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1 Introduction

Let D = {z ∈ ℂ : ∣z∣ < 1} be the unit disk in ℂ, T = {∣z∣ = 1} as unit circle, In =

(0, 1]n,Tn = T× ⋅ ⋅ ⋅ × T, Dn = {z = (z1, z2, ⋅ ⋅ ⋅ , zn) : ∣zj∣ < 1, j = 1, 2, ⋅ ⋅ ⋅ , n} as unit poly-

disk, H(D) be the space of all holomorphic functions in the unit disk, and let H(Dn) be the

space of all holomorphic functions in the polydisk. Let T (�, f) be Nevanlinna characteristic

of f , f ∈ H(D) (see [5]). Let below always w be a function from a set of all positive growing

functions, w ∈ L1(0, 1) such that there are two numbers mw > 0,Mw > 0 and a number

qw ∈ (0, 1) such that mw ≤ w(��)
w(�)

< Mw, � ∈ (0, 1), � ∈ [qw, 1] (see [7]). Let w ∈ S then

there are measurable functions "(x), q(x) so that

w(x) = exp

{
q(x) +

∫ 1

x

"(u)

u
du

}
, x ∈ (0, 1)
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(see [7]). This characterization gives various examples of functions from S class. A typical

example is w(r) = r�, � > −1, r ∈ (0, 1) or w(r) = r�(log C
r

)�, � > −1, � > 0, r ∈ (0, 1), C is

a constant.

We define several subspaces of H(D) for fixed function w ∈ L1(0, 1], w > 0.

N1
p,w,�={f ∈ H(D) : sup

0<R≤1

∫ R

0

(T (�, f))pw(1− �)d�(1−R)� < +∞},

N2
p,w,� = {f ∈ H(D) :

∫ 1

0

[
sup

�∈(0,R]

(T (�, f))pw(1− �)

]
(1−R)�dR < +∞},

N3
p,q,w,� = {f ∈ H(D) :

∫ 1

0

(∫ R

0

(T (�, f))pw(1− �)d�

) q
p

(1−R)�dR < +∞},

N4
p,q,w = {f ∈ H(D) :

∫ 1

0

(∫ �

−�
(ln+ ∣f(��)∣)pd�

) q
p

w(1− �)d� < +∞},

N5
p,q,w = {f ∈ H(D) :

∫ �

−�

(∫ 1

0

(ln+ ∣f(��)∣)pw(1− �)d�

) q
p

d� < +∞},

Np = {f ∈ H(D) : sup
�<1

∫ �

−�
(ln+ ∣f(��)∣)pd� <∞}

where 0 < p, q <∞, � > −1, � ≥ 0.

Note that these are complete metric spaces which can be checked without difficulties.

It is obvious that for q = ∞, w = 1 the N4
p,q,w coincides with well-known Np spaces of

holomorphic functions with bounded characteristic, see [1].

In recent papers ([1, 8]), it was noted that the following assertions concerning the action

of differentiation D(f)(z) = f ′(z) and integration I(f)(z) =
∫ z
0
f(t)dt are valid in mentioned

analytic classes. N4
q,q,� is closed under differentiation and integration operator(if w(∣z∣) =

(1−∣z∣)� we denote N4
p,q,w by N4

p,q,�) N4
q,q,w and N4

1,q,w are closed under differentiation operator

D(f) if and only if
∫ 1

0
w(t)(ln 1

t
)pdt < +∞. The study I(f),D(f) in Smirnov N+ class were

studied also before(see [10] and references there).

We note much earlier in [2] Frostman then W. K. Hayman ([4]) established that the Np

class is not invariant under differentiation operator, but Np, p > 1 are closed for integration

operator, but not N1.

The natural question is to study differentiation operator in N i
p,w,�, i = 1, 2, 3, 4, 5. The

goal of this paper is to provide several new sharp results in this direction. Finally we would

like to indicate that all assertions of this note were obtained by modification of approaches

and arguments provided recently in [8]. All our results in higher dimension were obtained

for n = 1 in [8]. Throughout the paper, we write C ( sometimes with indices) to denote a

positive constant which might be different at each occurrence (even in a chain of inequalities)

but is independent of the functions or variables being discussed.
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2 Main results

Motivated by mentioned results in this section we provide new assertions concerning differ-

entiation operator D(f) in new Nevanlinna-Djrbashian type spaces that were defined above.

In the following assertion, we provide several sharp results on the action of the differentia-

tion operator in Nevanlinna type analytic spaces in the unit disk complementing previously

known propositions of this type obtained before by various authors (see for example, [2]-[10]

and references there).

Theorem 1. 1) N1
p,w,� is closed under differentiation operator D(f) if and only if

sup
R∈(0,1)

(1−R)�
∫ R

0

(
ln

1

1− �

)p
w(1− �)d� <∞, 0 < p <∞, � ≥ 0.

2) N2
p,w,� is closed under differentiation operator D(f) if and only if∫ 1

0

sup
R<�

w(1−R)

(
ln

1

1−R

)p
(1− �)�d� <∞, 0 < p <∞, � > −1.

3) N3
p,q,w,� is closed under differentiation operator D(f) if and only if

∫ 1

0

(∫ R

0

w(1− �)

(
ln

1

1− �

)p
d�

) q
p

(1−R)�dR <∞, 0 < p, q <∞, � > −1.

In the following theorem we provide sharp assertions concerning the operator of differ-

entiation in N4
p,q,w̃ and N5

p,q,w̃.

Theorem 2. D(f) is acting from N4
p,q,w̃ and N5

p,q,w̃ to N1
s,s,w,

w̃(1− ∣z∣) = w(1− ∣z∣)
q
s (1− ∣z∣)

2q
s
− q
p
−1,

2

s
− 1

p
> 0, s ≥ 1, s ≥ max{q, p}

if and only if ∫ 1

0

(
ln

1

t

)s
w(t)dt <∞.

Now we formulate some new sharp results in higher dimensions. Let always below for

any function f ∈ H(Dn),

Df(z) =
∂f(z1, z2, . . . , zn)

∂z1, . . . , ∂zn
.

Note Nevanlinna type classes in higher dimension were studied also before see for example

[6] and references there.
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Theorem 3. Let 0 < p <∞,
∫ 1

0
wj(t)dt < +∞, j = 1, 2, . . . , n. Then

∫
In

(∫
Tn

ln+

∣∣∣∣Df(�1�1, . . . , �n�n)∣d�1 . . . d�n
)p n∏

j=1

wj(1− �i)d�1 . . . d�n

≤ C

∫
In

(∫
Tn

ln+ ∣f(�1�1, . . . , �n�n)∣d�1 . . . d�n
)p n∏

j=1

wj(1− �i)d�1 . . . d�n.

if and only if ∫ 1

0

wj(t)

(
ln

1

t

)p
dt < +∞, j = 1, 2, . . . , n.

Theorem 4. Let s ≥ 1, s ≥ max{q, p}, w = Πn
j=1wj. Let

2

s
− 1

p
> 0, w̃j(1− ∣zj∣) = wj(1− ∣zj∣)

q
s (1− ∣zj∣)

2q
s
− q
p
−1.

Then Df is acting from N4
p,q,w̃(N5

p,q,w̃) to N1
s,s,w if and only if

∫ 1

0

wj(1− �)

(
ln

1

1− �

)s
d� < +∞, j = 1, 2, . . . , n,

where

N5
p,q,w(Dn) = {f ∈ H(Dn) :

∫
Tn

(∫
In

(ln+ ∣f(��)∣)p
n∏
k=1

w(1− �k)d�1 . . . d�n
) q

p

d� < +∞},

N4
p,q,w(Dn) = {f ∈ H(Dn) :

∫
In

(∫
Tn

(ln+ ∣f(��)∣)pd�
) q

p
n∏
k=1

w(1− �k)d�1 . . . d�n < +∞}.

Let us mention some lemmas that are needed for the proofs.

Lemma A([9]). For f ∈ H(Dn), s ≥ max(p, q), s > 1. Then

∫
Dn

(ln+ ∣f(z)∣)s
n∏
k=1

w(1− ∣zk∣)dm2n(z)

≤ C

∫
In

n∏
k=1

(w(1− ∣zk∣))
q
s (1− ∣zk∣)

2q
s
− q
p
−1
(∫

Tn
log+ ∣f(z)∣qdmn�

) q
p

d∣z∣

∫
Dn

(ln+ ∣f(z)∣)s
n∏
k=1

w(1− ∣zk∣)dm2n(z)

≤ C

∫
Tn

(∫
In

n∏
k=1

(w(1− ∣zk∣))
q
s (1− ∣zk∣)

2q
s
− q
p
−1 log+ ∣f(z)∣d∣z∣

) q
p

dmn�.
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Lemma 1. ([3]). The following estimates are true.

1) ∫
Tn

ln+ ∣Df(�1'1, . . . , �n'n)∣d'1 . . . d'n

≤ C

(( n∑
j=1

ln
1

1− �j

)
+

∫
Tn

ln+ ∣f(−→� �)∣dmn(�)

)
−→� =

(
1 + �1

2
, . . . ,

1 + �n
2

)
, �i ∈ (0, 1), i = 1, . . . , n;

2)

ln+ T

(
1 + �

2
, f

)
≤ CT

(
1 + �

2
, f

)
, � ∈ (0, 1),

T (R, f) =
1

2�

∫ �

−�
ln+ ∣f(R�)∣d�,R ∈ (0, 1).

Lemma 2. ([8]). Let �k = 2�k, � > 0, �n = exp(− 1
2n�

). Then for ' ∈ [0, 2�], there exists a

function f, f ∈ H(D),

ln+ ∣f ′(�nei')∣ ≥ C ln
1

1− �n
, f(z) =

∞∑
k=0

��−1k z�k , 0 < � < 1, � > 0.

We formulate the following assertion since it is interesting by itself and it is a core of the

proof of necessity part of our theorems in polydisk (see section 4).

Lemma 3. 1) Let Rmj = exp(− 1

2�mj
) ∈ (0, 1], t ∈ (0,+∞), � > 0, j = 1, 2, . . . , n. Then

there exists a function f, f ∈ H(Dn),(
ln+ ∣Df(Rm1e

i'1 , . . . , Rmne
i'n)∣

)t
≥ C

n∑
j=0

(
ln

1

1−Rmj

)t
, 'i ∈ (0, 2�].

2) ∫
Tn

(
ln+ ∣Df(�1�1, . . . , �n�n)∣

)s
d�1 . . . d�n

is growing as a function of �1, . . . , �n for every s ≥ 1, f ∈ H(Dn).

Remark 1. The statements in the Theorem 2 for q = p = s were established in [8].

Remark 2. As W. Hayman shows in the unit disk there is a function so that T (�, I(f)) >

C ln 1
1−� , T (�, f) < C, � ∈ (0, 1). Let X(w) be any class of functions with ∥ ⋅ ∥X(w) quasi-

norm so that (N1) ⊂ X(w), X(w) ⊂ H(D). If for any g ∈ X(w), I(g) ∈ X(w), then

clearly for Hayman’s function it is also true. Hence I(f) ∈ X(w), f ∈ X(w), T (�, I(f)) >

C ln 1
1−� , � ∈ (0, 1). Hence if (X(w)) ⊂ X1, X1 = {f ∈ H(D) : ∥T (�, f)∥Y (w,[0,1)) <∞}, then

∥ ln 1
1−� ∥Y (w,[0,1)) <∞. As X(w) obviously we can take any space N i

p,q,w, i = 1, 2, 3, 4, 5 under

some natural additional assumption on w.
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Remark 3. It is not difficult to see that the statements of Theorem 1 and Theorem 2 remain

true if we replace D operator by
⋀

(f)(z) =
∑n

k=0 fk(z)Dk(f)(z), where fk are functions from

N i
p,q,w, i = 1, 2, 3, 4, 5.

Note that with the help of so-called slice functions technique in [8, 11], some results of

this paper can be even expanded to the unit ball.

3 Proofs of Theorems 1-4 (sufficiency of conditions)

The following estimate can be found in [3] and [8].

1

2�

∫ �

−�
ln+ ∣f ′(�ei')∣d' ≤ C

(
lnT (R, f) + T (�, f) + ln

1

1− �

)
,

where f ∈ H(D), and � < R < 1, and T (R, f) is as above a Nevanlinna characteristic of f .

From last estimate and second estimate in Lemma 1 we have putting R = 1+�
2

the following

estimates∫ R

0

(T (�, f ′))pw(1− �)d�(1−R)�

≤ C

∫ R

0

(
T (

1 + �

2
, f)

)p
w(1− �)d�(1−R)� + C

∫ R

0

(T (�, f))pw(1− �)d�(1−R)�

+ C

∫ R

0

(
ln

1

1− �

)p
w(1− �)d�(1−R)�, � ≥ 0, 0 < p <∞.

∫ 1

0

(
sup

�∈(0,R]

(T (�, f ′))pw(1− �)

)
(1−R)�dR

≤ C

∫ 1

0

sup
�∈(0,R]

(T (�, f))pw(1− �)(1−R)�dR

+ C

∫ 1

0

sup
�∈(0,R]

(
T

(
1 + �

2
, f

))p
w(1− �)(1−R)�dR

+ C

∫ 1

0

sup
�∈(0,R]

(
ln

1

1− �

)p
w(1− �)(1−R)�dR

and finally∫ 1

0

(∫ R

0

(T (�, f ′))pw(1− �)d�

) q
p

(1−R)�dR

≤ C

∫ 1

0

(∫ R

0

(T (�, f))pw(1− �)d�

) q
p

(1−R)�dR

+ C

∫ 1

0

(∫ R

0

(
T

(
1 + �

2
, f

))p
w(1− �)d�

) q
p

(1−R)�dR

+ C

∫ 1

0

(∫ R

0

(
ln

1

1− �

)p
w(1− �)d�

) q
p

(1−R)�dR
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To finish one side of the proof in Theorem 1 it remains to show that

sup
R≤1

(∫ R

0

(
T

(
1 + �

2
, f

))p
w(1− �)d�

)
(1−R)� ≤ C∥f∥N1

p,w,�∫ 1

0

(
sup

�∈(0,R]

(
T

(
1 + �

2
, f

))p
w(1− �)

)
(1−R)� ≤ C∥f∥N2

p,w,�

and finally

∫ 1

0

(∫ R

0

(
T

(
1 + �

2
, f

))p
w(1− �)d�

) q
p

(1−R)�dR ≤ C∥f∥N3
p,q,w,�

.

Let us show the first and the second estimate. The last estimate can be shown similarly

by standard change of variables. We have the following inequalities

sup
0≤R≤1

(∫ R

0

(
T

(
1 + �

2
, f

))p
w(1− �)d�

)
(1−R)�

≤ C sup
0≤R≤1

(∫ 1+R
2

1
2

(
T (u, f)

)p
w(2(1− u))du

)
(1−R)�

≤ C sup
1
2
≤t≤1

(∫ t

1
2

(
T (u, f)

)p
w(2(1− u))du

)
(1− t)� ≤ C∥f∥N1

p,w,�

We also have∫ 1

0

sup
�∈(0,R]

T

(
1 + �

2
, f

)
w(1− �)(1−R)�dR

≤ C

∫ 1

0

sup
t∈( 1

2
, 1+R

2
)

T (t, f)w(2(1− t))(1−R)�dR

≤ C

∫ 1

0

sup
t∈(0,v)

T (t, f)w(1− t)(1− v)�dv.

Above we used the fact that w ∈ S and w(��)
w(�)

∈ [mw,Mw], � ∈ (0, 1), � ∈ [qw, 1].

For proof of sufficiency of condition in Theorem 2 we act in a usual way using Cauchy

formula. For estimates of derivatives of f we have by Cauchy formula

f(z) =

∫
K�(z)

f(�)d�

� − z
;K�(z) = {� : ∣� − z∣ = �(1− ∣z∣)}.

Then f ′(z) =
∫
K�(z)

f(�)d�
(�−z)2 and ∣f ′(z)∣ ≤ C

max�∈K�(z)∣f(�)∣
(1−∣z∣) . Hence we have that for s ≥ 1

(ln+ ∣f ′(z)∣)s ≤ C

(
max
�∈K�(z)

(ln+ ∣f(�)∣)s +

(
ln

1

1− ∣z∣

)s)
. (1)

On the other hand using standard dyadic decomposition of unit disk we have for s ≥ 1
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∫
D
w(1− ∣w∣)(ln+ ∣f ′(w)∣)sdm2(w) ≤ C

∞∑
k=0

2k−1∑
l=2−k

max
△k,l

(ln+ ∣f(z)∣)sw(∣△k,l∣
1
2 )∣△k,l∣.

Taking � so small that estimate (1) can be applied in last inequality we will have

∫
D
w(1− �)(ln+ ∣f ′(w)∣)sdm2(w)

≤ C

∫ 1

0

∫ �

−�
w(1− �)(ln+ ∣f(�ei')∣)s�d�d'

+ C

∫ 1

0

w(1− �)

(
ln+ 1

1− �

)s
d�, s ≥ 1.

Now using the fact that for s ≥ 1, (ln+ ∣f(�ei')∣)s is subharmonic we estimate again using

Lemma A for n = 1 the following expression to get what we need.∫ �

−�

∫ 1

0

w(1− �)(ln+ ∣f(�ei')∣)s�d�d'.

We turn to Theorem 3.

As we noted above if f ∈ H(D) and R ∈ (�, 1), then we have

1

2�

∫ �

−�
ln+ ∣f(�ei')∣d'

≤ C

(
lnT (R, f) + T (�, f) + ln

1

1− �

)
≤ C

(
T (R, f) + T (�, f) + ln

1

1− �

)
.

So finally we have

1

2�

∫ �

−�
ln+ ∣f(�ei')∣d' ≤ C

(
T (R, f) + T (�, f) + ln

1

1− �

)
.

And from here we can get using this last formula by each variable separately and putting

Rj =
1+�j
2
, j = 1, 2, . . . , n(

1

2�

)n ∫
Tn

ln+ ∣Df(�1e
i'1 , . . . , �ne

i'n)∣d'1 . . . d'n

≤ C

( n∑
j=1

ln
1

1− �j
+

∫
Tn

log+

∣∣∣∣f (1 + �

2
�

)∣∣∣∣ d�1 . . . d�n
+

∫
Tn

log+ ∣f(��)∣d�1 . . . d�n
)

(2)
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where
1 + �

2
� =

(
1 + �1

2
�1, . . . ,

1 + �n
2

�n

)
, �j ∈ (0, 1), �j ∈ T = {∣z∣ = 1}.

Let us show the last formula in case of bidisk (for n = 2). The general case can be

considered similarly we have

(
1

2�

)2 ∫
T 2

ln+

∣∣∣∣ ∂2f

∂z1∂z2
(�1e

i'1 , . . . , �ne
i'n)

∣∣∣∣ d'1d'2

≤ C

(
ln

1

1− �1
+

∫
T 2

log+

∣∣∣∣ ∂f∂z2
(

1 + �1
2

�1, �2�2

)∣∣∣∣ d�1d�2
+

∫
T 2

log+

∣∣∣∣ ∂f∂z2 (�1�1, �2�2)

∣∣∣∣ d�1d�2)
≤ C

(
ln

1

1− �1
+

∫
T 2

log+ ∣f(�1�1, �2�2)∣d�1d�2

+2 ln
1

1− �2
+

∫
T 2

log+

∣∣∣∣f (�1�1, 1 + �2
2

�2

)∣∣∣∣ d�1d�2
+

∫
T 2

log+

∣∣∣∣f (1 + �1
2

�1, �2�2

)∣∣∣∣ d�1d�2
+

∫
T 2

log+

∣∣∣∣f (1 + �1
2

�1,
1 + �2

2
�2

)∣∣∣∣ d�1d�2)
≤ C1

(
ln

1

1− �1
+ ln

1

1− �2

)
+C2

∫
T 2

log+ ∣f (�1�1, �2�2)∣ d�1d�2

+C3

∫
T 2

log+ ∣f(
1 + �1

2
�1,

1 + �2
2

�2)∣d�1d�2.

The general case can be done similarly. We have used the fact that (log+ ∣f ∣)s is sub-

harmonic for s ≥ 1, f ∈ H(D). From here we have using properties of functions from these

classes and change of variables one part of Theorem 3 the sufficiency.

Remark Putting in (2),�j = � ∈ (0, 1), j = 1, 2, . . . , n we get immediately also the

following assertion if
∫ 1

0
w(t) ln 1

t
dt < +∞, w ∈ S, then

∫ 1

0

(∫
Tn

ln+ ∣Df(�1e
i'1 , . . . , �ne

i'n)∣d'1 . . . d'n

)p
w(1− �)d�

≤ C

∫ 1

0

(∫
Tn

ln+ ∣f(�1e
i'1 , . . . , �ne

i'n)∣d'1 . . . d'n

)p
w(1− �)d�, 0 < p <∞.

Now we turn to sufficiency of Theorem 4. First we note that Theorem 4 for n = 1 case

of unit disk completely coincide with Theorem 2 and we will only provide some sketch of the

proof of Theorem 4 (sufficiency part), we will argue as follows in case of polydisk. First we

will use the well-known Cauchy formula for polydisks and the dyadic decomposition of the
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polydisk to generalize the corresponding estimates that were obtained above for the case of

unit disk, we will have the following.

f(z1, . . . , zn) = C

∫
K�(z)

f(�)

� − z
d�, � − z =

n∏
k=1

(�k − zk), d� = d�1 . . . d�n,

f(�) = f(�1, . . . , �n), K�(z) = K�1(z1)× . . . K�n(zn),

K�i(zi) = {�i ∈ D : ∣�i − zi∣ = �i(1− ∣zi∣)}, z ∈ Dn, � ∈ ℝn
+.

Hence
∂f(z1, . . . , zn)

∂z1 . . . ∂zn
≤ C max

�∈K�(z)
∣f(�1, . . . , �n)∣ 1∏n

k=1(1− ∣zk∣)
.

Hence

(ln+ ∣Df(z1, . . . , zn)∣)s̃

≤ C max
�∈K�(z)

(ln+ ∣f(�1, . . . , �n)∣)s̃ +

(
ln+ 1

1− ∣z1∣

)s̃
+ . . .+

(
ln+ 1

1− ∣zn∣

)s̃
, s̃ ∈ (0,∞)

Note form above we have

∫
Dn

(ln+ ∣Df(z)∣)s
n∏
k=1

w(1− ∣zk∣)dm2n(z1, . . . , zn)

≤ C
∞∑
k1=1

⋅ ⋅ ⋅
∞∑

kn=1

2k1−1∑
l1=−2k1

⋅ ⋅ ⋅
2kn−1∑
l1=−2kn

[
max
�∈U

k⃗,⃗l

(ln+ ∣f(�)∣)s +
n∑
j=1

(
ln

1

1− ∣zj∣

)s ]
n∏
j=1

wj(∣Uk⃗,⃗l∣
1
2 )∣Uk⃗,⃗l∣

where

∣Uk⃗,⃗l∣ =
n∏
j=1

∣Ukj ,lj ∣, k⃗ = (k1, . . . , kn), l⃗ = (l1, . . . , ln),

Ukj ,lj = {z :
�lj
2kj
≤ argz ≤ �lj + 1

2kj
, 1− 1

2kj
< ∣z∣ ≤ 1− 1

2kj+1
}, j = 1, 2, ⋅ ⋅ ⋅ , n.

The rest follows directly from estimate of Lemma A(see [9]).

In the following section we provide the reverse (necessity) in all parts of all theorems

we formulated above. For that reason we again modify and generalize arguments that were

proved in [8] recently.

129



4 Proofs of Theorems 1-4 (necessity of conditions)

Let us first show that conditions mentioned in polydisk in theorems we formulated above

are necessary in Theorem 3 and Theorem 4. We will need some additional definitions. Let

Rmj = exp(− 1

2�mj
), j = 1, 2, ⋅ ⋅ ⋅ , n. Let us assume that there is a function f from N4

p,q,w or

N5
p,q,w

ln+

∣∣∣∣ ∂nf

∂z1, . . . , ∂zn
(Rm1e

i'1 , . . . , Rmne
i'n)

∣∣∣∣ ≥ C
n∑
j=1

ln
1

1−Rmj

, f ∈ H(Dn) (3)

First we show that this is enough for our purposes. First from last estimate we have the

following inequalities.(
ln+ ∣Df(Rm1e

i'1 , . . . , Rmne
i'n)∣

)t
≥ C

n∑
j=1

ln(
1

1−Rmj

)t, t ∈ (0,∞) (4)

and(∫
Tn

ln+ ∣Df(Rm1e
i'1 , . . . , Rmne

i'n)∣d'1 ⋅ ⋅ ⋅ d'n
)p
≥ C

n∑
j=1

ln

(
1

1−Rmj

)p
, p ∈ (0,∞) (5)

For R < 1, RN1+1 > R, . . . , RNn+1 > R. Then∫ R

0

⋅ ⋅ ⋅
∫ R

0

G(�1, . . . , �n)d�1 . . . d�n

≤ C

N1∑
K1=1

⋅ ⋅ ⋅
Nn∑

Kn=1

(∫ RK1+1

RK1

⋅ ⋅ ⋅
∫ RKn+1

RKn

G(�1, . . . , �n)d�1 . . . d�n

)
On the other hand it is easy to show (see [8])

lnt
1

1−Rmj

≤ C lnt
1

1−Rmj−1
, j = 1, 2, ⋅ ⋅ ⋅ , n.

And hence we have combining estimates

n∑
j=1

∫ R

0

wj(1− �j) lns
1

1− �j
d�j
∏
i ∕=j

∫ R

0

wi(1− �i)d�i

≤ C

N1∑
K1=1

⋅ ⋅ ⋅
Nn∑

Kn=1

∫
Tn

∫ RK1+1

RK1

⋅ ⋅ ⋅
∫ RKn+1

RKn

n∏
j=1

wj(1−�j)(ln+ ∣Df(�⃗ �)∣)sd�1 . . . d�nd�1 . . . d�n.

We use the fact that
∫
Tn

(ln+ ∣Df(�⃗ �)∣)sd�1 . . . d�n is growing function for s ≥ 1 and each

�j, j = 1, 2, ⋅ ⋅ ⋅ , n. Passing to the limit when R → 1 − 0, Nj → ∞, Rnj = exp(− 1

2�nj
), � >

0, j = 1, 2, ⋅ ⋅ ⋅ , n. We have
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n∑
j=1

∫ 1

0

wj(1− �) lns
1

1− �
d�

≤ C

∫
Tn

∫ 1

0

⋅ ⋅ ⋅
∫ 1

0

n∏
j=1

wj(1− �)(ln+ ∣Df(��)∣)s�d�d�1 . . . d�n.

This is what we need for Theorem 4.

Almost similarly modifying arguments from [8] we can show that (3) is enough for the

proof Theorem 3 also using (5).

Indeed we have the following estimates. We have passing at final step to limit as R →
1− 0, Kj →∞, j = 1, 2, ⋅ ⋅ ⋅ , n.

n∑
j=1

∫ R

0

(ln
1

1−Rj

)pwj(1−Rj)dRj

∏
i ∕=j

∫ R

0

wi(1− �)d�

≤ C
n∑
j=1

N1∑
K1=1

⋅ ⋅ ⋅
Nn∑

Kn=1

∫ RKj+1

RKj

(ln
1

1− �
)pwj(1− �)d�

∏
i ∕=j

∫ RKj+1

RKj

wi(1− �)d�,RNj+1 > R, j = 1, 2, ⋅ ⋅ ⋅ , n.

n∑
j=1

∫ 1

0

(
ln

1

t

)p
wj(t)dt ≤ C

∫ 1

0

⋅ ⋅ ⋅
∫ 1

0

w1(1− �) ⋅ ⋅ ⋅wn(1− �)T p(Df, �⃗)d�1 . . . d�n.

Now let us show (3) estimate. For that reason we again modify and generalize arguments

from [8]. Let Kj = 1, 2, . . . , j = 1, 2, ⋅ ⋅ ⋅ , n. Let �kj = 2�kj , � > 0. Let � ∈ (0, 1). Let also

f(z1, z2, . . . , zn) =
∞∑

K1=0

��−1K1
z
�k1
1 . . .

∞∑
Kn=0

��−1Kn
z�knn

=
∞∑

K1=0

. . .

∞∑
Kn=0

��−1K1
. . . ��−1Kn

z
�k1
1 . . . z�knn

=
∞∑

K1=0

. . .

∞∑
Kn=0

2�K1(�−1) . . . 2�Kn(�−1)z
�k1
1 . . . z�knn

Df(z1, z2, . . . , zn) =
∞∑

K1=0

. . .
∞∑

Kn=0

2�K1� . . . 2�Kn�z2
�K1−1

1 . . . z2
�Kn−1

n .

Since � < 1 it is not difficult to show that f belongs to classes we need. In the following

argument we increase the number of variables in arguments provided in [8]. Note first
1

1−�n = 2�n, �n = exp(− 1
2�n

). Let ∣zj∣ = exp(− 1

2�mj
), then we have the following

Df(z) =
n∏
j=1

∞∑
Kj=0

2�Kj� exp[− 1

2�mj
⋅ 2�Kj−1].
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Let

Um1,...,mn =
n∏
j=1

2��
∑n
j=1mj exp[− 1

2�mj
⋅ (2�mj − 1)]

Sm1,...,mn =

m1−1∑
K1=0

. . .
mn−1∑
Kn=0

2��
∑n
j=1Kj ⋅

n∏
j=1

exp[− 1

2�mj
⋅ (2�Kj − 1)]

Rm1,...,mn =
n∏
j=1

∞∑
Kj=mj+1

exp[− 1

2�mj
⋅ (2�Kj − 1)].

Then we have

Rm1,...,mn + Sm1,...,mn + Um1,...,mn ≤ ∣Df ∣.

Following estimates from [8] by each variable we have the following estimates

Um1,...,mn = 2��
∑n
j=1Kj exp[−2�m1 − 1

2�m1
] . . . exp[−2�mn − 1

2�mn
]

Sm1,...,mn ≤
1

(2�� − 1)n
2��(m1+...+mn)

Rm1,...,mn ≤ (
1

� ln� exp(2�)
)n2��

∑n
j=1mj exp(

1

2�m1
) . . . exp(

1

2�mn
)

Hence

∣Df ∣ ≥ ∣Um1,...,mn∣ − ∣Sm1,...,mn∣ − ∣Rm1,...,mn∣ ≥ 2��
∑n
j=1mj(M1(�)−M2(�)−M3(�)).

We note again that estimates above Rm1,...,mn and Sm1,...,mn were obtained similarly as in

[8] we simply increase the amount of variables in a standard way using one variable results

n times.

It remains to make the following calculations see also [8].

lim
�→∞

M1(�) = lim
�→∞

n∏
j=1

exp(
1

2�mj
− 1) =

1

e
;

lim
�→∞

M2(�) = lim
�→∞

(
1

2�� − 1
)n = 0;

lim
�→∞

M3(�) = lim
�→∞

exp[
1

2�m1
+ . . .+

1

2�mn
] ⋅ ( 1

� ln� exp(2�)
)n = 0.

Hence we have finally

∣Df(�m1e
i'1 , . . . , �mne

i'n)∣ ≥ C2��
∑n
j=1mj , � > �0, 'i ∈ T, i = 1, 2, . . . ,m.

From here we get as in [8].

(ln+ ∣Df(�m1e
i'1 , . . . , �mne

i'n)∣)t ≥ C

n∑
j=1

(ln
1

1− �mj
)t, 'i ∈ [0, 2�), t ∈ (0,∞).
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This is what we need.

Since Theorem 4 is a polydisk extension of Theorem 2 it remains to show the necessity

of conditions of Theorem 1. For that reason we follows again the construction suggested in

[8]. We had a function (see [8]),

f ∈ H(D), f(z) =
∞∑
k=0

��−1k z�k , 0 < � < 1, �k = 2�k, � > 0, �n = exp(− 1

�n
)

and

ln+ ∣f ′(�nei')∣ ≥
(
C ln

1

1− �n

)
, ' ∈ [0, 2�). (6)

Obviously T (�, f) ≤ C. So we have to show that for this function the following estimates

hold.

sup
R∈(0,1)

(1−R)�
∫ R

0

(
ln

1

1− �

)p
w(1− �)d� ≤ C∥f ′∥N1

p,w,�
, � ≥ 0, 0 < p <∞;∫ 1

0

sup
R<�

w(1−R)

(
ln

1

1−R

)p
(1− �)�d� ≤ C∥f ′∥N2

p,w,�
, � > −1, 0 < p <∞;

∫ 1

0

(∫ R

0

w(1− �)

(
ln

1

1− �

)p
d�

) q
p

(1−R)�dR ≤ C∥f ′∥N3
p,q,w,�

, � > −1, 0 < p, q <∞.

We provide a complete proofs of first and third estimate, the second one can be obtained

by modification. From (6) we have∫ R

0

�(�)w(1− �)

(
ln

1

1− �

)p
d�

≤
N∑
n=1

∫ �n

�n−1

�(�)w(1− �)

(
ln

1

1− �

)p
d�

≤
N∑
n=1

∫ �n

�n−1

�(�)w(1− �)

(
ln

1

1− �n−1

)p
d�, �N > R,R < 1, � < 1

where � = �(�) = �[0,�)(�) is a characteristic function of [0, �). From (6)∫ R

0

�(�)w(1− �)

(
ln

1

1− �

)p
d�

≤ C

N∑
n=1

∫ �n

�n−1

�(�)w(1− �)T p(�n−1, f
′′)d�.

Hence passing to limit as N → +∞, R→ (1− 0) we have

sup
�∈(0,1)

∫ �

0

w(1− �)

(
ln

1

1− �

)p
d�(1− �)�

≤ sup
�∈(0,1)

∫ �

0

w(1− �)T p(�, f ′)d�(1− �)� ≤ C∥f ′∥N1
p,w,�

.
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∫ �

0

w(1− �)

(
ln

1

1− �

)p
d� ≤ C

∫ �

0

w(1− �)T p(�, f ′)d�. (7)

Hence we have

sup
�∈(0,1)

∫ �

0

w(1− �)T p(�, f ′)d�(1− �)� ≤ C∥f ′∥N1
p,w,�

.

This is what was needed. Similarly from (7)∫ 1

0

(∫ R

0

w(1− �)

(
ln

1

1− �

)p
d�

) q
p

(1−R)�dR ≤ C∥f ′∥N3
p,q,w,�

.
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