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Abstract. In this paper, we determine, in terms of the Sullivan
models, rational evaluation subgroups of the inclusion CP (n) ↪→
CP (n+ k) between complex projective spaces and, more gener-
ally, the G-sequence of the homotopy monomorphism ι : X ↪→ Y
between simply connected formal homogeneous spaces for which
π∗(Y )⊗Q is finite dimensional.
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Introduction

Let us remind the notion of a Gottlieb group (see [3]). Given a based CW-
complex X, an element α ∈ πn(X) is a Gottlieb element of X if (α, idX) :
X ∨ Sn → X extends to α̃ : X × Sn → X. The set Gn(X) of all Gottlieb
elements α ∈ πn(X) is called the n-th Gottlieb group of X or the n-th
evaluation subgroup of πn(X).

Gottlieb groups play a profound role in topology, covering spaces, fixed
point theory, homotopy theory of fibrations, and other fields. For instance,
the triviality of Gottlieb groups is related to the cross section problem of
fibrations.

Further, let f : X → Y be a based map of simply connected finite CW-
complexes. As it was shown in [4], the evaluation at the basepoint of X
gives the evaluation map ω : Map(X, Y ; f)→ Y , where Map(X, Y ; f) is the
component of f in the space of mappings from X to Y . The image of the
homomorphism induced in homotopy groups

ω] : π∗Map(X, Y ; f)→ π∗(Y )
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is called the n-th evaluation subgroup of p and it is denoted by Gn(Y,X; p).
Note that if f = idX , the space Map(X, Y ; f) is the monoid aut1(X) of self-
equivalences of X homotopic to the identity of X, then ev : aut1(X) → X
is the evaluation map, and the image of the induced homomorphism

ev] : π∗(aut1(X))→ π∗(X)

is Gn(X), i.e., the n-th Gottlieb group.
In [10], Woo and Lee studied the relative evaluation subgroups

Grel
n (X, Y ; p) and proved that they fit in a sequence

· · · → Grel
n+1(X, Y ; f)→ Gn(X)→ Gn(X, Y ; f)→ · · ·

called theG-sequence of f . This sequence is exact in some cases, for instance,
if f is a homotopy monomorphism.

Recently, Smith and Lupton [4] identified the homomorphism induced
on rational homotopy groups by the evaluation map ω : Map(X, Y ; f)→ Y
in terms of a map of complexes of derivations constructed directly from the
Sullivan minimal model of f . In [5, 6], rationalized evaluation subgroups of
mapping spaces between Complex Grassmann manifolds Gk,n(C), which are
a generalization of complex projective spaces, were studied.

In this paper, we use a map of complexes of derivations of minimal Sulli-
van models of mapping spaces to compute rational relative Gottlieb groups
of the inclusion CP (n) ↪→ CP (n + k). More generally, we consider the in-
clusion ι : X ↪→ Y between simply connected formal homogeneous spaces
for which π∗(Y )⊗Q is finite dimensional.

1 Preliminaries

Through this paper, we rely on the theory of minimal Sullivan models in
rational homotopy theory for which [1] is our standard reference. All vector
spaces and algebras are taken over a field Q of rational numbers. We start
with recalling some definitions.

Definition 1.1 A commutative graded differential algebra (cdga) is a graded
algebra (A, d) such that xy = (−1)|x||y|yx and d(xy) = (dx)y + (−1)|pq|x(dy)
for all x ∈ Ap, y ∈ Aq. It is said to be connected if H0(A) ∼= Q. If
V = ⊕i≥1V i with V even := ⊕i≥1V 2i and V odd := ⊕i≥1V 2i−1, then ∧V denotes
the free commutative graded algebra defined by the tensor product

∧V = S(V even)⊗ E(V odd),

where S(V even) is the symmetric algebra on V even and E(V odd) is the exterior
algebra on V odd.
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Definition 1.2 A Sullivan algebra is a commutative differential graded al-
gebra (∧V, d) where V = ∪k≥0V (k) and V (0) ⊂ V (1) · · · such that dV (0) = 0
and dV (k) ⊂ ∧V (k − 1). It is called minimal if dV ⊂ ∧≥2V .

If (A, d) is a cdga of which the cohomology is connected and finite dimen-
sional in each degree, then there always exists a quasi-isomorphism from a
Sullivan algebra (∧V, d) to (A, d) [1]. To each simply connected space, Sulli-
van associates a cdga APL(X) of rational polynomial differential forms on X
that uniquely determines the rational homotopy type of X [8]. A minimal
Sullivan model of X is a minimal Sullivan model of APL(X). More precisely,
H∗(∧V, d) ∼= H∗(X;Q) as graded algebras and V ∼= π∗(X) ⊗ Q as graded
vector spaces.

Let (A, d) be a cdga. A derivation θ of degree k is a linear mapping
θ : An → An−k such that θ(ab) = θ(a)b + (−1)k|a|aθ(b). Denote by Derk A
the vector space of all derivations of degree k and DerA = ⊕k Derk A. The
commutator bracket induces a graded Lie algebra structure on DerA. More-
over, (DerA, δ) is a differential graded Lie algebra (see, for example, [8]),
with the differential δ defined in the usual way by

δθ = d ◦ θ + (−1)k+1θ ◦ d.
Let (∧V, d) be a Sullivan algebra where V is spanned by {v1 . . . , vk}.

Then, Der∧V is spanned by θ1, . . . , θk, where θi is the unique derivation of
∧V defined by θi(vj) = δij. The derivation θi will be denoted by (vi, 1).
It is known (see [1]), that an element v ∈ V ∼= π∗(X) ⊗ Q is a Gottlieb
element of π∗(X)⊗Q if and only if there is a derivation θ of ∧V satisfying
θ(v) = 1 and such that δθ = 0. Let φ : (A, d) → (B, d) be a morphism of
cdga’s. A φ-derivation of degree k is a linear mapping θ : An → Bn−k for
which θ(ab) = θ(a)φ(b) + (−1)k|a|φ(a)θ(b). We consider only derivations of
positive degree. Denote by Dern(A,B;φ) the vector space of φ-derivations
of degree n for n > 0, and by Der(A,B;φ) = ⊕n Dern(A,B;φ) the graded
vector space of all φ-derivations.

The differential graded vector space of φ-derivations is denoted by
(Der(A,B;φ), ∂), where the differential ∂ is defined by

∂θ = dB ◦ θ + (−1)k+1θ ◦ dA.
In the case A = B and φ = 1B, the vector space (Der(B,B; 1), ∂) is just a
usual differential graded Lie algebra of derivations on the cdga B (see [4]).
Note that, there is an isomorphism of graded vector spaces

Der(A,B;φ) ∼= Hom(V,B).

If {vi} is a basis of V , then the vector space Der(A,B;φ) is spanned by the
unique φ-derivation θ denoted by (vi, bi) and (vi, 1) such that{

θi(vi) = bi,

θi(vj) = 0, i 6= j, bi ∈ B.
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It was shown in [4], that a pre-composition with φ gives a chain complex
map φ∗ : Der(B,B; 1) → Der(A,B;φ), and a post-composition with the
augmentation ε : B → Q gives a chain complex map ε∗ : Der(A,B;φ) →
Der(A,Q; ε). The evaluation subgroup of φ is defined as follows

Gn(A,B;φ) = Im{H(ε∗) : Hn(Der(A,B;φ))→ Hn(Der(A,Q; ε))}.

In the case A = B and φ = 1B, we get the Gottlieb group of (B, d) defined
as

Gn(B) = Im{H(ε∗) : Hn(Der(B,B; 1))→ Hn(Der(B,Q; ε))}.

In particular, Gn(B) ∼= Gn(XQ) if B is the minimal Sullivan model of a
simply connected space X [1, Proposition 29.8].

Definition 1.3 A simply connected space X is called formal (see [2]) if there
is a quasi-isomorphism (∧V, d) → H∗(∧V, d), where (∧V, d) is the minimal
Sullivan model of X.

Examples of formal spaces include spheres, projective complex spaces,
homogeneous spaces G/H where G and H have same rank, and compact
Kähler manifolds.

2 Evaluation subgroups of a map and the G-

sequence

Consider the inclusion CP (n) ↪→ CP (n + k). In [2], the minimal model
of CP (n) is given by (∧(x2, x2n+1), d) where dx2 = 0, dx2n+1 = xn+1

2 , and
the minimal model of CP (n + k) is given by (∧y2, y2(n+k)+1), d) with dy2 =
0, dy2(n+k)+1 = yn+k+1

2 . Moreover, the inclusion CP (n) ↪→ CP (n+ k) has a
model of the form

φ : A = ∧y2/(yn+k+1
2 )→ ∧x2/(xn+1

2 ) = B

where φ(y2) = x2.
Let X be a homogeneous space of which (∧V, d) = (∧(V0 ⊕ V1), d) is its

minimal Sullivan model, where V is finite dimensional and dV0 = 0, dV1 ⊆
∧V0. Write V even

0 = Q < p1, . . . , pq >= P, V odd
0 = Q < w1, . . . , wr >= W

and V odd
1 = Q < y1, . . . , yk >= Y , so that (∧(V0⊕V1), d)

∼=→ (∧(P ⊕Y ), d)⊗
(∧W, 0) and dP = 0, dY ⊆ ∧P . The associated minimal Sullivan model
(∧V, d) is called a pure Sullivan algebra. Homogeneous spaces are pure.
Further, since X is a formal homogeneous space, we have

H∗(∧V, d) =
∧(p1, . . . , pq)

(α1, . . . , αk)
⊗ ∧(wi, . . . , wr),
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where (α1, . . . , αk) is a regular sequence in ∧P . Hence, X as a formal ho-
mogeneous space admitting a minimal Sullivan model of the form (∧V, d) =
(∧(P ⊕ Y ), d)⊗ (∧W, 0), where dP = 0, dyk = αk.

We study the evaluation subgroups of φ and, more generally, the inclusion
ι between formal spaces. We have the following results.

Theorem 2.1 Let B = (∧(x2, x2n+1), d). Then Gn(B) = 〈[x∗2n+1]〉.

Proof. Note that Der(B,B; 1) = ⊕ni=0Qα2i+1⊕Qα2, where α2 is the deriva-
tion taking x2 to one and α2i+1 is the derivation taking x2n+1 to xn−i2 for
i = 1, . . . , n. The differential is given by δα2i+1 = 0 and δα2 = (n + 1)α1.
Hence, for 1 ≤ i ≤ n, [α2i+1] represents a non-zero homology class in
H∗(Der(B,B; 1)). Moreover, ε∗(α2i+1) = x∗2i+1. As CP (n) is a finite CW-
complex, then Geven(B) = 0 (see [1, Page 379]). Hence, Gn(B) = 〈[x∗2i+1]〉.
�

Theorem 2.2 Consider the inclusion CP (n) ↪→ CP (n + k), and let φ :
A→ B be its Sullivan model. Then G∗(A,B;φ) = 〈[y∗2(n+k)+1]〉.

Proof. Define θ2(n+k)+1 = (y2(n+k)+1, 1) in Der(A,B;φ) and the differential
given by ∂θ2(n+k)+1 = 0. Note that [θ2(n+k)+1] is a non-zero homology class
in H∗(Der(A,B;φ)). A straightforward calculation shows that θ2 = (x2, 1)
is not a cycle in Der(A,B;φ). Moreover, H(ε∗)([θ2(n+k)+1]) = [y∗2(n+k)+1] ∈
G2(n+k)+1(A,B;φ). It then follows that G∗(A,B;φ) = 〈[y∗2(n+k)+1]〉. �

Definition 2.3 Let φ : A→ B be a map of differential graded vector spaces.
A differential graded vector space, Rel∗(φ), called the mapping cone of φ (see,
for example, [9, 4]) is defined by Reln(φ) = An−1 ⊕ Bn for all n > 1, with
the differential δ(a, b) = (−dA(a), φ(a) + dB(b)). There are inclusion and
projection chain maps J : Bn → Reln(φ) and P : Reln(φ) → An−1 defined
by J(w) = (0, w) and P (a, b) = a, respectively. These yields a short exact
sequence of chain complexes

0→ B∗
J→ Rel∗(φ)

P→ A∗−1 → 0

and a long exact homology sequence of φ

· · · → Hn+1(Rel(φ))
H(P )→ Hn(A)

H(φ)→ Hn(B)
H(J)→ Hn(Rel(φ))→ · · ·

whose connecting homomorphism is H(φ).

Following [4], we consider a commutative diagram of differential graded
vector spaces

Der(B,B; 1)

ε∗
��

φ∗ // Der(A,B;φ)

ε∗
��

Der(B,Q; ε)
φ̂∗ // Der(A,Q; ε),
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where ε is the augmentation of either A or B. On passing to homology
and using the naturality of the mapping cone construction, we obtain the
following homology ladder for n ≥ 2,

· · · → Hn+1(Rel(φ
∗))

H(ε∗,ε∗)
��

H(P ) // Hn(Der(B,B; 1))

H(ε∗)

��

H(φ∗)// Hn(Der(A,B;φ))→ · · ·

H(ε∗)

��
· · · → Hn+1(Rel(φ̂∗))

H(P̂ ) // Hn(Der(B,Q; ε))
H(φ̂∗)// Hn(Der(A,Q; ε))→ · · ·

The n-th relative evaluation subgroup of φ is defined as follows

Grel
n = Im{H(ε∗, ε∗) : Hn(Rel(φ∗))→ Hn(Rel(φ̂∗))}.

The G-sequence of the map φ : A→ B is given by the sequence

· · · H(Ĵ)→ Grel
n+1(A,B;φ)

H(P̂ )→ Gn(B)
H(φ̂∗)→ Gn(A,B;φ)

H(Ĵ)→ · · ·

which ends in G2(A,B;φ). Moreover, as it was shown in [4, Theorem 3.5],
this can be applied to the Sullivan model φ : A→ B of the map f : X → Y .

Theorem 2.4 Consider the inclusion CP (n) ↪→ CP (n+k), and let φ : A→
B be its Sullivan model. Then Grel

∗ (A,B;φ) = 〈[(x∗2n+1, 0)], [(0, y∗2(n+k)+1)]〉.

Proof. We will use the following diagram presented in [4]:

Der(B,B; 1)

ε∗

��

φ∗ // Der(A,B;φ)

ε∗

��

J // Rel(φ∗)

(ε∗,ε∗)
��

Der(B,Q; ε)
φ̂∗ // Der(A,Q; ε) Ĵ // Rel(φ̂∗).

Consider α2n+1 = (x2n+1, 1) in Der(B,B; 1) and θ2(n+k)+1 = (y2(n+k)+1, 1) in
Der(A,B;φ). Then

φ∗(α2n+1) =

{
θ2(n+k)+1 if 2n+ 1 = 2(n+ k) + 1,

0 if 2n+ 1 6= 2(n+ k) + 1,

such that

D(α2n+1, 0) =

{
(0, θ2(n+k)+1) if 2n+ 1 = 2(n+ k) + 1,

(0, 0) if 2n+ 1 6= 2(n+ k) + 1,

and D(0, θ2(n+k)+1) = (0, 0). Thus, if 2n+ 1 6= 2(n+ k) + 1, then [(α2n+1, 0)]
and [(0, θ2(n+k)+1)] are non-zero homology classes in H∗(Rel(φ

∗)). Moreover,
H(ε∗, ε∗)([(α2n+1, 0)]) = [(x∗2n+1, 0)] for 2n + 1 6= 2(n + k) + 1, and in the
same way, H(ε∗, ε∗)([(0, θ2(n+k)+1)]) = [(0, y∗2(n+k)+1)]. A straightforward cal-

culations shows that for 2n+1 6= 2(n+k)+1, [(x∗2n+1, 0)] and [(0, y∗2(n+k)+1)]

span H(ε∗, ε∗). �
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From the theorem above, it follows that the G-sequence reduces to

0→ G2(n+k)+1(A,B;φ)
H(J)→
'

Grel
2(n+k)+1(A,B;φ)→ 0,

0→ G2n+1(B)
H(φ∗)→
'

G2n+1=2(n+k)+1(A,B;φ)→ 0,

0→ Grel
2n+1(A,B;φ)

H(P )→
'

G2n+1(B)→ 0,

and it is exact.

Example 1 Consider the inclusion CP (1) ↪→ CP (2). A Sullivan model of
the inclusion is given by

φ : A = (∧(y2, y5), d)→ (∧x2, x3), d) = B,

where dy2 = 0, dy3 = y22, dx2 = 0 and dx3 = x22. Moreover, φ(y2) = x2 and
φ(y5) = x2x3.

Determine Grel
∗ (A,B;φ) as follows. Consider α3 = (x3, 1) ∈ Der(B,B; 1)

and θ5 = (y5, 1) ∈ Der(A,B;φ). Then φ∗(α3) = 0. Thus, D(α3, 0) = (0, 0)
and D(0, θ3) = (0, 0). Hence, [(α3, 0)] and [(0, θ5] are non-zero homology
classes. Further, (ε∗, ε∗)(α3, 0) = (x∗3, 0) and (ε∗, ε∗)(0, θ5) = (0, y∗5). There-
fore,

Grel
n (A,B;φ) = 〈[(0, y∗3)], [(x∗3, 0)]〉.

Proposition 2.5 Let (∧V, d) = (∧(V0⊕V1), d) be a minimal Sullivan model,
where V is finite dimensional with dV0 = 0, dV1 ⊆ ∧V0, V even

0 =
Q < p1, . . . , pq >, V odd

0 = Q < w1, . . . , wr >, and V odd
1 = Q < y1, . . . , yk >.

Then the generators y1, . . . , yk and w1, . . . , wr are Gottlieb elements where
the subscripts indicate degrees.

Proof. For t ∈ {1, . . . , k}, let θt denotes the derivation of ∧V , that is,

θt(yj) =

{
0, t 6= j,

1, t = j.

It is easy to see that δθt(yt) = 0. Hence, the generators yt, t ∈ {1, . . . , k} are
Gottlieb elements. It follows in the same way that the generators w1, . . . , wr
are Gottlieb elements. �

Theorem 2.6 Let X be a simply connected formal homogeneous spaces for
which π∗(X) ⊗ Q is finite dimensional, and let B = (∧(V0 ⊕ V1), d) be its
minimal Sullivan model. Then G∗(B) is generated by 〈[y∗1], . . . , [y∗k]〉 and
〈[w∗1], . . . , [w∗r ]〉 as a vector space, where the subscripts indicate degrees.
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Proof. Consider a minimal Sullivan model B = (∧V, d) = (∧(V0 ⊕ V1), d)
of X for which V is finite dimensional. If V1 = V odd

1 = Q < y1, . . . , yk >,
denote by (yt, 1) the derivation θt such that θt(yj) = 1, t = j, and zero
otherwise. Then δθt(yt) = 0. If V0 = V odd

0 = Q < w1, . . . , wr >, for
s ∈ {1, . . . , r}, define the derivation αs = (ws, 1) in the same way such
that δαs(ws) = 0. Then, by Proposition 2.5, the generators y1, . . . , yk and
w1, . . . , wr are Gottlieb elements. It follows from the definition of the Got-
tlieb group of B that [θ1], . . . , [θk] and [α1], . . . , [αr] are non-zero homol-
ogy classes in H∗(Der(B,B; 1)). Also, ε∗(θ1) = y∗1, . . . , ε∗(θk) = y∗k and
ε∗(α1) = w∗1, . . . , ε∗(αr) = w∗r . As X is a simply connected finite CW-
complex, then Geven(B) = 0 (see [1, Proposition 28.8]). Thus, G∗(B) is
generated by 〈[y∗1], . . . , [y∗k]〉 and 〈[w∗1], . . . , [w∗r ]〉 as a vector space. �

Theorem 2.7 Consider the homotopy monomorphism ι : X ↪→ Y between
simply connected formal homogeneous spaces for which π∗(Y ) ⊗ Q is finite
dimensional, and let φ : ∧V = (∧(V0 ⊕ V1), d) → (B, d) be its Sullivan
model. Then G∗(∧V,B;φ) is generated as a vector space by 〈[y∗p], . . . , [y∗k]〉
and 〈[w∗q ], . . . , [w∗r ]〉 for some p ∈ {1, . . . , k} and q ∈ {1, . . . , r}, which are
determined by the homotopy monomorphism. Here, the subscripts indicate
degrees.

Proof. Let φ : ∧V = (∧(V0⊕V1), d)→ (∧(B, d) be a Sullivan model for the
homotopy monomorphism ι : X ↪→ Y , where V is finite dimensional. Sup-
pose that V1 = V odd

1 = Q < y1, . . . , yk > and V0 = V odd
0 = Q < w1, . . . , wr >.

Denote by (yp, 1) for p ∈ {1, . . . , k} and (wq, 1) for q ∈ {1, . . . , r} the deriva-
tions in Der(∧V,B;φ) as defined above. Then δθp(yp) = 0 and δαq(wq) = 0.
Since ι is a homotopy monomorphism, it follows from [7, Theorem 2.2] and
[10, Corollary 2.3] that the G-sequence of the CW-pair (Y,X) is exact.
Thus, [θp], . . . , [θk] and [αq], . . . , [αr] are the only non-zero homology classes
in H∗(Der(∧V,B;φ)). Also, H(ε∗)([θp]) = [y∗p], . . . , H(ε∗)([θk]) = [y∗k where
y∗p ∈ Der(∧V,Q; ε) and H(ε∗)([αq]) = [w∗q ], . . . , H(ε∗)([αr]) = [w∗r ] where
w∗q ∈ Der(∧V,Q; ε). Hence, G∗(∧V,B;φ) is generated by 〈[y∗p], . . . , [y∗k]〉 and
〈[w∗q ], . . . , [w∗r ]〉 as a vector space. �

Theorem 2.8 Consider the homotopy monomorphism ι : X ↪→ Y between
simply connected formal homogeneous spaces for which π∗(Y ) ⊗ Q is finite
dimensional, and let φ : ∧V = (∧(V0⊕V1), d)→ (B, d) be its Sullivan model.
Then

(i) Grel
∗ (∧V,B;φ) is generated as a vector space by 〈[(y∗k, 0)], [(0, y∗p)]〉 and
〈[(0, y∗p)]〉 for p ∈ {1, . . . , k} which is determined by the homotopy
monomorphism.

(ii) Grel
∗ (∧V,B;φ) is generated as a vector space by 〈[(y∗k, 0)], [(0, w∗q)]〉 and
〈[(0, w∗q)]〉 for q ∈ {1, . . . , r} which is determined by the homotopy
monomorphism.
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Proof. (i) Let φ : ∧V = (∧(V0 ⊕ V1), d) → (B, d) be a Sullivan model for
the homotopy monomorphism ι : X ↪→ Y where V is finite dimensional.
Consider a minimal Sullivan model (B, d) = (∧(V0 ⊕ V1), d) of X where
π∗(X)⊗Q is finite dimensional. Suppose that V1 = V odd

1 = Q < y1, . . . , yk >
and define the derivations αt = (yt, 1) for t ∈ {1, . . . , k} in Der(B,B; 1) and
θp = (yp, 1) for p ∈ {1, . . . , k} in Der(∧V,B;φ). Here, the subscripts indicate
degrees. Since ι is a homotopy monomorphism, and the G-sequence of the
CW-pair (Y,X) is exact [7, 10], we have

φ∗(αt) =

{
θp, t = p,

0, t 6= p,

such that

D(αt, 0) =

{
(0, θp), t = p,

(0, 0), t 6= p,

and D(0, θp) = (0, 0). Thus, for t 6= p, [(αt, 0)] and [(0, θp)] are the non-zero
homology classes in H∗(Rel(φ

∗)). Moreover, H(ε∗, ε∗)([(αt, 0)]) = [(y∗t , 0)]
for t 6= p, and H(ε∗, ε∗)([(0, θp)]) = [(0, y∗p)]. It is easy to check that for t 6= p,
[(y∗t , 0)] and [(0, y∗p)] span H(ε∗, ε∗). On the other hand, we observe that, if
p 6= 1 for k = 1, then one recovers non-zero homology classes [(αt, 0)], t 6= p
and [(0, θp)] in H∗(Rel(φ

∗)). However, if p = 1 for k = 1, then φ∗(αt) = θp
for t = p. Thus, D(αt, 0) = (0, θp) and D(0, θp) = (0, 0). It follows that
H(ε∗, ε∗)([(0, θp)]) = [(0, y∗p)] and [(0, y∗p)] span H(ε∗, ε∗).

(ii) The proof for this part is similar to the one of (i). �

From the theorem above, it follows that the G-sequence reduces to

0→ Gp(∧V,B;φ)
H(J)→
'

Grel
p (∧V,B;φ)→ 0,

0→ Gk=p(B)
H(φ∗)→
'

Gp(∧V,B;φ)→ 0,

0→ Grel
k (∧V,B;φ)

H(P )→
'

Gk(B)→ 0,

and it is exact.
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