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Abstract. In this paper, we prove two new Tauberian the-
orems via statistical Cesaro summability mean of a continuous
function of three variables by using oscillating behavior and De
la Vallée Poussin means of a triple integral over a locally convex
space. Moreover, some remarks and corollaries are provided here
to support our results.
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1 Introduction

The notion of statistical convergence was introduced by Fast [5] and Stein-
haus [23]. Besides, in this connection, Fridy [6] showed that k(z) — xx41) =
O(1) is a Tauberian condition for the statistical convergence of (xj). Sub-
sequently, many researchers have worked in this area under several settings.
For more recent works in this direction, one may refer to [I1] and [22]. Parida
et al. [19] extended the idea for a locally convex Hausdorff topological linear
space. Tauber [24] introduced the first theorems for single sequences, accord-
ing to which an Abel summable sequence is convergent with some suitable
conditions. Later, a large number of authors such as Landau [16], Hardy and
Littlewood [9], and Schmidt [21] obtained some classical Tauberian theorems
for Cessaro and Abel summability methods of single sequences.

Recently, Canak and Totur [4], and Jena et al. [10] presented and studied
several Tauberian theorems for single sequences. On the other hand, Knopp
[15] obtained some classical Tauberian theorems for Abel and (C,1,1)-
summability methods of double sequences and proved that methods hold for
the set of bounded sequences. Further, Moricz [I8] proved some Tauberian
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theorems for Cesaro summable double sequences and deduced Tauberian
theorems of Landau [I7] and Hardy [8] type. Canak and Totur [3] proved
Tauberian theorem for Cesaro summability of single integrals and presented
new proofs of some classical Tauberian theorems for the Cesdro summabil-
ity of single integrals. Later, these notions were introduced by Parida et
al. [19] for double integrals. On the other hand, the notion of (C,1,1,1)-
summability of a triple sequence was originally introduced by Canak and
Totur [1I] in 2016.

Later, Canak et al. [2] studied (C, 1,1, 1)-means of statistical convergent
of triple sequence and gave classical Tauberian theorems for a triple sequence
that P—convergence follows from statistically (C, 1, 1, 1)-summability under
two-sided boundedness conditions and slowly oscillating conditions in cer-
tain senses. Then, in 2020, Totur and Canak [25] defined Tauberian con-
ditions under which convergence of triple integrals follows from (C,1,1,1)-
summability.

In the last few years, the study of Tauberian theorems in double or triple
summability was of great interest to many mathematicians (see, [12, 13| 20,
7]). In this paper, motivated by the existing results presented in [15], [16]
and [20], we prove a statistical versions of Littlewood-Tauberian theorems
via (C,1,1,1)-summability method for triple integrable functions over a
locally convex space under slow oscillation by using the De la Vallée Poussin
mean of the triple integral. As a result, we extend a Tauberian theorem due
to Parida et al. [19].

2 Definitions and Notations

In this section, we present some notions which are useful for the development
of the paper.

Definition 1 Let I = [0,00) C R and let X (I) be the space of all real-valued
measurable functions on I. We will say that a functional w : X (I) — [0, 00)
is a modulus on X (I) if the following conditions hold:

(i) w(f) =0 if and only if f =0 for all f € [0, 00),
(i) w(f +9) = w(f) +wlg) for all f, g € [0,00),
(i) w is an increasing function,

(iv) w is continuous on [0, 00).

From here on, X denotes a locally convex Hausdorff topological linear
space whose topology is determined by a set () of continuous semi-norms q.
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Let f(x,y,z) be a function in X. The partial sum of f(z,y,2) is given

I abcdadbdc O0<zx 2 < 00.
e ///f Y

Definition 2 The (C,1,1,1)-mean of f(x,y, 2

o(s(x,y,2)) = oW (s(x,y, xyz/ / / a,b, ¢)dadbde. (1)

Definition 3 Integral
T Y z
///s(a,b,c)dadbdc
o Jo Jo

is (C,1,1,1)—summable to a finite number | € X if for all q € Q,

lim qg(o(z,y,2) —1) — 0.

x,Y,z—>00

In this case, we write o(x,y,z) — | over X.

Note that the (C,1,0,0),(C,0,1,0) and (C,0,0, 1)-means of f(x,y,z) €
X are defined by

1 xX
190 s(a,g.2) = 5 [ s(ay.2)da,
1 Oy
0-(0’1’0)<S<I,y72>> = _/ S<I’b’ Z>db7
0

Y
1 z
AN (s(r,.2) = [ sty olde
= Jo
respectively.

Definition 4 Integral

T pry 2
/ / / s(a, b, ¢)dadbde
o Jo Jo

is statistically (C, 1,1, 1)—summable to a finite number | € X if for all ¢ € Q
and all € > 0,

1
lim —|{0<m,y,z§u,v,pand q(O’({L‘,y,Z)—l)EEHZO
u,v,p—00 UVP

In this case, we write

stat lim oW (s(z,y, 2

e
—stat/ / / 1—— (1—9> (1——>dadbdc_l
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If the integral

///f(x,y,z)dacdydz:l,
o Jo Jo

l € X, exists, then the limit of as a, b, c tends to oo also exists. Never-
theless, in general, the converse is not true. In order to prove this, we have
to use the oscillatory behavior and De la Vallée Poussin mean of the above
triple integral over X.

For each non-negative integers k,r,t, we define

o0 (524 2 / / / (=Lr=1t0) (b o) dadbde
xyz

if k,r,t > 1, and in the case k,r,t = 0, we put

o0, 0) s(z,y, 2 / / / s(a, b, c)dadbdc.

Definition 5 A triple integral

[ e

is said to be statistically (C,k,r,t)-summable to | € X if c®V(s(z,y,2))
is summable to [.

Denote
S(Z’, Y, Z) - 0(8(23, Y, Z)) = U(f(xa Y, Z))v (2)

where

o) =g = — [ 7] s eydadbae

The relation is known as Kronecker identity. We can see that

o2y, 2)

rYz

o'(s(x,y,2)) =

For each non-negative integers k,r and ¢, put

o®rD (f(z,y, 2 / / / k=Lr=Lt=D e f (a, b, ¢)dadbde
T ayz

if k.r,t > 1, and let

(0 0) flz,y, 2z / / / abef(a, b, c)dadbde.
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Definition 6 A triple integral

/ / / xyzf(x,y, z)drydz
o Jo Jo

is statistically (C, k,r,t)-summable tol € X if vV (f(x,y,2)) is summable
to [.

Definition 7 The De la Vallée Poussion mean of the triple integral

/Ox /Oy /Ozf(a, b, ¢)dadbdc

1s defined by

1 Az Ay Az
T(s(z,y, 2)) :()\x 0w =90 =) /:E /y /Z s(a, b, c)dadbdc

for A € (1,00) and by

1 T Yy pz
7(s(x,y, 2)) :(x =)= ) /}\I /}\y /}\Z s(a, b, ¢)dadbdc
for A€ (0,1).

Definition 8 A triple integral

[ [ [ s 2yisiua

belonging to X is oscillating slowly if

)\ligh lcl,zr,lzs—?olz x,y,zﬁaflilcaéﬁx,)\y,)\z |S(a7 b7 C) - S(I, Y Z)| = 07

or, equivalently,

lim lim sup max lq(s(a,b,c)) —s(z,y,z)| = 0.

A=17 gy, z—00 AT,AY,Az<a.b,c<z,y,z

3 Main Results

We start with some auxiliary lemmas, which are also of independent interest.

Lemma 1 The sequence of partial sums of a triple integrable functions
f(z,y,2) over a locally convexr space X is oscillating slowly if and only if
v(f(z,y,2)) € X is bounded and oscillating slowly.
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Proof. Let s(x,y, z) be oscillating slowly. First, we show that v(f(x,y, z)) =
O(1) as z,y,z — co. We have

T Py pz
/ / / wzgf(w, z, g)dwdzdg
o Jo Jo

S) oo 00 x/3 y/37 z/3F
/ / / wzg f(w, z, g)dwdzdg.

i— ] 0 5—0 /3z+1 y/3j+1 /3k+1

From here it follows that

B s 0
/ / / wzgf(w, z, g)dwdzdg
«a 0
g 5
:/ / / wzgs' f(w, z, g)dwdzdg
/ / 2q </ ws'(w, 2 g)dw) dzdg
9
/ / zg [ s(w, 2,9))y / s(w, z g)dw} dzdg
/ / / zgs(w, zgdwdzdg+19/ / 2gs(¥, z, g)dzdg
= —0/ / zgs(@,z,g)dzdg—ﬁ/ / 2gs(¥, z, g)dzdg
5a 5W 3 aé Wﬂ
+9/ / zgs(ﬁ,z,g)dzdg—/ / / zgs(w, z, g)dwdzdg
« « 0
v s 2!
+(19—9)/ / 29s(1, z, g)dzdg
B O; ! B o
+0 (/ / zgs(¥, z,g)dzdg—/ / zgs(ﬁ,z,g)dzdg)
; @ ; 5 ) a Jy
=[] [ ot 2.0) = 500, glazagan
—i—@(//zgsﬂzgdzdg //zgs@zgdzdg)

—B-a) -0 -0  ma |s(z,y,2) — s(8,6,9)]

a76<xyz<,8619

)
2g5(0, 2, g)dzdg — / / zgs(e,z,mdzdg)‘-
¥ a Jy

If we take 8 = 2/3", 8/a < 3,0 = y/3/,0/y < 3 and ¥ = 2/3k, 9/ < 3, we

obtain
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wzgf w,z, g dwdzdg‘ < AZZZW = O(zyz)
2=0

as x,y,z — 00.
Now, we shall show that o(s(z,y, 2)) is oscillating slowly. Tacking
into account, we can write

lo(s(a,b,¢)) — o(s(z,y,2))| = s(w, z, g) dwdzdg'

f (w, 2, g)dwdzdg‘

cof [([ )L

= C'log(c/z)log(b/y) log(a/x)
for any x < Az, y < Ay, 2 < Az. It is clear that
max |o(s(a, b, ¢)) — o(s(z,y,2))] < Clog(A)log(A) log(A).

z,y,2<a,b,c<Ax, Ay, Az
Passing to the supremum limit from the both sides as A — 1T, we obtain

lim sy max o6 .0) = ofe(r,p, )] =0
This implies that v(f(z,y, z)) is oscillating slowly by Kronecker identity (2)).
To prove the converse part, suppose that v(f(x,y,z)) is bounded and
oscillating slowly. The boundedness of v(f(x,y, z)) implies that o(s(z,y, 2))
is oscillating slowly. Since v(f(x,y, z)) is oscillating slowly, so s(x,y, z) is
oscillating slowly by Kronecker identity (2)). O

Lemma 2 For A > 1, it holds

s(z,y,z) —o(s(Ax, Ay, \z))
1

= o 0w A 02) — o(s(ay.2)) + (A%)a(s@x, A A2))

(- x)(Ayl— y)(Az — 2) /:I /y“’ /:Z(S(a’ b,¢) = s(x,y, 2))dadbde,

and for 0 < XA <1, one has

S(.Z‘, Y, Z) - O'(S(/\l’, /\y7 /\Z))
1 3

S plOn ) ) v

— s(z,y, z) — s(a, b, c))dadbde.

o(s(Ax, Ay, \z))
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Proof. Let A > 1. By De la Vallée Poussion mean of s(z,y, z), we can write

7(s(z,y, 2)) = ()\x — x)()\yl_ 0w =) /:r /;y /:Z s(a, b, ¢)dadbdc

—1Dz(A = 2)

Am Ay Az
</ // abcdadbdc—/// abcdadbdc).

Besides, since
1 Ar Ay Az
AT YNz /0 /0 /0 s(a, b, c¢)dadbde

o(s(z,y,z / / / (a, b, c)dadbdc,
" ayz

s 2)) = el A A2) = o ggetetens.2)

o(s(Ax, Ay, \z)) =

and

we have

1 1
= (14 o) o6 A9) = e, 2)

Further,

T(s(x,y, 2)) — o(s(Ax, Ay, \z)) =

o(s(A\x, \y, A\z)) — ﬁa(s(m, Y, 2)).

(A=1)

Subtracting o(s(Az, Ay, Az)) from the identity

1
(.9, 2) = 7ls(@g.2)) - Az —2)(\y —y)(\z = 2)
/ / y/ s(a,b,c) — s(z,y, z))dadbde,
we obtain
s(z,y,2) —o(s (M Ay, A2)) = 7(s(2,y, 2)) — o(s(Az, Ay, Az))

~ w7 / / / : s(a,b.0) = s(xy, 2))dadbd.
(5)
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By and , we get

S(2,9,2) — (st Ay Az)) =

(A—1)°

(0(s(A\w, Ay, A2)) = o (s(2,y,2)))

e 1>0(s()\$, Ay, Az))

1 Ax PNy pAz
‘(Ax—muy—y)w—z)L / / (s(a,b,¢) = s(@,y, 2))dadbde.

In the case 0 < A < 1, the proof is similar. [

Theorem 1 If s(x,y, z) is statistically (C,1,1,1)—summable to l € X in a
locally convex space X and s(x,vy, z) is oscillating slowly, then s(x,y,z) — 1
as r,y,z — 0.

Proof. Let s(x,y,z) be statistically (C,1,1,1)-summable to { € X. This
implies that o (s(z, y, 2)) is (C, 1, 1, 1)-summable to I. Now, from (Z2)), we con-
clude that v(f(z,y, z)) is statistically (C, 1, 1, 1)-summable to zero. There-
fore, by Lemma [ v(f(z,y, z)) is oscillating slowly. Besides, by Lemma [2|
we obtain

v(f(z,y,2)) — o(u(f(Az, Ay, A2))) = : 5 (0 (o(f(Az, Ay, A2))))

-1
3 1
— oWy, 2) + Gyo(elf O 2 A9) = o e

Az Ay Az
/ / / (v(f(a,b,¢)) —v(f(z,y, 2))) dadbdc.
Thus, we can write

‘U(f(xa Y, Z)) - O'(U(f({l?, Y, Z)))l

<5 E [l Oy 22) - o0 (.v.2)
+ g 7 O A A2)
T max  u(flab,e) — o(f@y ).

z,y,z2<a,b,c<Ax, A \y,A\z

Now, passing to the supremum limit from the both sides of the obtained
relation as x,y, z — 0o, we obtain

lenzilog) |U(f(l', Y, Z)) - U(U(f([E, Y, Z)))’
< limsup e (o ((f (A, My, A=) — o (0(f(z,9. 2)))

e (1) )
+limsup =S slo(u( (. . 1))

+ lim sup max lv(f(a,b,c)) —v(f(z,y,2))|-

Z,Y,2—00 z,y,2<a,b,c<AT, Ay, Az
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Moreover, as o(v(f(Az, Ay, A\z))) € X converges, the first and the second
terms in the right hand side of @ must vanish. Therefore,

limsup |v(f(z,y,2)) — o(v(f(z,y, 2)))]

x,Y,z—>00

< limsup max |U(f(a’ b, C)) —v(f(x,y,z))|,

T,Y,2—+00 z,Y,2<a,b,c<AT, Ay, Az
and as A — 17, we get

hmsup |U(f($,y72)) - O-(U(f(xvy7z)))| < 0.

x,Y,z—>00

This implies that v(f(z,y,2)) = O(1) as z,y,z — oo. Since s(z,y,z) is
statistically summable to [ by Cesdro mean and v(f(z,y,2)) = O(1) as
x,y,z — 00, we conclude that lim, , , .o s(z,y,2) = 1. O

Corollary 1 If s(z,y, z) is statistically (C, k,r,t)-summable to l € X in a
locally convex space X and s(x,y, z) is oscillating slowly, then s(x,y,z) — 1
as r,y,z — 0.

Proof. By Lemma , s(z,y,z) and o™ (s(x,y, z)) are oscillating slowly.
Moreover, by Theorem |l s(z,y, 2) is statistically (C,k,r,t)-summable to
[l € X. Thus

stat lim o®"(s(x,y, 2)) = L. (7)

ZT,Y,z—>00

Now, by the definition,

B (s(x,y,2)) = oW (s(w,y, 2)) (0 F D (s(2,y,2))). (8)

It is clear that and imply that s(z,y, 2) is statistically (C,k —1,r —
1,t — 1)-summable to [ € X. Further, by Lemma , ob=1r=Lt=1) (g(2, 9, 2))
is oscillating slowly. Thus, Theorem (1| implies

lim o®- b= (g2 y, 2)) = L.
Z,Y,2—00

Continuing in this way, we obtain lim, , , o (s(z,y,2)) = 1. O

Theorem 2 [fs(x,y, z) is statistically (C,1,1,1)-summable tol € X over a
locally convex space X andv(f(x,y, 2)) is oscillating slowly, then s(x,y, z) —
l as x,y,z — 00.

Proof. Since s(z,y,z) is statistically (C,1,1,1)-summable to [ € X, we
conclude that oV (s(x,y, 2)) is also statistically Cesdro summable to I.
Hence, v(f(z,y,z)) is statistically Cesdro summable to zero by (2)). Using
identity to v(f(z,y,z2)), we obtain that v(v(f(x,y,2))) is statistically
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Ceséro summable to zero. Thus, v(v(f(x,y,z2))) is oscillating slowly by
Lemmal [l Further, by Lemma [2] we have

U(U(f(xa Y, Z))) - O'(U(U(f()\l‘, Ay7 A))))
- Gl O A ) = (ol . 2)
3 1

g(v(v(f(Ax, Ay, A)))) — Az —2) Oy —y)(hz — 2)

(A —1)
Az pAy pAz
/ / / (v(v(f(a,b,c))) —v(v(f(z,y,2)))) dadbdc.

+

No
|U(U(f(x>ya Z))) - O'(U(U(f()\l‘, )‘ya A))))|
< W\U(U(U(f(m Ay, A))) —v(o(f(z,y,2)))]

+ T O )
b max (b ) — o7y, )

z,y,2<a,b,c<Ax, Ay, Az

Passing to the supremum limit from the both sides of @ as x,y,z — 00,
we can write

limsup [o(v(f(2,y,2))) = o(v(v(f(Az, Ay, A))))|

< limsup o (v(v(f (e, Ay, M) — oo(f(x.9.2)))

T,Y,2—>00 ()‘ 1) (10)
+limsup o (00 (. g A)))|
tlimsup _max |(0(o(f(a,b,¢)) — o(u(f(z.y, 2)]

T,Y,2—00 z,y,z2<a,b,c<Ax, Ay, Az

Since o(v(v(f(Az, Ay, A\z)))) € X converges, the first and the second terms
in the right hand side of must be zero. Hence,

limsup [o(v(f(2,y,2))) = o(v(v(f(Az, Ay, A))))|

T,Y,2—>00

< limsup max |(w(v(f(a,b,¢))) = v(v(f(2,y,2))l,

2,Y,2—00 z,y,2<a,b,c<Ax, Ay, Az

and tending A — 17, we get

limsup |v(v(f(2,y, 2))) = o (v(v(f(Az, Ay, A))))| < 0.

T,Y,2—00
It is clear that v(v(f(x,y, 2))) = O(1) as z,y, z — oo. Moreover, s(z,y, z) is
statistically summable to [ € X by Cesaro mean and v(v(f(z,y, 2))) = O(1)
as x,y,z — oo. Thus, s(x,y,z) =l as x,y,z — oo. O
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Corollary 2 Ifs(x,y, z) is statistically (C, k,r,t)-summable tol € X over a
locally convex space X andv(f(x,y, 2)) is oscillating slowly, then s(x,y, z) —
las x,y,z — 00.

Proof. Since v(f(x,y,z)) is oscillating slowly, by Lemma [1} we get that
aBrt) (u(f(x,y, 2))) is oscillating slowly. Besides, as v(f(z,y, z)) is statisti-
cally (C, k,r,t)-summable to [ € X, by Theorem [2| we have

stat  lim o) (v(f(2,y,2))) = 1. (11)

Z,Y,2—00

Now, by the definition,

im0 (f (., 2))
o (o f (2, y, 2)))o* D (o f(2,y,2))). (12)

By (1)) and (12), v(f(z,y, 2)) is statistically (C,k—1,7—1,t—1)-summable
to [. Furthermore by Lemma 1] since gk=1r=Lt=1 (y(f ( (x,9,2))) is oscillat-
ing slowly, Theorem 2| implies that lim, , .0 v(f(z,y,2)) = 1. O

In the similar way, we can get new theorems and corollaries by using
(C,1,0,0), (C,0,1,0) and (C, 0,0, 1)-summability methods.
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