left\{S x_{2 n_{k}+1}\right\}$ converges to u as well. Using (6), one can write

$$
\begin{aligned}
& q \cdot d\left(F_{i}(v), T x_{2 n_{k}}\right) \leq H\left[F_{i}(v), F_{j}\left(x_{2 n_{k}-1}\right)\right] \\
& \leq a d\left(T v, S x_{2 n_{k}-1}\right)+b \max \left\{d\left(T v, F_{i}(v)\right), d\left(S x_{2 n_{k}-1}, F_{j}\left(x_{2 n_{k}-1}\right)\right)\right\} \\
& \quad+c \max \left\{d\left(T v, S x_{2 n_{k}-1}\right), d\left(T v, F_{i}(v)\right), d\left(S x_{2 n_{k}-1}, F_{j}\left(x_{2 n_{k}-1}\right)\right)\right\}
\end{aligned}
$$

which on letting $k \rightarrow \infty$, reduces to

$$
\begin{aligned}
q \cdot d\left(F_{i}(v), u\right) \leq a(0)+b \max \left\{d\left(u, F_{i}(v)\right), 0\right\}+c \max \left\{0, d\left(u, F_{i}(v)\right), 0\right\} & \\
& \leq(b+c) \cdot d\left(u, F_{i}(v)\right)
\end{aligned}
$$

yielding thereby $u \in F_{i}(v)$ which implies that $u=T v \in F_{i}(v)$ as $F_{i}(v)$ is closed.
Since Cauchy sequence $\left\{T x_{2 n}\right\}$ converges to $u \in K$ and $u \in F_{i}(v), u \in F_{i}(K) \bigcap K \subseteq S K$, there exists $w \in K$ such that $S w=u$. Again using (6), one gets

$$
\begin{aligned}
q \cdot d\left(S w, F_{j}(w)\right)= & q \cdot d\left(T v, F_{j}(w)\right) \leq H\left[F_{i}(v), F_{j}\left(x_{2 n_{k}-1}\right)\right] \\
& \leq a d(T v, S w)+b \max \left\{d\left(T v, F_{i}(v)\right), d\left(S w, F_{j}(w)\right)\right\} \\
+ & c \max \left\{d(T v, S w), d\left(T v, F_{i}(v)\right), d\left(S w, F_{j}(w)\right)\right\} \leq(b+c) \cdot d\left(S w, F_{j}(w)\right)
\end{aligned}
$$

implying thereby $S w \in F_{j}(w)$, that is w is a coincidence point of $\left(S, F_{j}\right)$.
If one assumes that there exists a subsequence $\left\{S x_{2 n_{k}+1}\right\}$ contained in Q_{0} with TK as well as SK are closed subspaces of X, then noting that $\left\{S x_{2 n_{k}+1}\right\}$ is Cauchy in SK, the foregoing arguments establish that $T v \in F_{i}(v)$ and $S w \in F_{j}(w)$.

Since v is a coincidence point of $\left(F_{i}, T\right)$ therefore using quasi-coincidentally commuting property of $\left(F_{i}, T\right)$ and coincidentally idempotent property of T w.r.t. F_{i}, one can have

$$
T v \in F_{i}(v), u=T v \Rightarrow T u=T T v=T v=u
$$

therefore $u=T u=T T v \in T F_{i}(v) \subset F_{i}(T v)=F_{i}(u)$ which shows that u is a common fixed point of $\left(F_{i}, T\right)$. Similarly using the quasi-coincidentally commuting property of $\left(F_{j}, S\right)$ and coincidentally idempotent property of S w.r.t. F_{j}, one can show that $\left(F_{j}, S\right)$ has a common fixed point as well.

References

[1] A. Ahmad and M. Imdad. On common fixed point of mappings and multivalued mappings. Rad. Mat., 8(1), 1992, pp. 147-158.
[2] A. Ahmad and M. Imdad. Some common fixed point theorems for mappings and multivalued mappings. J. Math. Anal. Appl., 218(2), 1998, pp. 546-560.
[3] A. Ahmad and A.R. Khan. Some common fixed point theorems foe non-self hybrid contractions. J. Math. Anal. Appl., 213(1), 1997, pp. 275-286.
[4] N.A. Assad and W.A. Kirk. Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math., 43(3), 1972, pp. 553-562.
[5] Lj. B. Ciric. On some non-expansive type mappings and fixed points. Indian J. Pure Appl. Math., 24(3), 1993, pp. 145-149.
[6] Lj. B. Ciric. Coincidence and fixed points of non-expansive type multivalued and singlevalued maps. Indian J. Pure Appl. Math., 26(5), 1995, pp. 393-401.
[7] Lj. B. Ciric and J.S. Ume. On an extension of a theorem of Rhoades. Rev. Roumaine Math. Pures Appl., 49(2), 1995, pp. 103-112.
[8] B.C. Dhage, U.P. Dolhare and A. Petrusel. Some common fixed point theorems for sequence of nonself multivalued operators in metrically convex metric spaces. Fixed Point Theorey, 4(2), 2003, pp. 143-158.
[9] O. Hadzic. On coincidence points in convex metric spaces. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19(2), 1986, pp. 233-240.
[10] O. Hadzic and Lj. Gajic. Coincidence points for set-valued mappings in convex metric spaces. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 16(1), 1986, pp. 13-25.
[11] M. Imdad, A. Amhad and S. Kumar. On nonlinear nonself hybrid contractions. Rad. Mat., 10(2), 2001, 233-244.
[12] M. Imdad and Ladlay Khan. Fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces. Fixed Point Theory and Applications, 3, 2005, pp. 281-294.
[13] S. Itoh. Multivalued generalized contractions and fixed point theorems. Comment. Math. Univ. Caroline, 18(2), 1977, pp. 247-258.
[14] H. Kaneko and S. Seesa. Fixed point theorems for compatible multivalued and singlevalued mappings. Int. J. Math. Math. Sci., 12(2), 1989, pp. 257-262.
[15] M.S. Khan. Common fixed point theorems for multivalued mappings. Pacific J. Math., 95(2), 1981, pp. 337-347.
[16] M.S. Khan, H.K. Pathak and M.D. Khan. Some fixed point theorems in metrically convex spaces. Georgian Math. J., 7(3), 2000, pp. 523-530.
[17] S.B. Hadler Jr. Multi-valued contraction mappings. Pacific J. Math. 30(2), 1969, pp. 475-488.
[18] R.P. Pant. Common fixed points of non-commuting mappings. J. Math. Anal. Appl., 188(2), 1994, pp. 436-440.
[19] V. Popa. Coincidence and fixed point theorems for non-continuous hybrid contractions. Nonlinear Anal. Forum , 7(2), 2002, pp. 153-158.

