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Abstract

In the present paper we prove some coincidence common fixed point theorems for a fam-

ily of hybrid pairs of mappings in metrically convex spaces by using the notion of pointwise

R-weakly commuting mappings.
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1 Introduction

Fixed point theorems for single-valued and multivalued mappings have been studied exten-

sively and applied to diverse problems during the last few decades. Nadler [17] introduced

the concept of multivalued contraction mappings and established that a multivalued con-

traction mapping possesses a fixed point in a complete metric space. Subsequently, many

authors have generalized Nadler’s fixed point theorem in different ways. Assad and Kirk [4]

gave sufficient conditions for non-self mappings to ensure the fixed point by proving a result

on multivalued contractions in complete metrically convex metric spaces. Several authors

proved some fixed point theorems for non-self mappings (see, for instance [1], [2], [11], [12],

[13], [15], [19]).

Recently, Imdad and Khan [12] and Dhage, Dolhare and Petrusel [8] proved some fixed

point theorems for a sequence of set-valued mappings which generalize several results due
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to Itoh [13], Khan [15], Ahmad and Imdad [1, 2], Ahmad and Khan [3] and others. The

purpose of this paper is to prove some coincidence and common fixed point theorems for a

sequence of hybrid type non-self mappings satisfying certain contraction condition by using

R-weakly commutativity between multivalued mappings and single-valued mappings. Our

results generalize and unify the results due to Imdad and Khan [12], Khan [15], Itoh [13],

Ahmad and Imdad [1, 2], Ahmad and Khan [3] and several others.

2 Preliminaries

Let (X, d) be a metric space. Then following Nadler [17], we recall

(i) CB(X) = {A: A is nonempty closed and bounded subset of X}

(ii) C(X) = {A: A is nonempty compact subset of X}

(iii) For nonempty subsets A, B of X and x ∈ X, d(x,A) = inf{d(x, a) : a ∈ A},

H(A,B) = max[{supd(a,B) : a ∈ A}, {supd(A, b) : b ∈ B}]. (1)

It is well known that CB(X) is a metric space with the distance H which is known as

Hausdroff-Pompeiu metric on X.

The following definitions and lemmas will be frequently used in the sequel.

Definition 1 [10]. Let K be a nonempty subset of a metric space (X, d), T : K → X and

F : K → CB(X). The pair (F, T ) is said to be pointwise R-weakly commuting on K if for

given x ∈ K and Tx ∈ K, there exists some R = R(x) > 0 such that

d(Ty, FTx) ≤ R.d(Tx, Fx) (2)

for each y ∈ K
∩
Fx. Moreover, the pair (F, T ) will be called R-weakly commuting on K if

(2) holds for each x ∈ K and Tx ∈ K with some R > 0.

If R = 1, we get the definition of weak commutativity of (F, T ) on K. For K = X definition

1 reduces to “Pointwise R-weakly commutativity” for single valued self mappings due to

Pant [18].

Definition 2 [9, 10]. Let K be a nonempty subset of a metric space (X, d), T : K → X and

F : K → CB(X). The pair (F, T ) is said to be weakly commuting if for every x, y ∈ K with

x ∈ Fy and Ty ∈ K, we have

d(Tx, FTy) = d(Ty, Fy). (3)
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Definition 3 [10]. Let K be a nonempty subset of a metric space (X, d), T : K → X and

F : K → CB(X). The pair (F, T ) is said to be compatible if for every sequence {xn} ⊂ K,

from the relation

lim
n→∞

d(Fxn, Txn) = 0 (4)

and Txn ∈ K (for every n ∈ N) it follows that lim
n→∞

d(Tyn, FTxn) = 0, for every sequence

{yn} ⊂ K such that yn ∈ Fxn, n ∈ N .

For hybrid pairs of self type mappings these definitions were introduced by Kaneko and Seesa

[14].

Definition 4 [11]. Let K be a nonempty subset of a metric space (X, d), T : K → X and

F : K → CB(X). The pair (F, T ) is said to be quasi-coincidentally commuting if for all

coincidence points ‘x’ of (T, F ), TFx ⊂ FTx whenever Fx ⊂ K and Tx ∈ K for all x ∈ K.

Definition 5 [11]. A mapping T : K → X is said to be coincidentally idempotent w.r.t.

mapping F : K → CB(X), if T is idempotent at the coincidence points of the pair (F, T ).

Definition 6 [4]. A metric space (X, d) is said to be metrically convex if for any x, y ∈ X
with x ∕= y there exists a point z ∈ X, x ∕= z ∕= y such that

d(x, z) + d(z, y) = d(x, y). (5)

Lemma 1 [4]. Let K be a nonempty closed subset of a metrically convex metric space (X,

d), if x ∈ K and y /∈ K then there exists a point z ∈ �K (the boundary of K) such that

d(x, z) + d(z, y) = d(x, y).

Lemma 2 [17]. Let A,B ∈ CB(X) and a ∈ A, then for any positive number q < 1 there

exists b = b(a) in B such that q.d(a, b) = H(A,B).

3 Main results

Theorem 1 Let (X, d) be a complete metrically convex metric space and K is a nonempty

closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T : K → X satisfying

(iv) �K ⊆ SK
∩
TK, Fi(K)

∩
K ⊆ SK, Fj(K)

∩
K ⊆ TK

(v) Tx ∈ �K ⇒ Fi(x) ⊆ K, Sx ∈ �K ⇒ Fj(x) ⊆ K and

H[Fi(x), Fj(y)] ≤ ad(Tx, Sy) + bmax{d(Tx, Fi(x)), d(Sy, Fj(y))}

+ cmax{d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y))} (6)

where i = 2n − 1, j = 2n, (n ∈ N), i ∕= j for all x, y ∈ K with x ∕= y, a, b ≥ 0 and

{(a+ 2b+ 2c) + (a2 + ab+ ac)/q} < q < 1,
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(vi) (Fi, T ) and (Fj, S) are pointwise R-weakly commuting pairs,

(vii) {Fn}, S and T are continuous on K.

Then (Fi, T ) and (Fj, S) have a point of coincidence.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following way:

Let x ∈ �K. Since �K ⊆ TK there exists a point x0 ∈ K such that x = Tx0. From the

implication Tx0 ∈ �K which implies F1(x0) ⊆ F1(K)
∩
K ⊆ SK. Let x1 ∈ K be such that

y1 = Sx1 ∈ F1(x0) ⊆ K. Since y1 ∈ F1(x0) there exists a point y2 ∈ F2(x1) such that

q.d(y1, y2) ≤ H[F1(x0), F2(x1)] (7)

Suppose y2 ∈ K. Then y2 ∈ F2(K)
∩
K ⊆ TK implies that there exists a point x2 ∈ K such

that y2 ∈ Tx2. Otherwise, if y2 /∈ K, then there exists a point p ∈ �K such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2)

Since p ∈ �K ⊆ TK, there exists a point x2 ∈ K with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2)

Let y3 ∈ F3(x2) be such that

q.d(y2, y3) ≤ H[F2(x1), F3(x2)]

Thus on repeating the foregoing arguments, we obtain two sequences {xn} and {yn} such

that

(viii) y2n ∈ F2n(x2n−1), y2n+1 ∈ F2n+1(x2n),

(ix) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ �K and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n)

(x) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ �K and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

We denote

P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i,

P1 = {Tx2i ∈ {Tx2n} : Tx2i ∕= y2i,

Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1,

Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 ∕= y2i+1.

⎫⎬⎭
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First we show that (Tx2n, Sx2n+1) /∈ P1 × Q1 and (Sx2n−1, Tx2n) /∈ Q1 × P1. If Tx2n ∈ P1,

then y2n ∕= Tx2n and we have Tx2n ∈ �K which implies that y2n+1 ∈ F2n+1(x2n) ⊆ K. Hence

y2n+1 = Sx2n+1 ∈ Q0. Similarly, one can argue that (Sx2n−1, Tx2n) /∈ Q1 × P1.

Now we distinguish the following three cases:

Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then

q.d(Tx2n, Sx2n+1) ≤ H[F2n+1(x2n), F2n(x2n−1)]

≤ ad(Tx2n, Sx2n−1) + bmax{d(Tx2n, F2n+1(x2n)), d(Sx2n−1, F2n(x2n−1))}
+ cmax{d(Tx2n, Sx2n+1), d(Tx2n, F2n+1(x2n)), d(Tx2n, F2n+1(x2n))}

≤ ad(y2n, y2n−1) + bmax{d(y2n, y2n+1), d(y2n−1, y2n)}
+ cmax{d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n)}

which in turn yields

d(Tx2n, Sx2n+1) ≤

⎧⎨⎩
(

a+b+c
q

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≥ d(y2n+1, y2n)(

a
q−b−c

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≤ d(y2n+1, y2n),

or

d(Tx2n, Sx2n+1) ≤ ℎd(Sx2n−1, Tx2n),

where ℎ = max{((a+b+c)/q), (a/(q−b−c))} < 1, since {(a+2b+2c)+(a2+ab+ac)/q} < 1.

Similarly if (Sx2n−1, Tx2n) ∈ Q0 × P0, then

d(Sx2n−1, Tx2n) ≤

⎧⎨⎩
(

a+b+c
q

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≥ d(y2n−1, y2n)(

a
q−b−c

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≤ d(y2n−1, y2n),

or

d(Sx2n−1, Tx2n) ≤ ℎ.d(Sx2n−1, Tx2n−2),

where ℎ = max{((a+b+c)/q), (a/(q−b−c))} < 1, since {(a+2b+2c)+(a2+ab+ac)/q} < 1.

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turn yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1)

and hence

q.d(Tx2n, Sx2n+1) ≤ q.d(y2n, y2n+1)

≤ H[F2n+1(x2n), F2n(x2n−1)].
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Now proceeding as in case 1, we have

d(Tx2n, Sx2n+1) ≤

⎧⎨⎩
(

a+b+c
q

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≥ d(y2n+1, y2n)(

a
q−b−c

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≤ d(y2n+1, y2n),

or

d(Tx2n, Sx2n+1) ≤ ℎd(Sx2n−1, Tx2n),

where ℎ = max{((a + b + c)/q), (a/(q − b − c))} < 1, since {(a + 2b + 2c) + (a2 + ab +

ac)/q} < 1. Similarly if (Sx2n−1, Tx2n) ∈ Q1 × P0, then

d(Sx2n−1, Tx2n) ≤

⎧⎨⎩
(

a+b+c
q

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≥ d(y2n−1, y2n)(

a
q−b−c

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≤ d(y2n−1, y2n),

or

d(Sx2n−1, Tx2n) ≤ ℎ.d(Sx2n−1, Tx2n−2),

where h = max {((a + b +c)/q ), (a/(q – b – c))} < 1, since {(a+2b+2c)+(a2+ab+ac)/q} <
1.

Case 3. If (Tx2n, Sx2n+1) ∈ P1 × Q0, then Sx2n−1 = y2n−1. Now proceeding as in case 1,

one gets

q.d(Tx2n, Sx2n+1) = q.d(Tx2n, y2n+1) ≤ q.d(Tx2n, y2n) + q.d(y2n, y2n+1)

≤ q.d(Sx2n−1, y2n) +H[F2n+1(x2n), F2n(x2n−1)]

≤ q.d(Sx2n−1, y2n) + ad(y2n, y2n−1) + bmax{d(y2n, y2n+1), d(y2n−1, y2n)}
+ cmax{d(y2n, y2n−1), d(y2n, y2n+1), d(y2n, y2n+1)},

which in turn yields

d(Tx2n, Sx2n+1) ≤

⎧⎨⎩
(

q+a
q−b−c

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≤ d(y2n+1, y2n)(

q+a+b+c
q

)
d(Sx2n−1, Tx2n), ifd(y2n−1, y2n) ≥ d(y2n+1, y2n.).

Now proceeding as earlier, one also obtain

d(Sx2n−1, Tx2n) ≤

⎧⎨⎩
(

a+b+c
q

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≥ d(y2n−1, y2n)(

a
q−b−c

)
d(Sx2n−1, Tx2n−2), ifd(y2n−2, y2n−1) ≤ d(y2n−1, y2n).

Therefore combining above inequalities, we have

d(Tx2n, Sx2n+1) ≤ k.d(Sx2n−1, Tx2n−2)

where

k = max

⎧⎨⎩
(

a+b+c
q

)(
q+a

q−b−c

)
,
(

a+b+c
q

)(
q+a+b+c

q

)
,(

a
q−b−c

)(
q+a

q−b−c

)
,
(

a
q−b−c

)(
q+a+b+c

q

) ⎫⎬⎭ < 1,
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since {(a+ 2b+ 2c) + (a2 + ab+ ac)/q} < 1.

To substantiate that, the inequality {(a+2b+2c)+(a2+ab+ac)/q} < 1 implies all foregoing

inequalities, one may note that

{(a+ 2b+ 2c) + (a2 + ab+ ac)/q} < q ⇒ {(aq + 2bq + 2cq) + (a2 + ab+ ac)} < q2,

aq + a2 + bq + ab+ cq + ac+ bq + cq < q2,

or

aq + a2 + bq + ab+ cq + ac < q2 − bq − cq,

or (
a+ b+ c

q

)(
q + a

q − b − c

)
< 1

and

{(a+ 2b+ 2c) + (a2 + ab+ ac)/q} < q ⇒ {(a+ b+ c) + (a2 + ab+ ac)/q} < q

or

{(aq + bq + cq) + (a2 + ab+ ac)} < q2,

or

aq + a2 + ab+ ac+ bq + cq < q2,

or

aq + a2 + ab+ ac < q2 − bq − cq

or (
a

q − b − c

)(
q + a+ b+ c

q − a

)
< 1.

Similarly one can establish the other inequalities as well. Thus in all the cases we have

d(Tx2n, Sx2n+1) ≤ kmax{d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)}

whereas

d(Sx2n+1, Tx2n+1) ≤ kmax{d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)}

Now on the lines of Assad and Kirk [4], it can be shown by induction that for n = 1, we

have

d(Tx2n, Sx2n+1) ≤ kn.�, d(Sx2n+1, Tx2n+2) ≤ kn+
1
2 .�

Whereas

� = k−
1
2 max{d(Tx0, Sx1), d(Sx1, Tx2)}

Thus the sequence {Tx0, Sx1, Tx2, Sx3, ...Tx2n, Sx2n+1} is a Cauchy sequence and hence

converges to a point z in X. Now we assume that there exists a subsequence {Tx2nk
} of {Tx2n}

which is contained in P0. Further subsequences {Tx2nk
} and {Sx2nk+1} both converge to

z ∈ K as K is closed subset of the complete metric space (X, d). Since Tx2nk
∈ Fj(x2nk−1)

141



for any even integer j ∈ N and Sx2nk−1 ∈ K. Using pointwise R-weak commutativity of

(Fj, S), we have

d(SFj(x2nk−1)), Fj(Sx2nk−1)) ≤ R1.d(Fj(x2nk−1)), Sx2nk−1)) (8)

for every even integer j ∈ N with some R1 > 0. Also

d(SFj(x2nk−1)), Fj(z)) ≤ d(SFj(x2nk−1)), Fj(Sx2nk−1)) +H(Fj(x2nk−1)), Fj(z)). (9)

Making k →∞ in (8) and (9) and using the continuity of S and Fj, we get d(Sz, Fj(z)) ≤ 0

yielding thereby Sz ∈ Fj(z), for any even integer j ∈ N .

Since y2nk+1 ∈ Fi(x2nk
) and Tx2nk

∈ K for any odd integer i ∈ N . Using pointwise R-weak

commutativity of (Fi, T ), we have

d(TFi(x2nk
)), Fi(Tx2nk

) ≤ R2.d(Fi(x2nk
)), Tx2nk

)

for every odd integer i ∈ Nwith some R2 > 0, besides

d(TFi(x2nk
)), Fi(z)) ≤ d(TFi(x2nk

)), Fi(Tx2nk
)) +H(Fi(x2nk

)), Fi(z)).

Therefore as earlier the continuity of Fi and T implies d(Tz, Fi(z)) ≤ 0 yielding thereby

Tz ∈ Fi(z), for any odd integer i ∈ N as k →∞.

If we assume that there exists a subsequence {Sx2nk+1} contained in Q0, then analogous

arguments establish the earlier conclusions. This concludes the proof.

Remark 1 If we replace condition (6) by the condition

H[Fi(x), Fj(y)] ≤ amax{1
2
d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y))}

+ b{d(Tx, Fj(y)) + d(Sy, Fi(x))}

then we get Theorem 3.4 [12].

Remark 2 If we replace condition (6) by the condition

H[Fi(x), Fj(y)] ≤ amax{1
2
d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y))}

+ b{d(Tx, Fj(y)) + d(Sy, Fi(x))}

and pointwise R-weakly commuting maps by compatible maps, then we get Theorem 3.1 due

to Imdad and Khan [12].

Theorem 2 Let (X, d) be a complete metrically convex metric space and K is a nonempty

closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T: K→ X satisfying (6), (iv) and (v).

Suppose that

(xi) TK and SK are closed subspaces of X. Then

142



(*) (Fi, T ) has a point of coincidence,

(**) (Fj, S) has a point of coincidence.

Moreover, (Fi, T ) has a common fixed point if T is quasi-coincidentally commuting and

coincidentally idempotent w.r.t. Fi whereas (Fj, S) has a common fixed point provided S is

quasi-coincidentally commuting and coincidentally idempotent w.r.t. Fj.

Proof. On the lines of Theorem 1, one assumes that there exists a subsequence {Tx2nk
}

which is contained in P0 and TK as well as SK are closed subspaces of X. Since {Tx2nk
}

is Cauchy in TK, it converges to a point u ∈ TK. Let v ∈ T−1u, then Tv = u. Since

{Sx2nk+1} is a subsequence of Cauchy sequence, {Sx2nk+1} converges to u as well. Using

(6), one can write

q.d(Fi(v), Tx2nk
) ≤ H[Fi(v), Fj(x2nk−1)]

≤ ad(Tv, Sx2nk−1) + bmax{d(Tv, Fi(v)), d(Sx2nk−1, Fj(x2nk−1))}
+ cmax{d(Tv, Sx2nk−1), d(Tv, Fi(v)), d(Sx2nk−1, Fj(x2nk−1))}

which on letting k →∞, reduces to

q.d(Fi(v), u) ≤ a(0) + bmax{d(u, Fi(v)), 0}+ cmax{0, d(u, Fi(v)), 0}
≤ (b+ c).d(u, Fi(v)),

yielding thereby u ∈ Fi(v) which implies that u = Tv ∈ Fi(v) as Fi(v) is closed.

Since Cauchy sequence {Tx2n} converges to u ∈ K and u ∈ Fi(v), u ∈ Fi(K)
∩
K ⊆ SK,

there exists w ∈ K such that Sw = u. Again using (6), one gets

q.d(Sw, Fj(w)) = q.d(Tv, Fj(w)) ≤ H[Fi(v), Fj(x2nk−1)]

≤ ad(Tv, Sw) + bmax{d(Tv, Fi(v)), d(Sw, Fj(w))}
+ cmax{d(Tv, Sw), d(Tv, Fi(v)), d(Sw, Fj(w))} ≤ (b+ c).d(Sw, Fj(w))

implying thereby Sw ∈ Fj(w), that is w is a coincidence point of (S, Fj).

If one assumes that there exists a subsequence {Sx2nk+1} contained in Q0 with TK as well

as SK are closed subspaces of X, then noting that {Sx2nk+1} is Cauchy in SK, the foregoing

arguments establish that Tv ∈ Fi(v) and Sw ∈ Fj(w).

Since v is a coincidence point of (Fi, T ) therefore using quasi-coincidentally commuting

property of (Fi, T ) and coincidentally idempotent property of T w.r.t. Fi, one can have

Tv ∈ Fi(v), u = Tv ⇒ Tu = TTv = Tv = u,

therefore u = Tu = TTv ∈ TFi(v) ⊂ Fi(Tv) = Fi(u) which shows that u is a common fixed

point of (Fi, T ). Similarly using the quasi-coincidentally commuting property of (Fj, S) and

coincidentally idempotent property of S w.r.t. Fj, one can show that (Fj, S) has a common

fixed point as well.
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