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Abstract

In the present paper we prove some coincidence common fixed point theorems for a fam-
ily of hybrid pairs of mappings in metrically convex spaces by using the notion of pointwise

R-weakly commuting mappings.
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1 Introduction

Fixed point theorems for single-valued and multivalued mappings have been studied exten-
sively and applied to diverse problems during the last few decades. Nadler [I7] introduced
the concept of multivalued contraction mappings and established that a multivalued con-
traction mapping possesses a fixed point in a complete metric space. Subsequently, many
authors have generalized Nadler’s fixed point theorem in different ways. Assad and Kirk [4]
gave sufficient conditions for non-self mappings to ensure the fixed point by proving a result
on multivalued contractions in complete metrically convex metric spaces. Several authors
proved some fixed point theorems for non-self mappings (see, for instance [1], [2], [11], [12],
[13], [15], [19).

Recently, Imdad and Khan [12] and Dhage, Dolhare and Petrusel [8] proved some fixed

point theorems for a sequence of set-valued mappings which generalize several results due
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to Itoh [13], Khan [I5], Ahmad and Imdad [T, 2], Ahmad and Khan [3] and others. The
purpose of this paper is to prove some coincidence and common fixed point theorems for a
sequence of hybrid type non-self mappings satisfying certain contraction condition by using
R-weakly commutativity between multivalued mappings and single-valued mappings. Our
results generalize and unify the results due to Imdad and Khan [12], Khan [15], Ttoh [I3],
Ahmad and Imdad [I], 2], Ahmad and Khan [3] and several others.

2 Preliminaries

Let (X, d) be a metric space. Then following Nadler [I7], we recall

(i) CB(X) = {A: A is nonempty closed and bounded subset of X}
(ii) C(X) = {A: A is nonempty compact subset of X}
(iii) For nonempty subsets A, B of X and z € X, d(z, A) = inf{d(z,a) : a € A},

H(A, B) = max[{supd(a, B) : a € A}, {supd(A,b) : b € B}]. (1)

It is well known that C'B(X) is a metric space with the distance H which is known as
Hausdroff-Pompeiu metric on X.

The following definitions and lemmas will be frequently used in the sequel.

Definition 1 [10/. Let K be a nonempty subset of a metric space (X,d), T : K — X and
F: K — CB(X). The pair (F,T) is said to be pointwise R-weakly commuting on K if for
given x € K and Tx € K, there exists some R = R(x) > 0 such that

d(Ty, FTz) < R.d(Tx, Fx) (2)

for each y € K () Fx. Moreover, the pair (F,T) will be called R-weakly commuting on K if
holds for each x € K and Tx € K with some R > 0.

If R =1, we get the definition of weak commutativity of (F,7) on K. For K = X definition
reduces to “Pointwise R-weakly commutativity” for single valued self mappings due to
Pant [18].

Definition 2 [9,[10]. Let K be a nonempty subset of a metric space (X,d),T : K — X and
F: K — CB(X). The pair (F,T) is said to be weakly commuting if for every x,y € K with
x € Fy and Ty € K, we have

d(Tz, FTy) = d(Ty, Fy). (3)
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Definition 3 [10]. Let K be a nonempty subset of a metric space (X,d), T : K — X and
F: K — CB(X). The pair (F,T) is said to be compatible if for every sequence {z,} C K,
from the relation

lim d(Fz,,Tz,) =0 (4)

n—oo
and Tx, € K (for every n € N) it follows that lim d(Ty,, FTx,) = 0, for every sequence
n—oo
{yn} C K such that y, € Fx,, n € N.

For hybrid pairs of self type mappings these definitions were introduced by Kaneko and Seesa
[14].

Definition 4 [11]. Let K be a nonempty subset of a metric space (X,d), T : K — X and
F : K — CB(X). The pair (F,T) is said to be quasi-coincidentally commuting if for all
coincidence points ‘c’ of (T, F), TFx C FTx whenever Fx C K and Tx € K for allx € K.

Definition 5 [11]. A mapping T : K — X is said to be coincidentally idempotent w.r.t.
mapping F: K — CB(X), if T is idempotent at the coincidence points of the pair (F,T).

Definition 6 [j]. A metric space (X, d) is said to be metrically convex if for any z,y € X
with © # y there exists a point z € X, © # z # y such that

d(x, 2) +d(z,y) = d(z,y). (5)

Lemma 1 [J]. Let K be a nonempty closed subset of a metrically conver metric space (X,
d), if t € K and y ¢ K then there exists a point z € §K (the boundary of K) such that
d(z,z) +d(z,y) = d(z,y).

Lemma 2 [17]. Let A,B € CB(X) and a € A, then for any positive number ¢ < 1 there
exists b= b(a) in B such that q.d(a,b) = H(A, B).

3 Main results

Theorem 1 Let (X,d) be a complete metrically convexr metric space and K is a nonempty
closed subset of X. Let {F,}>2,: K — CB(X) and S,T : K — X satisfying

(iv) 0K C SKN\TK, F(K)K C SK, F;(K)NK CTK
(v) Tx € K = F;(z) C K, Sv € 0K = Fj(x) C K and
H[Fi(x), F;(y)] < ad(Tw, Sy) + bmax{d(Tz, Fi(x)), d(Sy, F;(y))}

+ cmax{d(Tz, Sy), d(Tz, Fi(x)), d(Sy, F;(y))} (6)

where i =2n —1, 5 =2n, (n € N), i # j for all x,y € K with x # y,a,b > 0 and
{(a+2b+2¢)+ (a* +ab+ac)/q} < g <1,
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(vi) (F;,T) and (Fj,S) are pointwise R-weakly commuting pairs,
(vii) {F,}, S and T are continuous on K.
Then (F;,T) and (F},S) have a point of coincidence.

Proof. Firstly, we proceed to construct two sequences {z, } and {y,} in the following way:

Let x € K. Since 6 K C T'K there exists a point g € K such that © = Txzy. From the
implication Txy € 0K which implies Fi(z9) C Fi(K)( K C SK. Let x; € K be such that
y1 = Szy € Fi(zg) C K. Since y; € Fi(xg) there exists a point y, € Fy(z1) such that

q-d(y1, y2) < H[F1(20), F2(71)] (7)

Suppose yo € K. Then y, € F5(K) (K C TK implies that there exists a point x5 € K such
that yo € T'xy. Otherwise, if yo ¢ K, then there exists a point p € §K such that

d(Sz1,p) +d(p,y2) = d(Sz1, )
Since p € 0K C TK, there exists a point x5 € K with p = Tz, so that

d(Sx1,Tre) + d(Txs,y2) = d(Sx1,y2)

Let y3 € F3(x2) be such that

q.d(yo,y3) < H[F5(x1), F3(x2)]

Thus on repeating the foregoing arguments, we obtain two sequences {z,} and {y,} such

that
(Viii) Yon € F2n($2n—1)7 Yont1 € F2n+1($2n),
(iX) yan € K = Yo, = Ty, o1 Yo, € K = Ty, € 6K and

d<Sx2n—17 Tx2n) + d(TxQna an) = d(SI2n—17 y2n>

(X) Yont1 € K = Yong1 = STapt1 OF Yopy1 € K = Sxonyq € 6K and

d(T:L‘Qna SxQn—‘rl) + d(Sx2n+17 y2n+1) - d(T:E2n7 y2n+1)

We denote

Py = {Txo; € {Txa,} : Txo; = Yo,
Py ={Txy € {Tx2,} : Txoi # Yo,
Qo = {Sx2i+1 € {Sxons1} 1 STov1 = Yoiv1,
Q1= {Swa+1 € {Sxoni1} 1 SToit1 # Y2it1-
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First we show that (Txo,, Swoni1) € P1 X Q1 and (Sxa,_1,TT2,) ¢ Q1 X Py. If Tas, € P,
then ys,, # T'xs, and we have T'xs, € 0 K which implies that yo,411 € Fo,i1(x2,) € K. Hence
Yon+1 = STony1 € Qo. Similarly, one can argue that (Sxo,—1,Txa,) ¢ Q1 X P;.

Now we distinguish the following three cases:
Case 1. If (T'xoy,, Sxoni1) € Py X Qp, then

q.d(Txon, Stont1) < H[Foni1(xan), Fon(za,-1)]
< ad(Txzay, Stop_1) + bmax{d(Tza,, Foni1(2,)), d(STan_1, Fon(Tan-1))}
+ cmax{d(Txon, Stoni1), d(Txon, Foni1(x2n)), d(T o, Foni1(T2,))}
< ad(yan, Yan—1) + bmax{d(Yan, Y2n+1), d(Y2n—1, Y2n) }
+ cmax{d(Y2n, Y2n-1), d(Y2n, Y20+1); A(Y20-1, Y20) }

which in turn yields

atbte d(S-T2n—1a T.CE n)a Zfd(y n— ay2n) 2
d(T'xan, STant1) < ! i . o
q—(l:—c d(SxQn—la T*rQn)v Zfd(y2n—17 an) S

(y2n+l ; y2n)

(y2n+17 y2n)7

or

d(Txoy, Stont1) < hd(Sxon_1,Txa,),

where h = mazx{((a+b+c)/q), (a/(g—b—c))} < 1, since {(a+2b+2¢)+(a*+ab+ac)/q} < 1.
Similarly if (Szo,_1, Txe,) € Qo X Py, then

a+b+c .
d(Sl’Qn_l, T:U2n) < g d(S.Tanla T$2n72)7 Zfd(y2n727 y2n71) > j(ygnl, an)

P d(Szon—1,TTon—2), 1 fd(Yon—2,Y2n—1) < d(Y2n—1, Y2n),

or

d(Sxon—1,Tron) < h.d(Sxon—1,TTon_2),

where h = max{((a+b+c)/q), (a/(g—b—c))} < 1, since {(a+2b+2¢)+(a*+ab+ac)/q} < 1.
Case 2. If (T'xo,, Sto,11) € Py X Q1, then

d(Txon, Stoni1) + d(SToni1, Yon+1) = Ad(TTan, Yont1)

which in turn yields

d(Txon, Stoni1) < d(TTan, Yont1) = d(Yon, Yon+1)

and hence

q-d(T'xan, Stant1) < q-d(Yon, Yont1)
< H[Foni1(22n), Fon(zon-1)].
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Now proceeding as in case 1, we have

d(Txon, STony1) < ¢

atbte d(Sx2n—17 Tx2n)7 Z.fd(an—h y2n) > d(y2n+1’ y2n)
—b—c d(Sa:Qn—lu TxQn)u Y:fd(an_l, an) < d<y2n+17 an),

or
d(Txopn, Stont1) < hd(Sxon_1,Txa,),

where h = maz{((a + b+ ¢)/q),(a/(qg —b—¢c))} < 1, since {(a + 2b + 2¢) + (a® + ab +
ac)/q} < 1. Similarly if (Sza,—1, Txe,) € Q1 X Fy, then

atb+tec dS:L‘n_,TiEn_ ,i d n—2s Yom— > d
d(Swap—1,Txe,) < a (S22n—1 2n-2) .f (Y2n—2, Yon—1) >
d(S-/I/'Q’Vl—l? TxQTL—Q)) Zfd(y27’b—2’ an—l) S d<y2n_17 an),

(an— 1, an)

qg—b—c
or

d(Sxon—1,Tx9,) < h.d(Sxon—1,T2on_2),

where h = max {((a+ b +c)/q ), (a/(q—b—¢))} < 1, since {(a+2b+2¢)+(a*+ab+ac)/q} <
1.
Case 3. If (T'xo,, St2,11) € P1 X Qo, then Sxo, 1 = Yo, 1. Now proceeding as in case 1,

one gets

q-d(Tw2p, Stans+1) = AT 20, Yont1) < ¢.A(TT2n, Yon) + ¢-A(Y2n, Yon+1)
< q.d(Swon_1,Yon) + H[Fony1(Ton), Fon(T20-1)]
< q.d(STan—1, Yan) + ad(Yan, Y2n—1) + bmax{d(yan, Yant1), d(Y2n—1, Y2n) }
+ cmax{d(yan, Y2n-1), d(Y2n: Yon+1), d(Y2ns Y2nt1) }

which in turn yields

Ty, Sam) < 20 d(Sanor, Trnn), i fd (s, ) < Ao, o)
Ton, OLoan+1) >

d
q+aj1rb+c> d(SfLQn—l» T[E2n>7 ifd(an—17 y2n) > d(y2”+1’ y2n)

Now proceeding as earlier, one also obtain

atbie ) 4(Sxon_1, TTon—2), i fd(Yan_2, Yan_1) > d
d(Sxon_1,Tr2) < I (82201, Twan—2), if d(Y2n—2, Y2 1)_d

q—z—c d(Sx2n717 Tx2n72)7 Z‘fd(anfZa y2n71) S <y2n71> y?n)

(an—l ) y2n)

Therefore combining above inequalities, we have

d(Tx9n, Stony1) < k.d(Sxan—1,TTom—2)

where
a+b+c q+a a+b+c> (q+a+b+c>
—b—c | ? )
k = max I 1 ¢ q <1,
a q+a a g+a+btc
q—b—c qg—b—c )’ \ g—b—c q
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since {(a + 20+ 2¢) + (a®* + ab+ ac)/q} < 1.

To substantiate that, the inequality {(a+2b+2c¢)+ (a*+ab+ac)/q} < 1 implies all foregoing
inequalities, one may note that

{(a+2b+2c)+ (a® + ab+ ac)/q} < q = {(aq + 2bq + 2¢q) + (a® + ab + ac)} < ¢,

aq + a* +bqg+ ab+ cq + ac + bg + cq < ¢,

or
aq 4+ a* +bg+ ab+ cq+ ac < ¢* — bq — cq,

or )

<a+ +c>< q+a )<1

q qg— b — ¢
and
{(a+2b+2c)+ (a* +ab+ac)/q} < q= {(a+b+c)+ (a®* +ab+ac)/q} < q
or
{(ag + bg + cq) + (a* + ab + ac)} < ¢,

or

aq +a®+ab+ac+bg+ cq < ¢,
or

aq +a’>+ab+ac < ¢* —bq—cq
or

a qg+a+b+c <1
g —b—c g — a '

Similarly one can establish the other inequalities as well. Thus in all the cases we have
d(T'Tan, STont1) < kmax{d(Sran 1, T,), (T2, 2, STo,-1)}

whereas
d(5$2n+1,T$2n+1) < kmax{d(ngn_l, T:EQn); d(T$2n> S$2n+1)}

Now on the lines of Assad and Kirk [4], it can be shown by induction that for n = 1, we

have .
(T2, STont1) < k™0, d(Swopi1, Twons2) < K"72.0

Whereas .
0 = k™2 max{d(Txo, Sx1),d(Sxy, Txs)}

Thus the sequence {T'zg, Sx1,Txs, Sx3,.. Tx9,, STon11} is a Cauchy sequence and hence
converges to a point z in X. Now we assume that there exists a subsequence {T'xa,, } of {Txs,}
which is contained in Fy. Further subsequences {T'xs,, } and {Sxa,,+1} both converge to

z € K as K is closed subset of the complete metric space (X,d). Since Txo,, € Fj(Zon,—1)

141



for any even integer 7 € N and Sz, -1 € K. Using pointwise R-weak commutativity of
(F},S), we have

d(SFj(z2n,—1)), Fj(STan,-1)) < Ri.d(Fj(22n,-1)), STan,-1)) (8)
for every even integer 7 € N with some R; > 0. Also
d(SFj(2n, 1)), Fj(2)) < d(SFj(2n,-1)), F(STan, 1)) + H(Fj(x2n,-1)), F5(2)). (9)

Making k — oo in (8) and (9) and using the continuity of S and Fj, we get d(Sz, F;(z)) <0
yielding thereby Sz € Fj(z), for any even integer j € N.
Since Yan, +1 € Fi(22,,) and Tz, € K for any odd integer ¢ € N. Using pointwise R-weak

commutativity of (F;, T'), we have

d(TE(xQHk))v E(T:EQWC) < R2d(E($2nk))’ T$2nk)
for every odd integer i € Nwith some Ry > 0, besides
A(TFy(230,)), Fi(2)) < d(TFi(30,)), Fi(Tt30,)) + H(Fy(an,), Fi(2)).

Therefore as earlier the continuity of F; and T implies d(T'z, F;(z)) < 0 yielding thereby
Tz € Fy(z), for any odd integer i € N as k — oc.
If we assume that there exists a subsequence {Szg,,+1} contained in @, then analogous

arguments establish the earlier conclusions. This concludes the proof.
Remark 1 If we replace condition @ by the condition
HI[F(z), Fj(y)] < amax{3d(T, Sy), d(Tx, Fi(x)), d(Sy, F;(y))}

+0{d(Tz, Fj(y)) + d(Sy, Fi(x))}
then we get Theorem 3.4 [12].

Remark 2 If we replace condition @ by the condition

H[Fy(x), Fj(y)] < amax{3d(T, Sy), d(Tz, Fi(z)),d(Sy, F;(y))}

+0{d(Tz, Fj(y)) + d(Sy, Fi(x))}

and pointwise R-weakly commuting maps by compatible maps, then we get Theorem 3.1 due
to Imdad and Khan [12].

Theorem 2 Let (X, d) be a complete metrically convex metric space and K is a nonempty
closed subset of X. Let {F,};2, : K — CB(X) and S, T: K— X satisfying (0), (iv) and (v).
Suppose that

(zi) TK and SK are closed subspaces of X. Then
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(*) (F;,T) has a point of coincidence,
(**) (F},S) has a point of coincidence.

Moreover, (F;,T) has a common fixed point if T is quasi-coincidentally commuting and
coincidentally idempotent w.r.t. F; whereas (F},S) has a common fized point provided S is

quasi-coincidentally commuting and coincidentally idempotent w.r.t. Fj.

Proof. On the lines of Theorem [1} one assumes that there exists a subsequence {T'za,, }
which is contained in Py and TK as well as SK are closed subspaces of X. Since {T'z,, }
is Cauchy in TK, it converges to a point u € TK. Let v € T 'u, then Tv = u. Since
{Sxaon,+1} is a subsequence of Cauchy sequence, {Sza,, 11} converges to u as well. Using

@, one can write

q-d(Fi(v), Twan,) < H[EF(v), Fj(22n,-1)]
< ad(Tv, Sxan,—1) + bmax{d(Tv, F;(v)), d(Sxan,—1, Fj(T2n,-1))}
+ cmax{d(Tv, Sx2nk_1)7 d(TU, E(U)), d(SZBan_l, F}(aj?nk—l))}

which on letting k& — oo, reduces to

q.d(F;(v),u) < a(0) + bmax{d(u, F;(v)),0} + cmax{0, d(u, F;(v)),0}
< (b+¢).d(u, Fi(v)),
yielding thereby u € F;(v) which implies that u = Tv € Fj(v) as F;(v) is closed.

Since Cauchy sequence {T'zs, } converges tou € K and u € Fj(v), u € F;(K)( K C SK,
there exists w € K such that Sw = u. Again using @, one gets

¢-d(Sw, Fj(w)) = ¢.d(Tv, Fj(w)) < H[F;(v), Fj (%o, -1)]
< ad(Tv, Sw) + bmax{d(Tv, F;(v)),d(Sw, Fj(w))}
+ cmax{d(Tv, Sw),d(Tv, F;(v)),d(Sw, F;(w))} < (b+ ¢).d(Sw, Fj(w))

implying thereby Sw € Fj(w), that is w is a coincidence point of (S, F}).

If one assumes that there exists a subsequence {Sxa,, +1} contained in @)y with TK as well
as SK are closed subspaces of X, then noting that {Sxs,,+1} is Cauchy in SK, the foregoing
arguments establish that Tv € Fj(v) and Sw € Fj(w).

Since v is a coincidence point of (F;, T') therefore using quasi-coincidentally commuting

property of (F;,T) and coincidentally idempotent property of T w.r.t. F;, one can have
Tve F,(v),u=Tv=Tu=TTv=Tv=u,

therefore u = Tu = TTv € TF;(v) C F;(Tv) = F;(u) which shows that u is a common fixed
point of (F},T"). Similarly using the quasi-coincidentally commuting property of (F}, S) and
coincidentally idempotent property of S w.r.t. Fj, one can show that (£}, S) has a common

fixed point as well.
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